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Creep failure of amorphous solids under tensile stress
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Applying constant tensile stress to a piece of amorphous solid results in a slow extension, followed by an
eventual rapid mechanical collapse. This “creep” process is of paramount engineering concern, and as such was
the subject of study in a variety of materials, for more than a century. Predictive theories for τw , the expected
time of collapse, are incomplete, mainly due to its dependence on a bewildering variety of parameters, including
temperature, system size, tensile force, but also the detailed microscopic interactions between constituents. The
complex dependence of the collapse time on all the parameters is discussed below, using simulations of strip
of amorphous material. Different scenarios are observed for ductile and brittle materials, resulting in serious
difficulties in creating an all-encompassing theory that could offer safety measures for given conditions. A central
aim of this paper is to employ scaling concepts, to achieve data collapse for the probability distribution function
(pdf) of ln τw . The scaling ideas result in a universal function which provides a prediction of the pdf of ln τw

for out-of-sample systems, from measurements at other values of these parameters. The predictive power of the
scaling theory is demonstrated for both ductile and brittle systems. Finally, we present a derivation of universal
scaling function for brittle materials. The ductile case appears to be due to a plastic necking instability and is left
for future research.
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I. INTRODUCTION

The mechanical collapse of a solid under a constant tensile
force is known as “creep failure.” Being of a central concern to
material physics and engineering, this process has been widely
studied over the years in a variety of materials [1,2]. Creep
failure in amorphous solids in particular was examined using
experiments, simulation and analytical consideration [3,4].
Examining the available data one concludes that creep failure
is influenced by a host of variables, causing wide changes in
the failure scenarios in different systems. Broadly speaking,
one can distinguish “brittle” and “ductile” materials. In the
former class systems can withstand relatively small tensile
forces for a long (experimental) time, but they can collapse
immediately in a catastrophic manner for larger forces [5].
Ductile materials, however, can exhibit a necking instability,
with the system extending its length over a long stretch of time
until it finally collapses [6]. But even within these classes, it
was found that the mechanism for failure can differ from sys-
tem to system. Many parameters appear to play an important
role, including the system size N [7,8], the system’s aspect
ratio A = length/width [9], the temperature T [10], the type
of microscopic interactions [11], etc.

The aim of this paper is to explore the dependence of
the thermal creep scenario on all these variables, by using
numerical simulations of a simple idealized glass former for
which all the parameters are under control. Having done so,
a second aim is to overcome the complex dependence on the
parameters, by finding a method to collapse the data for the
probability distribution functions (pdf) of the logarithm of the
waiting time to failure ln τw. The main result of the paper

is that this pdf has a log-normal form that can be collapsed
on a universal form, shared by systems having different pa-
rameters. With this at hand, one can determine the universal
function from measurements, and then use it to predict this
important pdf for out-of-sample systems. Examples of such
predictability are discussed below. Note that although there
are numerous studies of creep flow in amorphous solids us-
ing microscopic simulations [12–14] or mesoscopic models
[10,15–17], most of them control the strain in the presence
of periodic boundary conditions. One important aspect of our
simulations is the observation of creep under stress control,
employing open boundaries, where one observes the mechan-
ical failure of the system instead of just fluidisation.

The study of creep collapse includes two connected, but
nevertheless different, issues. The first is how it occurs and the
second is how long does it take. We argue here that the former
is a very difficult problem, involving a variety of microscopic
and macroscopic ingredients. The latter appears manageable,
using scaling concepts as shown below. Indeed, the actual
scenario for creep failure appears very rich. At small applied
forces the materials extend slowly. At higher forces, when the
system eventually fails, typical creep responses can be divided
into three regimes [18]. The first and most interesting regime
is known as primary or transient creep. In this regime, the
creep rate remains initially very high. It decreases gradually
with time until it reaches a constant rate and then enters
into the next regime, which is called secondary creep, where
the creep rate remains very low and steady. The secondary
regime is followed by tertiary creep, where the creep rate
increases rapidly, eventually leading to mechanical failure or
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a fluidisation of the system. In our simulations we observe
all three distinct regimes. Various studies show that in the
transient creep the strain γ has a power law dependence on
time; γ ∼ tα [1,2]. The value of the exponent α was estimated
in many experiments and simulations for different viscoelastic
materials. Pioneering measurements were reported first by
Andrade for crystalline metals, with the estimate α ≈ 1

3 [1,2].
Later studies of various disordered viscoelastic materials yield
different values of α in the range [0,1]. In Ref. [19] this
range of values was attributed to the microscopic different
origins of the creep flow. In Ref. [12] numerical simulations
revealed fluctuations in the rate of deformation, identified as
precursors to the final rupture or fluidization. Such power laws
were studied using scaling relations [10,20] and nonaffine
displacements [21].

On the face of it, also the second issue of the waiting
time-to-failure τw seems complex. Obviously, τw depends on
the applied tensile force. But the nature of this dependence
changes drastically in different conditions and it changes
with the microscopic interactions. Athermal systems exhibit a
power law dependence on the applied force, but at finite tem-
peratures, where the creep is caused by thermal fluctuations,
one finds an exponential decrease in the time for failure with
the increase in force [19,22–25]. Phenomenological studies
employed mesoscopic models and scaling ideas in both ather-
mal and thermal scenarios, cf. Refs. [10,15,16], which support
the experimental observations. Moreover, the parameters in
the exponential dependence vary widely from system to sys-
tem. Nevertheless, we will argue below that the statistics of
the time to failure are easier to control and predict than the
mode of failure.

In Sec. II we introduce the model employed in the rest of
the paper. We choose a ternary mixture of point-particles in-
teracting via a modified Lennard-Jones potential. By varying
the range of interaction, Rc, of the microscopic potential, we
can produce more brittle or more ductile amorphous materials,
and cf. Ref. [11]. Indeed, the degree of brittleness is important
in determining very different scenarios for creep failure. In
Sec. III we present the qualitative observations, making clear
distinction between the mode of failure of brittle and ductile
systems. In Sec. IV we turn to quantitative measurements,
determining the dependence of the time of collapse on the
various parameters, like tensile force Fapp, system size N ,
aspect ratio A, and temperature T for both ductile and brittle
configurations. In all our simulations the final rupture does not
occur immediately after the external force is applied; rupture
takes time, and we refer to this as the waiting time τw. We
measure the displacement of the center of mass of the strip
in the direction of Fapp which determines the stain (γ ) as a
function of simulation time (t). We systematically tune the
temperature, aspect ratio, number of particles and degree of
ductility of the system and observe how the waiting time
varies. Since our systems are thermal, τw has exponential
dependence on Fapp. The parameters in this relation depend
on the temperature, aspect ratio, degree of brittleness and
number of particles of the system. The important result of this
section is that although the time for collapse τw exhibits large
sample-to-sample fluctuations, indeed varying over many or-
ders of magnitude, the average over realizations having the
same parameters, of the logarithm of the waiting time 〈ln τw〉,

satisfies very simple an reproducible dependence on the vari-
ous parameters. This will form the basis of the predictability
of the statistics of the time for failure, which is discussed and
explained in Sec. V. In that section we show that the pdf of
the waiting time assumes a simple log-normal form that can
be rescaled to provide a universal pdf that is the basis for the
of out-of-sample predictions. In Sec. VI we present a theory
for the brittle case, to explain the origin of the log-normal
distribution. The ductile case appears to be due to a different
mechanism, namely a plastic necking instability [6], and so
we leave it for future studies. In Sec. VII we offer a summary
and a discussion of the new results.

II. SIMULATIONS

To allow us to span brittle to ductile behavior we employ
a two-dimensional amorphous strip of length L and width W
made of a ternary mixture of Lenard-Jones particles, denoted
as A, B, and C, with a concentration ratio A:B:C = 54:29:17.
The particles interact via a modified Lennard-Jones potential
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Here α and β stand for different types of particles. The
potential has a minimum at r = rminσα,β and it vanishes at
r = Rcσα,β . The value of rmin is given by 2

1
6 and the range

of interaction, Rc, is varied from 1.2 to 2.5 to tune the duc-
tility of the system [11]. Note that with increasing Rc system
becomes more ductile. The coefficients a, b, C0, C2, and C4

are chosen such that the repulsive and attractive parts of the
potential are continuous with one derivatives at the potential
minimum, rminσαβ , and the potential goes to zero continu-
ously at Rcσα,β with two continuous derivatives. The energy
scales are εAB = 1.5εAA, εBB = 0.5εAA, εAC = 0.5(εAA + εAB),
εBC = 0.5(εAB + εBB), and εCC = 0.5(εAA + εBB), with εAA

equal 1. The ranges of interaction are σAB = 0.8σAA, σBB =
0.88σAA, σAC = 0.5(σAA + σAB), σBC = 0.5(σAB + σBB), and
σCC = 0.5(σAA + σBB), with σAA=1. The mass m of all the

particles is unity, and the unit of time is τ =
√

mσ 2
AA/εAA = 1.

Boltzmann’s constant is taken as unity. The strip has walls of
suitable thickness at the two lateral sides, where the tensile
force is applied. The top and bottom sides have open bound-
aries as shown in Fig. 1. The simulations are performed at
three different temperatures, T = 0.06, 0.10, 0.15, for three
different system sizes, for which the number of particles N =
1 000, 4 000, and 10 000. In addition, the aspect ratio of
the strip, A ≡ L/W , is varied from 1.25 to 3.0. Note that
the simulations are carried out at finite temperatures, where
mechanical failure is expected to be sensitive to thermal fluc-
tuations [26,27].
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(a)

(b)

FIG. 1. (a) A typical configuration of the strip for N = 1000.
The orange particles consist the walls, and the arrows indicate the
direction of applied force. (b) Time dependence of the change of
center of mass, �ξ (t ). Note that time is measured in units of
τ = √

mσ 2
AA/εAA = 1, while in the waiting regime �ξ (t ) ∼ 2 in this

simulation.

All the simulations commence by creating a strip of amor-
phous matter with periodic boundary condition (PBC) in the
x and y directions, where the x direction is determined by
the longer boundary, which is also the direction of the ten-
sile force. The strip is equilibrated at a high temperature
T = 1. Subsequently the system is slowly cooled down to a
target temperature T . Upon reaching the target temperature
we conduct NPT molecular dynamics at zero pressure, P = 0.
The purpose of this is to avoid particles escaping from the
simulation cell after the removal of the periodic boundary
conditions. Upon removing the PBC in the y direction, we
construct two boundary walls at the opposite sides in the x
direction. The walls have a thickness of around five particle
diameters. In the y direction the strip has open boundaries.
Finally, we apply a net external force Fapp on one of the
walls by equally dividing it among the wall particles. Each
particle of this wall is confined to it’s initial position in the
y direction by a harmonic potential with a spring constant
100. The reason for such implementation is to avoid wall
distortion and to mimic the experimental setup where both
sides of the sample are clamped [28]. The particles of the
other wall remain pinned at their initial position. We continue
our simulation until the strip fails mechanically. The force
is increased from zero to the chosen value of Fapp smoothly,
to avoid any possible shock. Note that the time required to
reach the selected force is very small compared to the typical
failure time, τw, even for the largest Fapp. The failure event is
signaled by the relatively rapid increase of the center of mass
of the strip in the direction of Fapp, cf. Fig. 1.

III. QUALITATIVE OBSERVATIONS

In this section we explore the modes of mechanical failure
for both brittle and ductile systems. Switching on Fapp, one

can monitor the increase in the position of the center of mass
of the strip. The presence of the tensile force Fapp results, even
at short times, with some amount of stretching of the strip,
but no failure is observed for small amounts of stretching.
There exists an amount of stretching that is admissible with-
out breaking bonds, both in brittle and in ductile materials.
Exceeding this amount, bonds begin to break. Here “bond” is
meant as two particles that interact within the attractive part
of the L-J potential. Typically, more ductile system stretch
more than brittle systems before failing, cf. Fig. 2. With all
the parameters (besides the microscopic interaction law) kept
equal, brittle systems need larger values of Fapp to fail, while
increasing the temperature T results in smaller values of Fapp

to fail. The required Fapp also increases upon increasing the
aspect ratio A of the strip, as the number of broken bonds
leading to final rupture increases. For ductile failure the sys-
tem fails by forming a neck, the bonds at the edges start
breaking, resulting in an increase in the applied force per
bond in the remaining bonds. However, in brittle systems there
are multiple holes in the bulk of the strip, with occasional
micro-cracks at the edges [29]. These holes and cracks can
merge, leading to the final rupture, as shown in Fig. 2. Again,
the formation of the holes and cracks necessarily increases
the applied force per remaining bond. Thus both for brittle
and ductile samples the increase in tensile force per bond
initiates the process of mechanical failure, but the details of
this process depend crucially on the microscopic interaction.
The appearance of the strip after failure for ductile and brittle
systems are shown in Fig. 3.

Below we will make use of the hole formation in the brittle
scenario to derive the pdf of ln τw. The observation is that the
holes are created on a relatively fast timescale, and then τw

is determined by the additional bonds that need to be broken
by thermal fluctuations. The number of bonds is proportional
to the sum of circumferences of the holes. Since the number
and size of the holes that are created on the fast timescale is
random, the distribution of the total circumference is a normal
(Gaussian) distribution. Adding to this the fact that the thermal
fluctuation needed to overcome the barrier for breaking bonds
follows a Kramer’s theory [30], we will be able to relate this
geometric picture to the pdf of ln τw as is explained in Sec. VI.
Unfortunately we do not have such a simplifying geometric
picture for the ductile scenario where the stretching of the
system, and the length of the neck that forms, are harder to
estimate using simple considerations.

IV. QUANTITATIVE OBSERVATIONS

Our simulations reveal that the time for failure τw depends
on all the parameters, i.e., N , Fapp, T , and A,

τw ∼ τw(N, Fapp, T, A). (2)

Moreover, even for the same parameters, different samples
can exhibit widely different values of τw. Therefore, to make
progress, one needs to consider the mean values, like 〈τw〉,
ln〈τw〉 or 〈ln τw〉, where 〈· · · 〉 represents an average over an
ensemble of realization sharing the same parameters N , Fapp,
T and A. All these mean values obey simple relationship to
the control parameters as we discuss below. In light of the
theoretical consideration presented in Sec. VI, we prefer to
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FIG. 2. Typical configurations at different simulation time with a constant applied force Fapp. Panels (a), (b), and (c) are for a ductile
system and panels (d), (e), and (f) are for a brittle system.

detail simulations results for 〈ln τw〉, an average quantity that
plays a dominant role in the theory below. The figures shown
below, i.e., Figs. 4–7 are all extracted from data pertaining to
Rc = 2.5. Similar results were found other values of Rc, and
cf. Fig. 8.

A. Dependence on tensile force and temperature

By creating an ensemble of configurations sharing the
same aspect ratio and number of particles A and N , one finds
a simple law for the dependence of the mean time to fracture
on the tensile force and temperature:

〈ln τw(Fapp, T )〉 ≈ C1 − D1(T )Fapp. (3)

FIG. 3. Comparison between the shapes of the interfaces after
brittle or ductile failures. (a) Typical shape of the interface of a brittle
strip whose length is of the order of W . (b) Typical ductile interface
whose length exceeds W due to the necking instability.

The demonstration of this simple law for two different system
sizes is shown in Fig. 4. The temperature dependence of the
coefficient D1(T ) in Eq. (3) is shown in Fig. 5.

B. Dependence on aspect ratio A

Next we investigate the dependence on the aspect ratio
A for fixed Fapp, T , and N . Once again we find a simple
dependence,

〈ln τw(A)〉 ≈ C2 − D2A. (4)

The data is shown in Fig. 6. The coefficient D2 depends on the
parameters held fixed in Eq. (4).

C. Dependence on system size N

Similarly to the the two previous subsections, we can ex-
amine the dependence of the log of time to failure on the
system size. Varying the system size with the other parameters
held fixed we find the relation

〈ln τw(Fapp, N )〉 ≈ C3 − D3(N )Fapp. (5)

FIG. 4. (a) Average logarithm of waiting time as a function of
applied force for different temperatures, for N = 1000. The solid
lines are the fits to the Eq. (3). Note that the slope, D1(T ) depends on
T . (b) Same for N = 4000.
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FIG. 5. Temperature dependence of the D1(T ) for N = 1000
(a) and N = 4000 (b).

The data to support this law and the dependence of D3(N ) on
N (which is consistent with a power law) are shown in Fig. 7.

D. Effect of degree of brittleness

As mentioned above, one can tune the brittleness in the sys-
tem by changing the interaction range in the force law Eq. (1).
The cutoff length, Rc, is varied from 1.20 to a maximum value
of 2.50. With decreasing Rc the system becomes more brittle,
modifying the dependence of 〈ln τw〉 on Fapp:

〈ln τw(Fapp, Rc)〉 ≈ C4 − D4(Rc)Fapp. (6)

The effect is similar to varying the system size N ; see Fig. 8.
Note that unlike the previous case, the coefficient in the expo-
nent does not appear to follow a power law.

E. Scaling of the collapse time

Finally we attempt to collapse our data for 〈ln τw〉 as a
function of Fapp for different temperatures and system sizes
for ductile systems (Rc = 2.5). To do so we first find the de-
pendence on these parameters of FY , which is the applied force
requires for instantaneous mechanical failure τw = 1. This is
given by D1(T )/C1 and D3(N )/C3 for T and N , respectively.
The data is in agreement with the following scaling laws:

T 1/3〈ln τw(T )〉 = KT (FY (T ) − Fapp). (7)

N1/2〈ln τw(N )〉 = KN (FY (N ) − Fapp), (8)

FIG. 6. Average log of waiting time as a function of aspect ratio
for N = 1000, T = 0.10, and Fapp = 13.0.

FIG. 7. (a) Average log of waiting time as a function of Fapp for
different system sizes. (b) Variation of the slope, D3(T ), as a function
of system size.

FIG. 8. (a) Average log of waiting time as a function of Fapp for
different interaction range, Rc. (b) Variation D4 a function of Rc.
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FIG. 9. Data collapse of the time for failure for (a) different
temperatures and (b) different system sizes.

where KT and KN are constants. In these equations the yield
forces FY (T ) and FY (N ) themselves exhibit scaling depen-
dence which is FY (T ) is linear in T and FY (N ) ∼ N0.45,
respectively.

Using these scaling we replot the data as shown in Fig. 9.
We find good data collapse that can be used to predict the
time to failure in out-of-sample conditions at temperatures and
systems sizes that were not measured. Note that the exponent
of N in Eq. (8) comes from the relation between the width
of the sample (W ) and N for a fixed aspect ratio. But at this
moment we do not have any explanation for the exponent of
T in Eq. (7).

V. STATISTICS OF THE TIME TO FAILURE

The upshot of the previous section is that the time to failure
depends sensitively on all the parameters in the system. On top
of this, even for a fixed set of parameters, different realization
can fail with times to failure varying on at least two orders of
magnitude. While the relative range of fluctuations does seem
to reduce significantly with system size, our conclusion is that
deterministic predictions are quite difficult to make. In this
section we turn to the probability distribution function of the
time-to-failure, and argue that this path offers quite interesting
opportunities for probabilistic predictions. For concreteness
we focus on the pdf P(ln τw; Fapp) for systems with a given N ,
T , and Rc. One can examine at will other cuts of parameter
space in a similar fashion.

A. Numerical findings

The main finding for the pdf P(ln τw; Fapp) is exhibited in
Figs. 10(a) and 10(d). The pdf’s appear to be log-normal for
both brittle and ductile systems. Of course, for different tensile
forces Fapp we find different distributions, but they keep on
their form, which is Gaussain in plots of P(ln τw ) versus ln τw.
This suggests that data collapse by scaling should work well,
as we show next.

We find that the simplest scaling ansatz works very well.
The pdf P(ln τw; Fapp) can be scaled using the following scal-
ing relation:

P(ln τw, 〈ln τw〉) = 〈ln τw〉−1g

(
ln τw

〈ln τw〉
)

. (9)

FIG. 10. Distribution of the ln τw for various Fapp for both ductile system, panel (a) for Rc = 2.5, N = 4000, and brittle system in panel
(d) for Rc = 1.2, N = 1000. Note that the qualitative nature of the distribution remains invariant to the degree of brittleness and that the
distribution become narrower with increasing system size. (b) Data collapse according to the theoretical prediction Eq. (9) for the ductile
case. (e) Data collapse according to the theoretical prediction Eq. (9) for the brittle case. Panels (c) and (f) demonstrate the prediction of an
out-of-sample pdf for ductile and brittle systems respectively.
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The data collapse that follows from this ansatz is presented in
Figs. 10(b) and 10(e) for ductile and brittle systems, with

g(x) = C̃ exp[−Ĉ(x − 1)2], (10)

where C̃ and Ĉ are constants, and x ≡ ln τw/〈ln τw〉. This data
collapse allows statistical predictions as we show next. Note
also that Eq. (10) predicts that the peak of the distribution of
P(ln τw, 〈ln τw〉) occurs when ln τw = 〈ln τw〉.

B. Predictions

Consider a situation in which data for a limited range of
Fapp is given, but one needs to estimate the most probable
time for failure τw for an out-of-sample value of Fapp. Another
important task may be estimating the probability of collapse
at times smaller, or even much smaller, than the most probable
value of τw. Here we show that the analysis described above
offer answers to such tasks.

Imagine then that we have data for the average time for
collapse for a range of tensile forces [F min

app , F max
app ], and we

want to determine the statistics of τw for F oos
app > F max

app where
the superscript “oos” stands for out-of-sample. From the avail-
able data we determine the coefficients in Eq. (3), and also
those of the collapsed function Eq. (10). Next we can use
Eq. (3) to predict 〈ln τw〉 for the out of sample value of the
tensile force F oos

app . Employing the collapsed pdf Eq. (10) can
determine than P(ln τw ), which in turn provides us with full
predictability for the statistics of the time-for-failure.

To demonstrate this process consider again the collapsed
pdf’s in Figs. 10(b) and 10(e), and pretend that the data
for Fapp = 25 and Fapp = 39 did not exist in our sample.
Following the procedure outline here we get the predicted
distribution shown in Figs. 10(c) and 10(f). The agreement
with the data is quite satisfactory.

VI. THEORY

To derive the form of the scaling function for the statistics
of τw one cannot avoid delving into the process of material
collapse. We find that the ductile case is harder to theorize than
the brittle case. Thus in this section we describe the derivation
of Eq. (9) for the brittle case, leaving the other for a future
endeavor.

In the brittle case the material collapses due to the growth
of damage holes in the material, cf. Fig. 2. In the brittle case
the simulations indicate that a set of damage holes is formed
on a rapid timescale, and then the system is dormant for a
long time, of the order of τw, until a rapid process of increased
damage take place until rupture occurs. We therefore need to
estimate the time that it takes to break the bonds that form the
circumference of the holes present in the system. We expect to
have a distribution of hole areas, but what is important is the
circumference of these holes, since it is there that additional
bond breaking takes place. Denote then the total length of all
the circumferences in a given sample as 
. We assume that the
distribution of 
 is normal, and that the distribution of waiting
times stems from the sample-to-sample fluctuation in 
, Ph(
).

FIG. 11. Plots of a typical Lennard-Jones Potential under applied
strain f . Note that for R > Rbarrier( f ) V (R, f ) → −∞.

We thus write

Ph(
) = 1√
2πμ


e−[(
−〈
〉)2/2μ
], μ
 ≡ 〈
2〉 − 〈
〉2. (11)

Next we estimate the number of bonds associated with the
given circumference 
 as 
/σ . The energy necessary to be
surmounted to break these bonds is �( f )
/σ , where �( f ) is
the barrier for a single bond to break under a local tensile force
f . Finally we need an expression for this potential barrier.
Its actual value in an amorphous strip depends of course
on exactly where the bond lies in the strip, and as it will
appear as an exponential of the form exp �( f )/T in both
thermal averages and in Kramers’ rates for bond breakages
[30], it will fluctuate considerably in its influence. But we can
estimate a typical value which depends on the inter-atomic
potential used in the simulations. First we estimate the barrier
for a simple Lennard-Jones potential (see Fig. 11) rather than
the more complex form Eq. (1). Subsequently we show that
the resulting scaling form for the pdf remains valid also for the
potential used, Eq. (1). The strained Lennard Jones potentials
takes the form

V (R, f ) = ε[(R/σ )−12 − (R/σ )−6] − f R. (12)

Thus, the stretched potential is fully specified by three
parameters—ε specifies the potential energy scale, σ specifies
the potential range, while f is the applied force stretching a
single bond.

V (R, f ) is plotted in Fig. 11 as a function of R for several
values of the applied force f . Notice the behavior of V (R, f )
as the strain is increased. Initially an unstable peak in the
potential energy barrier of size �( f ) = V [Rbarrier( f ), f ] −
V [Req( f ), f ] appears in the potential energy at a distance
Rbarrier( f ) from the initial minimum of the unstrained poten-
tial. The barrier height �( f ) and its position Rbarrier( f ) can be
calculated from the pair of equations

∂V (R, f )/∂R|R=Rbarrier ( f ) = 0,

∂V (R, f )/∂R|R=Req( f ) = 0,

�( f ) = V (Rbarrier( f ), f ) − V [Req( f ), f ]. (13)

Solving Eqs. (12) and (13), we find there is a force f = fmax

when �( fmax) = 0. The barrier disappears and for f > fmax

the bond will break. Plotting the nonlinear scaled barrier
height �( f )/ε versus the scaled force f σ/ε in Fig. 12 we
see that �( f ) is a strong function of f .
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FIG. 12. The nonlinear scaled barrier height �( f )/ε versus the
scaled force f σ/ε.

Accordingly, we can estimate the time to failure τw as [30]

ln τw ∼ 
�( f )

σT
. (14)

The pdf P(ln τw ) can be written as an identity,

P(ln τw ) =
∫ ∞

0
d
Ph(
)δ

[
ln τw − 
�( f )

σT

]
. (15)

Performing the integration and using the δ function we end up
with the log-normal distribution for the waiting times

P(ln τw ) = 1√
2πμln τw

e
−

[
(ln τw−〈ln τw 〉)2

2μln τw

]
,

μln τw
≡ 〈(ln τw )2〉 − 〈ln τw〉2. (16)

Finally, we can pull out a factor of 〈ln τw〉2 from the exponen-
tial form, and after some straightforward manipulations bring
the pdf to the form used in Fig. 10. We rewrite Eq. (16) in the
form

P(ln τw )〈ln τw〉 = e
−

[
(x−1]2 )
2μ′

ln τw

]

√
2πμ′

ln τw

, (17)

with x = ln τw

〈ln τw〉 and μ′
ln τw

= μln τw

〈ln τw〉2 . We thus derived Eq. (10),
with the constants expressed as

C̄ = 1√
2πμ′

ln τw

, Ĉ = 1

2μ′
ln τw

. (18)

The data collapse is presented in Fig. 10(e). The black
solid line is the scaling function g(x) = 4.16e−54.5837(x−1)2

.
The quality of the fit validate our theory for the P(ln τw ) for
the brittle system.

Presently we generalize this result for the simulated case
of a ternary mixture. The agreement of the scaling theory and
the actual simulations seem much better than a theory based
on a single LJ potential should allow (see Fig. 10). We now
show that this is not a coincidence because instead of Eq. (14)
we can use

ln τw ∼ 
〈�( f )〉
〈σ 〉T (19)

to estimate the waiting time, where

〈�( f )〉 =
∑
αβ

pα pβ�αβ ( f ),

〈σ 〉 =
∑
αβ

pα pβσαβ, (20)

with pα being the fraction of particles of type α in the simu-
lation, while �αβ ( f ) is the barrier that needs to overcome a
potential barrier in a bond made from atoms α and β, while
σαβ is the radius of the bond. In our simulations there are
three types of atoms α, β = A, B,C, and energy and length
scales εαβ and σαβ , given below Eq. (1). Note that Eq. (19) has
exactly the same form as for a single Lenard-Jones potential,
thus accounting for the fit between theory and simulation
shown in Fig. (10).

To derive Eqs. (19) and (20) we proceed as follows. We
first define nαβ (
) as the number of bonds of type αβ in
an interface of length 
. Now as nαβ (
) = pα pβ
/〈σ 〉 where
〈σ 〉 = ∑

αβ pα pβσαβ is the average radius of a bond in the
interface, we can write the total energy required to create this
interface as

E (
, f ) =
∑
αβ

nαβ (
)�αβ ( f ) = 
〈�( f )〉
〈σ 〉 , (21)

which leads to Eq. (19) together with Eq. (20).

VII. SUMMARY AND DISCUSSION

The upshot of this paper is that the details of the creep
process depend on many parameters as well as on microscopic
interactions, as has been found in many experiments and
simulations. Nevertheless, the statistics of τw, as well as the
average logarithm time-for-failure 〈ln τw〉, exhibit relatively
simple dependence on the parameters. Moreover, the pdf of
τw has log-normal form, allowing us to data collapse the
distributions for both the brittle and the ductile cases. This
data collapse, together with the simple linear dependence of
〈ln τw〉 on the various parameters, opens up out-of-sample
predictions for the pdf of ln τw. Theoretically we could relate,
for the brittle case, the log-normal distribution of τw to the
log-normal (assumed) distributions of the circumference of
the holes formed at early times in brittle materials. An analog
relation of the ductile case is still lacking, and is deferred to
future research.

It would be interesting and exciting to test the applicability
of the present approach to material science and engineering
applications. Hoping that the novel findings of the log-normal
statistics holds firm, this opens up an important path for pre-
dicting the safety of systems under constant external stress.
Using measurements at laboratory accessible parameters, es-
timates of the danger of creep failure at unmeasured values of
stress could be vastly improved.
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