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Effect of electrostatic interaction on impact breakage of agglomerates formed by charged
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In this paper, the prototypical process of the normal impact of dense agglomerates is investigated using the dis-
crete element method–boundary element method coupled simulations. The agglomerate consists of 50 charged
particles with the surface energy equal to 10 mJ/m2. The particles are assumed to be tribocharged and follow an
exponential charge distribution, while the varying levels of coupled polarization are also considered. Simulation
results reveal that the presence of the electrostatic interactions due to particle charging and polarization could
drive more pronounced re-agglomeration after the collision, which effectively reduces the degree of agglomerate
fragmentation. Moreover, when quantifying the collision outcomes using the fragmentation ratio, the influence
of the electrostatic force is most significant at a moderate incident velocity. This is because, at such incident
velocities, the impact is violent enough to break the agglomerate, but many ejected fragments are usually at
low velocities and are attracted back by the long-range electrostatic force. Furthermore, the electrostatic force
between same-sign particles even becomes attractive when particles are strongly polarized, leading to qualitative
changes in particle dynamics. Finally, by comparing the collision outcomes under different incident velocities,
the contact interactions are found to prevail when particles are still bounded in the agglomerate, while the
electrostatic interaction becomes dominant after particles detach from each other.
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I. INTRODUCTION

For micron-sized solid particles, the short-range van der
Waals adhesion is strong compared with particle inertia, so
microparticles could easily stick together and form agglomer-
ates upon collisions [1–3]. The breakage of such agglomerates
could significantly affect the size distribution, morphology,
and even the reactivity of the solid phase, which is of great
importance in various natural and industrial multiphase flows.
Typical examples can be given as the formation of a planet
[4,5], the removal of particulate matters [6,7], the trans-
port of pharmaceutical powders [8,9], and the conveying of
particle-laden flows [10,11]. Among different applications,
the breakage of agglomerates can be roughly divided into
two categories. The first is caused by hydrodynamic stress,
where the agglomerates are stretched and even broken by
surrounding fluid [12–17], while the latter is due to violent
collisions of agglomerates with each other or with walls
[18–21].

In this paper, the impact breakage of agglomerates on a
solid wall is of particular interest for several reasons. First,
the process of wall impact itself is almost inevitable in wall-
bounded particulate flows [22], which affects the fragment
size and particle movements. Additionally, the impact break-
age can be employed as a prototypical process to investigate
the dependence of agglomerate strength on various parameters
[23,24]. Moreover, impact breakage has been applied as an
efficient technology for solid particle dispersion [25,26]. To
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establish a clear link between the particle-scale interactions
and the strength of the macroscopic agglomerates, detailed
information, such as interparticle forces, is required. However,
the characteristic time and length scales of impact breakage
are extremely small, which makes it difficult to obtain desired
information through experimental investigations. Hence, the
discrete element method (DEM), which resolves the move-
ments and contact interactions of individual particles, has
been employed as a powerful tool to address this issue.

Extensive DEM simulations have been conducted to in-
vestigate the impact breakage under different parameters and
configurations, which provide deep physical insights. For dry
neutral particles, it is generally accepted that the short-range
contact forces and torques could effectively resist interparticle
movements and keep the agglomerates stable. Thornton et al.
[23] performed two-dimensional simulations on the impact
fragmentation of spherical agglomerates. The damage ratio
of the interparticle contacts was found to scale with the di-
mensionless Weber number, which was defined as the ratio
of the particle inertia to the surface adhesion. By assuming
the energy required to break the contacts was proportional
to the impact kinetic energy, Moreno-Atanasio and Ghadiri
[24] included the effect of the elastic modulus. A modified
dimensionless group was then proposed, which could describe
well the breakage behavior within a wide range of surface
energy. Apart from the normal impact of dense spherical ag-
glomerates, the influences of different agglomerate structures,
incident angles, and primary particle shapes have also been
studied to extend the understanding further [20,27–30].

In addition to the intrinsic short-range contact interactions,
particles could interact with each other through the long-range
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electrostatic interaction. During handling and manufactur-
ing, particles could easily get tribocharged through collisions
[31–33]. The resulting long-range electrostatic force dras-
tically alters particle behavior in various particle systems,
such as particle packing [34], self-assembly [35], pore clog-
ging [36,37], clustering in turbulence [38], and fluidization
[39,40]. For the aggregation in granular flows, it has been
reported that the presence of the electrostatic interaction
remarkably increases the binding energy between charged
grains and promotes the growth of large aggregates [41,42].
However, despite the ubiquity of triboelectrification and the
significant role of the electrostatic interaction, the study
on the impact breakage of charged agglomerates is still
absent.

Additionally, when charged particles are very close to each
other, the electrostatic force cannot be treated as the sim-
ple Coulomb force between point charges. Instead, charged
particles become polarized, leading to more complicated
electrostatic interactions that must be accurately accounted
for. For instance, Kolehmainen et al. [43] adopted the in-
duced dipole model to study particle-laden flows with various
particle charging and polarization levels. It was found that
particle polarization gave rise to distinct flow patterns that
cannot be predicted by the point charge model. When con-
sidering the effect of the induced higher-order multipoles
using the finite element method (FEM), the electrostatic
force between a pair of polarized particles carrying same-
sign charges could be attractive if the difference between
the charges was significant [44]. This conclusion has re-
cently been further extended to multiple particle situations
for practical aggregation [45]. However, the accurate but ex-
pensive FEM has only been applied in static simulations,
which limits further investigations on the dynamic process.
As a result, efforts are still needed to unveil the influence of
particle charging and polarization on the process of impact
breakage.

To address the above issues, in this paper, we perform
boundary element method (BEM)-DEM coupled simulations
to investigate the impact breakage of dense spherical agglom-
erates formed by charged particles. Section II introduces the
numerical methods used in this paper. The particle motions
are evolved by the adhesive DEM, and the electrostatic inter-
action is accounted for using BEM. The generalized minimal
residual (GMRES)–fast multipole method (FMM) algorithm is
incorporated to achieve efficient electrostatic computation.
Then simulation results are discussed in Sec. III. First, typical
collision processes are displayed to compare the macroscopic
collision outcomes between neutral and charged agglom-
erates. Scaling analysis is then conducted to illustrate the
relative importance and respective dominant ranges of differ-
ent interactions. Finally, by discussing the dominant factors
under different incident velocities, the physical picture of
impact breakage is presented.

II. METHODS

A. DEM

In this paper, the adhesive DEM is applied to
evolve the translation and rotation of each particle
[46,47]. The governing equations of particle motions are

given as

m
dvi

dt
=

∑
j �=i

FC
i j + FE

i , (1a)

I
d�i

dt
=

∑
j �=i

MC
i j + ME

i . (1b)

Here, m = 4πρpr3
p/3 and I = 2mr2

p/5 are the particle mass
and the moment of inertia, where ρp and rp are the particle
density and radius. Also, vi and �i are the velocity and the
rotation rate of particle i. Furthermore, FC

i j and MC
i j are the

contact force and torque exerted on particle i by another par-
ticle j. Then FE

i and ME
i are the electrostatic force and torque

acting on particle i.

B. Contact interactions

If the center-to-center distance between two particles is
smaller than the sum of their radius, these two particles are in
contact, and the associated contact interactions are computed.
In this paper, we consider various contact forces and torques
due to four modes of relative motions, i.e., normal impact,
sliding, rolling, and twisting.

The normal contact force is computed by the Johnson-
Kendall-Roberts (JKR) theory together with the viscoelastic
damping model (Appendix A). The JKR theory combines the
effect of elastic repulsion and the van der Waals attraction
[48], while the normal dissipation force is proportional to the
normal relative velocity [49,50]. The resistance force/torques
due to interparticle sliding, rolling, and twisting are modeled
using the spring-dashpot-slider model. Here, spring terms
depend on the relative displacements or rotation angles, and
dashpot terms are proportional to the relative velocity or rota-
tion rates. The slider model means, once exceeding the upper
limits, the force/torques remain unchanged, and irreversible
sliding, rolling, and twisting occur. Details of these models
are given in Refs. [46,47,50] with their implementations in-
troduced in our recent work [19,38].

C. BEM-based electrostatic calculation

In this paper, the BEM is employed to dynamically evolve
the surface charge distribution on each particle surface. The
electrostatic force and torque are then calculated through sur-
face integration. This BEM-based method has been validated
to accurately resolve the electrostatic interactions between
charged spheres and ellipsoids. Here, only the key information
of the BEM is introduced. For details, see Ruan et al. [51] and
Barros et al. [52].

We start by looking at multiple charged dielectric particles
in a vacuum [Fig. 1(a)]. The dielectric constant of the particles
κp is uniform within each sphere, and the dielectric constant
of the medium is κ0. In this case, the dielectric constant κ

only changes at the particle-medium interface, so the elec-
trical charge only distributes on the particle surfaces, which
is denoted by σ [52]. The surface charge density σ (r) at a
certain position r on the surface of particle i consists of both
the free charge density σ f and the induced charge density (or
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FIG. 1. Schematic of (a) the simulation system and (b) the trian-
gular surface patches on a spherical particle.

the bound charge density) σb:

σ (r) = σ f (r) + σb(r). (2)

Here, the free charge density σ f is contributed by the uni-
form distribution of the net charge qi carried by particle i, i.e.,
σ f = qi/4πr2

p. In addition, since the dielectric particle can be
polarized by the local electric field E(r) at r, the bound charge
density σb will be induced. To resolve the full surface charge
distribution σ (r), we need to solve for the unknown induced
surface charge density σb(r). The governing equation of σb has
been derived in Ref. [51] as

κ̄ (σ f + σb) + ε0�κE · n = σ f . (3)

Here, κ̄ = (κp + κ0)/2 and �κ = κ0 − κp are the mean
and difference of the dielectric constants of the particle and the
medium, ε0 = 8.854 × 10−12 F/m is the vacuum permittivity,
and n is the unit vector along the outward normal direction at
r.

The full local field strength E = Ef + Eb + Eext contains
three terms: (1) the field strength generated by all the free
charge Ef; (2) the field strength generated by all the induced
charge Eb, and (3) the external field Eext. To evaluate (1), the
field strength dEf at ri generated by the free charge located at
rj can be determined using Green’s function as

dE f (ri ) = K (ri, r j )σb(r j )dS(r j )

= ri − r j

4πε0|ri − r j |3
σb(r j )dS(r j ). (4)

Here, K (ri, r j ) = (ri − r j )/4πε0|ri − r j |3 is the kernel
function, and σb(r j )dS(r j) is the total amount of charge
located at r j . Then summing the contribution over all the
surfaces S in the system yields

E f (ri ) =
∫

S
K (ri, r j )σ f (r j )dS(r j )

=
∫

S

ri − r j

4πε0|ri − r j |3
σ f (r j )dS(r j ). (5)

Similarly, the second term Eb is the electric field generated
by all the induced surface charge, which can be determined by
substituting σb(rj) for σ f (rj) in Eq. (5) as

Eb(ri ) =
∫

S
K (ri, r j )σb(r j )dS(r j )

=
∫

S

ri − r j

4πε0|ri − r j |3
σb(r j )dS(r j ). (6)

The third term Eext is only nonzero if an external field
exists. In this paper, the field strength is only generated by
particle charge, so the external field is absent (Eext = 0).
Therefore, we can rearrange Eq. (3) as

κ̄σb + ε0�κEb · n = (1 − κ̄ )σ f − ε0�κE f · n. (7)

According to Eq. (6), Eb relies linearly on σb, so the left-
hand-side term of Eq. (7) can be further written as a linear
form of σb:

Aσb ≡ κ̄σb + ε0�κEb · n, (8)

while the right-hand-side term of Eq. (7) is also determined
linearly by σ f :

b = (1 − κ̄ )σ f − ε0�κE f · n. (9)

Thus, Eq. (7) can be written in a simpler form as

Aσb = b, (10)

which separates the unknown σb from the known σ f .
For each time step in the simulation, the physical pa-

rameters (κp and κ0), the system geometry (particle location
and size), and the free charge density σ f are already known.
We first solve Eq. (10) to obtain the induced charge density
σb. It should be noted that, in the multiple-particle situation,
Eq. (10) can be applied to the set of all the surface elements in
the system regardless of which particle each surface element
belongs to because all the surface elements interact with each
other in the same way as described by Eq. (10). Then the full
field strength E = Ef + Eb at each surface elements can be
computed using Eqs. (5) and (6). The electrostatic force and
torque acting on each particle can therefore be calculated by
integrating the contribution over its surface Si [51,52]:

FE
i =

∫
Si

κ0(σ f + σb)E(r)dSi(r), (11a)

ME
i =

∫
Si

κ0(σ f + σb)(r − xi ) × E(r)dSi(r). (11b)

Here, r − xi is the vector pointing from the particle cen-
troid xi to each surface element r.

It should be noted that the induced charge density σb does
not change the net charge on each particle since the net charge
qi on each particle i is conserved:∫

Si

(σ f + σb)dSi = qi. (12)

Instead, σb could effectively redistribute the surface charge
due to particle polarization, which modifies the electrostatic
interaction between particles. Also, the transfer of charge due
to triboelectrification [53] is not considered in this paper.

D. Numerical implementation of BEM

1. Surface discretization

In the numerical simulation, the surface of each particle
is discretized into triangular surface patches of similar size
using the open-source code DISTMESH [54]. A typical example
is shown in Fig. 1(b). In this paper, the number of surface
patches on each particle is chosen as Npat = 392, which is
comparable with the settings in the previous study by Barros
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and Luijten [55]. After the initial discretization, the location
of each surface patch will be updated as particles translate and
rotate in the domain, so there is no need to discretize particle
surface every time step.

To resolve the surface charge distribution, we only need to
solve the discretized form of Eq. (10), which is given in the
index form as

Ai jσb, j = bi. (13)

Here, Einstein summation is applied to the repeated index
j on the left-hand side. Also, σb, j is the vector formed by the
induced charge density of all the surface patches. The matrix
Ai j contains the information of the geometry and the physical
properties of the system

Ai j = κ̄iδi j + �κini · Ii ja j . (14)

Here, a j is the area of the jth patch, δi j is the identity
matrix, Iij is the matrix consisting of the Green’s function
between each pair of surface patches:

Ii j = ri − r j

4π |ri − r j |3
, (15)

with ri being the center location of the ith patch. The dis-
cretized form of the right-hand-side term in Eq. (9) is given
in a similar way as

bi = [(1 − κ̄i)δi j − �κini · Ii ja j]σ f , j . (16)

Since the Green’s function Iij is singular for i = j, we
neglect the electric field from one surface patch to its own
center location (Iii = 0), which does not introduce significant
deviations.

Taking Eqs. (14)–(16) into Eq. (13), we have

κ̄iσb,i + �κini · Ii jσb, ja j = (1 − κ̄i )σ f ,i − �κini · Ii jσ f , ja j,

(17)

which is the discretized form of Eq. (7) considering the im-
plicit summation over the repeated index j. Therefore, after
the discretization, by solving Eq. (13) [or Eq. (17)], the in-
duced charge density σb, j at each patch j can be obtained.

When computing the electrostatic force and torque using
Eq. (11), the field strength at the ith patch E(ri) is calculated
by summing over the electric field generated by other (Ntot −
1) patches, where Ntot is the total number of surface patches
in the system:

E(ri ) =
∑
j �=i

ri − r j

4πε0|ri − r j |3
[σ f (r j ) + σb(r j )]a j . (18)

Therefore, direct calculation of the electric field at each
patch leads to the computation cost of O(N2

tot ), which is ex-
tremely expensive since Ntot is pretty large in the simulation.
To reduce the calculation cost, the FMM is employed. When
evaluating the electric field E(ri) at the target patch i, the
electric field from close patches is directly accounted for using
Eq. (18), while the electric field generated by far patches are
approximated using the multipole expansion [56]. For an in-
troduction on FMM, please see Appendix B and the references
therein.

2. GMRES-FMM coupled algorithm

GMRES is applied to solve the linear equation Eq. (13) to
find σb, j . For a brief introduction of GMRES, see Appendix
C and the references therein. In the mth GMRES iteration, the
mth-order Krylov subspace is generated using the matrix Ai j

[Eq. (14)] and the vector bi [Eq. (16)] as

K (m) = span
{
bi, Ai jb j, ..., Am−1

i j b j
}
. (19)

Please note that the index notation is used to represent
the basis vectors in Eq. (19). Here, the free index i = 1, 2,
…, Ntot , with Ntot the total number of surface patches in the
system. The dummy index j is summed over from 1 to Ntot

since the Einstein summation is applied. For example, bi is the
vector defined by Eq. (16), Ai jb j refers to the matrix-vector
product Ab, and Am−1

i j b j denotes Am−1b.
Having constructed K (m), we determine the approximated

solution σ
(m)
b, j in K (m) by minimizing the norm of the residual

|r (m)| = |bi − Ai jσ
(m)
b, j | using the least square method. When

the relative error is smaller than the preset limit |r (m)| �
|bi|/104, the approximated value σ

(m)
b, j is output as the final

solution σb, j .
In the mth GMRES iteration, the most time-consuming

step is to generate the new base vector Am−1
i j b j through

matrix-vector multiplication (i.e., Am−1b = A × Am−2b). The
calculation cost scales as O(N2

tot ). To accelerate the calcu-
lation, the matrix-vector multiplication can be treated as a
forward electrostatic problem, which is explained as follows.
In the previous iteration, Am−2b is already known. By defin-
ing the fake charge density vector σ f k = Am−2b, the product
becomes

Am−1b = A × Am−2b = Aσ f k . (20)

Taking in Eqs. (14) and (15), Eq. (20) can be written in the
index notation as

Am−1
i j b j = Ai jσ f k, j = κ̄iσ f k,i + �κini · ri − r j

4π |ri − r j |3
σ f k, ja j .

(21)

Considering the summation over the dummy index j, the
second term on the right-hand side of Eq. (21) is to evaluate
the electric field generated by other patches at the position of
the ith patch. The problem of calculating the matrix-vector
product is hence converted to the problem of solving the
electric field generated by the fake charge density vector σ f k .
Therefore, the FMM can by implemented to accelerate the
computation. In this paper, the open-source library FMMLIB3D

[57] is incorporated in GMRES iteration to achieve the efficient
electrostatic calculation [58].

3. Double-shell model

As introduced in Sec. II B (and Appendix A), a positive
overlap δN is required to calculate the contact interactions
between two particles. However, if two surface patches inter-
sect with each other, the electric field evaluated by Eq. (18)
will diverge. We therefore propose the double-shell model to
address this issue.

As shown in Fig. 2(a), the patches used in the electro-
static calculation locate on the original particle surface (gray
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FIG. 2. (a) Schematic of the two-shell model. (b) The normal-
ized electrostatic interaction energy Uinter/U0 between two charged
dielectric particles with varying levels of polarization.

surfaces), while a slightly larger collision shell (black profiles)
is used to compute the contact interactions. Here, xi,c and
xj,c in Fig. 2(a) are the contact points on particle i and j,
respectively. The collision radius equals rp,c = rp + δbl, with
δbl being the thickness of the buffer layer between two parallel
shells.

The value of δbl is chosen for two reasons: (i) the buffer
layer should be thin enough to minimize the error due to the
noncoincidence of two shells and (ii) the buffer layer should
always be thicker than the maximum normal overlap in colli-
sions to avoid the intersection of surface patches. For (i), we
calculate the electrostatic interaction energy (see Appendix
D) between two identically or oppositely charged dielectric
particles with different separation distances.

Figure 2(b) plots the normalized interaction energy
Uinter/U0 as a function of the normalized gap d/rp. Here, U0 =
2πr3

pσ
2
f /ε0 is the characteristic electrostatic energy, where σ f

is the magnitude of the free charge density. For identically
charged particles, Uinter/U0 continues to rise as d/R decreases
because two particles must overcome the electrostatic repul-
sion to get closer. If the polarity is opposite, the decreasing
trend is observed as expected. Despite the charge polarity
and different dielectric constants κp, Uinter/U0 almost saturates
when d/rp � 0.1, which indicates that the electrostatic energy
will not change significantly if two particles are sufficiently
close. If we set the buffer layer thickness as δbl/rp = 3%,
the separation distance between two colliding particles is no
larger than 2δbl = 6%rp [dashed line in Fig. 2(b)], which
meets the requirement of (i). Additionally, the maximum nor-
mal overlap in this paper satisfies δmax/rp � 0.5%, so the
surface patches do not intersect in the dynamic simulations.

E. Agglomerate formation

The dense spherical agglomerates are generated using the
method of centripetal packing [14,59]. Fifty primary parti-
cles are first randomly placed in the spherical space with
no overlap and zero velocity. The artificial centripetal force,
whose magnitude is 10 times that of gravity, is acted on
each particle. When being driven toward the domain center,
the primary particles encounter collisions and agglomerate.
Eventually, one giant agglomerate containing all the primary
particles is formed. The centripetal force is then removed to
relieve the internal stresses in the agglomerate. After reaching
the equilibrium state, the agglomerate structures are directly

FIG. 3. Agglomerate structure.

extracted and used in the wall impact simulations. In the
packing process, the electrostatic force is not included, so
the agglomerate structure is determined by the competition
between the driving force (centripetal force) and the resistant
forces (contact forces/torques).

Figure 3 displays a typical agglomerate structure ob-
tained from the centripetal packing. The gyration radius Rg

is adopted to measure the agglomerate size and given as

Rg =
[

1

Np

Np∑
i=1

(xi − xc)2

]1/2

, (22)

where xc = ∑Np

i=1 xi/Np is the position of the mass center of
the agglomerate, Np is the number of primary particles in
the agglomerate. Here, the ratio between the gyration radius
Rg and the particle collision radius rp,c equals Rg/rp,c = 3.64,
and there are 59 interparticle contacts. The fractal dimension
of the agglomerate is D f = 2.82 ± 0.03, indicating that the
structure is close to a dense spherical one (D f ≈ 3) [14].

In this paper, we simulate the breakage of agglomerates
containing Np = 50 primary particles. This particle number
leads to the computation cost of resolving Ntot = 19 600 sur-
face patches in the electrostatic calculation, which is within
the reasonable range. Meanwhile, a recent study has shown
that a 50-particle agglomerate is already enough to reveal the
essential physics in the impact breakage process [20].

F. Simulation conditions

In each simulation, the agglomerate is initially placed over
an infinite wall, and the normal impact velocity vim is assigned
to each primary particle. When the simulation starts, both the
electrostatic force and the contact interactions are simulta-
neously added, so the agglomerate starts to restructure as it
moves downward. The distance between the initial position
of the agglomerate and the wall is long enough so that the
agglomerate has become stable again before the impact. In
fact, since the initial structure is compact (D f = 2.82 ± 0.03),
all the primary particles are bound by the contact interactions,
so the structures remain almost the same for different neu-
tral/charging conditions before each impact. The simulation
continues until the impact process is finished and no more
significant changes can be observed. By varying the incident
velocity vim and the dielectric constant of the particle κp, the
effect of the electrostatic interaction on the impact breakage is
studied.

Since the collision outcome can be affected by the impact
point on the agglomerate surface and the particle charge dis-
tribution, we perform parallel runs for the same vim and κp.
In each run, the agglomerate is first rotated about the x or y
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FIG. 4. Exponential distribution of the number of particles car-
rying the normalized free charge density σ f /σ0.

axis before the simulation starts, and the associated impact
point on the agglomerate surface is changed. Here, the initial
rotation angles along the x and y axes are (1) θx = 0, θy = 0,
(2) θx = π/2, θy = 0, and (3) θx = 0, θy = π/2. Extra simu-
lations have been run with more initial rotation angles, and the
results show no noticeable difference. Therefore, the results of
three groups of initial rotation angles are already representa-
tive enough.

As for the distribution of the free charge, we assume that
the net charge carried by the particles is not identical and
follows the exponential distribution (Fig. 4):

N ∝ exp
(
−0.87

∣∣∣σ f

σ0

∣∣∣). (23)

Here, N(σ f /σ0) is the number of particles carrying the free
charge density σ f , and σ0 is the characteristic charging den-
sity. This assumption is consistent with previous experimental
observations on tribocharged particles [42]. Therefore, half
of the particles are positively charged, and the other half are
negatively charged. For the magnitude of free surface charge,
most particles carry a small amount of charge, while several
particles are highly charged. To make sure that the simulation
results do not rely on a specific charge distribution, for the
same rotation angles (θx, θy), three parallel runs are performed
using different realizations of the free charge distribution.

When computing the contact forces and torques, the wall
is treated as a particle with an infinite radius. Nevertheless,
the wall is noninteractive in electrostatic calculation because
the wall effect in electrostatic calculation can be regarded
as a separate problem and is beyond the scope of this paper
[60,61].

Table I lists the simulation parameters. The particle density,
the elastic modulus, and Poisson’s ratio are related to SiO2

particles [20,50]. The surface energy density of the solid par-
ticle is defined as [1]

γ = AH

24πδ2
min

, (24)

where AH is the Hamaker constant of the given material.
For common materials, the value of AH lies within the range
10−21 to 10−19 J in the vacuum. Here, δmin is the minimum
separation distance between two contacting surfaces. Based
on experimental measurements, the recommended value of
δmin is 0.15 − 0.40 nm. Here, we choose δmin = 0.165 nm, as

TABLE I. Simulation parameters.

Physical parameters Values Units

Particle radius (rp) 10 μm
Buffer layer thickness (δbl) 0.3 μm
Particle density (ρp) 2500 kg/m3

Elastic modulus (E ) 1010 Pa
Poisson’s ratio (σp) 0.33 —
Restitution coefficient (e) 0.7 —
Friction factor (μF) 0.3 —
Surface energy density (γ ) 10 mJ/m2

Characteristic charging density (σ0) 5 μC/m2

Dielectric constant of particle (κp) 1, 4, 10 —
Dielectric constant of medium (κ0) 1 —
Incident velocity (vim) 0.08–0.5 m/s

suggested by Marshall and Li [50], which gives the range of
γ as O(10−1)–O(101) mJ/m2. The value of the surface energy
density (γ = 10 mJ/m2) is thus within the common range
of SiO2 particles, which characterizes the strength of the van
der Waals adhesion (Appendix A). The characteristic charging
density is σ0 = 5 μC/m2, which is comparable with the ex-
perimental measurements due to triboelectrification [62,63].
Three typical values of the particle dielectric constant are used
here (i.e., κp = 1, 4, 10). Here, κp = 1 refers to the ideal
condition that particles cannot be polarized, while the last
two values are close to that of a SiO2 particle (κp = 4) and a
SiO2 − ZrO2 fused particle (κp = 10) [41]. The friction factor
μF is chosen based on experimental measurements [64].

One vital issue in the simulation is the choice of the simula-
tion time step dtC. The time step should be much smaller than
the characteristic collision time scale τC to describe the rapid
variating collision interactions. The characteristic collision
time scale can be estimated by τC ∼ (ρ2

p/E2vC)1/5
rp where vC

is the collision velocity [50]. In this paper, the smallest colli-
sion time scale is of the order of 10−7 s, and the collision time
step is chosen as dtC = 2.5 × 10−9 s so that dtC/τC < 2%.
Additionally, it is not necessary to compute the electrostatic
interaction at each collision time step because particles do not
move significantly within dtC, and the electrostatic interaction
is almost the same. Instead, the electrostatic interaction is
updated at a large time step dtE = 40dtC = 10−7 s. Particles
only travel a small distance compared with their radius within
dtE (i.e., v · dtE � 1%rp), so the variation of the electrostatic
interaction is captured accurately as particles move.

III. RESULTS AND DISCUSSIONS

A. Effect of the electrostatic force on the collision process

We start by investigating the impacts of the electrostatic
interaction on typical collision outcomes. Figure 5 displays
snapshots of the impact breakage of neutral and charged ag-
glomerates with the same impact point and incident velocity
vim = 0.25 m/s. After colliding with the wall, the agglomer-
ate first undergoes significant compression and deformation,
followed by further fragmentation.

For neutral particles shown in Figs. 5(a), 5(d), and 5(g),
the free charge density σ f is zero, so there is no electro-
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FIG. 5. (a), (d), and (g) Impact breakage of neutral particles, (b), (e), and (h) charged particles with κp = 1, and (c), (f), and (i) κp = 10 at
three instants. The incident velocity is vim = 0.25 m/s. The color bar denotes the normalized surface charge density σ/σ0.

static interaction between particles. For charged particles, the
exponential distribution of σ f is assigned randomly to differ-
ent particles. If κp = 1, the induced surface charge density σb

remains zero, so the surface charge is only contributed by
the free charge density σ f , which distributes uniformly on
the surface of each particle [Figs. 5(b), 5(e), and 5(h)]. For
κp = 10, particles are significantly polarized under the electric
field, leading to the highly nonuniform charge distribution on
individual particle surfaces shown in Figs. 5(c), 5(f), and 5(i).
Therefore, BEM proves to capture the dynamic evolution of
the surface charge distribution well during the impact process.

We now show that, in addition to the different surface
charge distributions, the charged agglomerates show a weaker
tendency to break at t = 0.08 s [Figs. 5(g), 5(h), and 5(i)].
To better describe the differences in Fig. 5, we analyze the
interparticle contact network at each time step and plot the
temporal evolution of the number of agglomerates Nagg in
Fig. 6. Before the collision, all the particles are contained
in the initial agglomerate, so Nagg = 1 at t = 0 s. After the
collision occurs, the agglomerate is quickly compressed, ac-
companied by the rapid breakup of interparticle contacts. As
a result, the initial agglomerate breaks into many small frag-

FIG. 6. Temporal evolution of the number of agglomerates Nagg

in the collision processes shown in Fig. 5.

ments, leading to the sudden rise of Nagg. The fragments then
start to rebound and collide with each other. Some fragments
may stick together and re-agglomerate, causing the decrease
of Nagg after the peak around t = 0.02 s. As the fragments con-
tinue to separate, no more pronounced changes are observed,
so Nagg eventually reaches a steady state.

When comparing different charging conditions, the Nagg

curves coincide at the initial compression stage (t = 0 −
0.012 s). During this stage, the collision is energetic enough
to break the contacts rapidly regardless of the electrostatic in-
teractions. Then Nagg curves for the charged cases are found to
reach their peaks earlier compared with the neutral case (t =
0.012 − 0.02 s), and the peak values also become lower, in-
dicating less fragmentation of the agglomerate after the initial
compression stage. In the later rebound and re-agglomeration
stage (t = 0.02 − 0.08 s), charged particles are more likely
to get attracted back and re-agglomerate, giving rise to a
faster decrease of Nagg. When considering the induced surface
charge σb for κp = 10, the re-agglomeration becomes more
significant, indicating that particle polarization may further
enhance the stability of the agglomerate.

To evaluate the fragmentation in a quantitative manner, we
define the fragmentation ratio �fr as [20]

�fr = Nagg − 1

Nagg,max − 1
. (25)

Here, Nagg is the number of agglomerates at the final steady
state (Fig. 6), and Nagg,max is the maximum number of ag-
glomerates that can be produced, i.e., the number of primary
particles Npar. If the initial agglomerate does not break, the
fragmentation ratio � f r = 0. In contrast, if the agglomerate
breaks into 50 single particles, the ratio becomes � f r = 1.

As introduced in Sec. II F, by performing parallel simula-
tions with three different impact points and three realizations
of the charge distribution, we take statistics of � f r to illustrate
the effects of the electrostatic interaction on the collision
outcomes. As a result, three (nine) parallel simulations are
performed for each neutral (charged) case.

Figure 7(a) shows the fragmentation ratio � f r as a function
of the incident velocity vim. The scatters denote the average
value, and the bars refer to the standard deviations. For neutral
particles, the agglomerate experiences more complete frag-
mentation in a more violent collision, so � f r increases from 0
to 1 as vim increases. For the same vim, if particles are charged,
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FIG. 7. (a) Fragmentation ratio � f r as a function of the incident velocity vim. (b) Change of � f r compared with neutral particles.

� f r will decrease because of the re-agglomeration shown
in Fig. 6. The decreasing trend becomes more pronounced
as κp increases, revealing a nonnegligible effect of particle
polarization. Therefore, we emphasize the need to consider
the induced surface charge in applications where particles are
sufficiently close.

We then calculate the change of � f r as

��fr = �fr,Neu − �fr,Ch, (26)

to measure the decreased extent of fragmentation because
of the electrostatic interaction. Here, �fr,Neu and �fr,Ch are
the fragmentation ratio of neutral and charged agglomerates,
respectively. The dependence of �� f r on vim is plotted in
Fig. 7(b). Here, �� f r first increases with vim and peaks
around vim = 0.2 m/s. As vim further increases, however,
�� f r starts to go down and approaches zero, indicating that
the influence of the electrostatic force is only profound within
a moderate vim range.

B. Scaling analysis of electrostatic and contact interactions

In the simulation, particle movements are affected by both
the electrostatic and contact interactions. In this section, we
study the relative importance of these two kinds of interac-
tions to understand the nonmonotonic trend of �� f r shown
in Fig. 7(b).

For two charged particles in contact, the magnitude of the
contact force can be estimated by the critical pull-off force
FC = 3πγ R given in Eq. (A2) because the tensile force must
exceed FC before two contacting particles detach. The critical
values of other contact force and torques are also related to FC

[50]. Additionally, the Coulomb force can be used to estimate
the magnitude of the electrostatic interaction, even though it
does not consider the contribution of induced charge [51]. The
electrostatic force can thus be estimated as

FE = q2

4πε0(2rp)2 = πr2
pσ

2
0

ε0
. (27)

Taking in the physically relevant parameters from Table I
then yields

FE

FC
� 1, (28)

indicating that the contact force governs when particles are in
contact.

To verify Eq. (28), the exponential charge distribution in
Fig. 4 is assigned to the initial agglomerate at rest. By simu-
lating the agglomerate restructuring, we focus on the effects of
the electrostatic interaction on the interparticle contact force
distribution.

Driven by the electrostatic interaction, the agglomerate
starts to adjust its structure when the simulation starts. How-
ever, only minor adjustments are observed. After reaching
a new equilibrium state, the structure no longer changes.
Consequently, the final structure formed by charged particles
[Fig. 8(c)] is very similar to the original neutral one [Fig. 8(a)].
We then examine the distribution of the normal contact force
within the agglomerate. The normal contact force between

FIG. 8. Left panel: The equilibrium structure formed by (a) neu-
tral and (c) charged particles (κp = 10). Right panel: Force chains of
the normal contact force within the agglomerate for (b) neutral and
(d) charged particles (κp = 10).
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FIG. 9. Probability distribution of the normal contact force.

each contacting particle pair is extracted and plotted as the
force-carrying network in Figs. 8(b) and 8(d). Here, the com-
pressive forces are colored in red, while the tensile forces are
colored in blue. The line width of each chain is proportional
to the force magnitude. For neutral particles, the ratio of com-
pressive and tensile forces is similar, and the force magnitude
is relatively small. In comparison, charged particles have a
stronger tendency to attract or repel each other, so larger
contact forces are required to balance the electrostatic force.
Furthermore, most of the normal forces are compressive when
κp = 10 [Fig. 8(d)], suggesting that particles tend to compress
each other under this condition.

To study the effect of different polarization levels, various
particle dielectric constants (κp = 1/4/10) are employed to
simulate the restructuring of agglomerate at rest. For each κp,
parallel simulations are run using 10 realizations of the ex-
ponential charge distribution to ensure meaningful statistics.
Figure 9 compares the probability distribution function (PDF)
of the normal contact force Fn normalized by FC for neutral
and charged particles. For neutral particles, the internal stress
can be effectively released, so the force magnitude is small
(|Fn|/FC < 0.01). Also, the compressive forces (Fn > 0) and
the tensile forces (Fn < 0) take comparable proportions. For
charged particles, since opposite-sign particles could attract
each other, the normal overlap δn gets larger, giving rise to
stronger elastic repulsion that balances the electrostatic at-
traction. For same-sign particles, the opposite trend can be
expected, which leads to stronger tensile force. As a result,
the magnitude of the contact force becomes larger, resulting
in wider PDFs of Fn/FC for charged particles.

When comparing results of different κp, the PDF of κp =
1 is roughly symmetric about the zero point. Since parti-
cles cannot be polarized when κp = 1, the electrostatic force
reduces to the pairwise Coulomb force, whose magnitude
only depends on the charge amount as FCoul ∝ |q1q2|/4πε0r2.
Therefore, the symmetric charge distribution in Fig. 4 will
introduce an equal magnitude of electrostatic repulsion and
attraction between particles, which eventually leads to the
symmetric PDF of Fn. When κp > 1, particle polarization will

modify the electrostatic repulsion and attraction in different
ways. For identically charged particles, the surface charge will
be pushed to the far side as two particles are pretty close (top
insets in Fig. 15). Hence, the effective separation distance
between the net charge q1 and q2 increases, weakening the
electrostatic repulsion. In contrast, the surface charge will
shift to the near side between oppositely charged particles
(bottom insets in Fig. 15), which significantly reduces the
effective separation distance between the net charge and en-
hances the electrostatic attraction. Thus, as κp becomes larger,
the PDFs shift toward the direction of positive Fn, revealing
stronger interparticle compression.

Even though the contact force between charged particles is
stronger than the neutral case, the magnitude of Fn/FC is still
of the order of O(10−2). Since the tensile force must satisfy
Fn/FC � −1 before the contact could break, the electrostatic
force is still too weak to cause significant restructuring or
fragmentation, which validates the estimation of Eq. (28).

In addition to the force ratio FE/FC, it is desired to also com-
pare the energy ratio EE/EC because particles must overcome
the energy barriers associated with contact and electrostatic
interactions if they want to move away from each other. The
energy barrier caused by the van der Waals adhesion, or the
first-contact loss, can be evaluated by multiplying the critical
pull-off force FC and the pull-off distance δC in Eq. (A2)
[65,66]:

EC ∼ FCδC = 24

(
γ 5R4

E2

)1/3

, (29)

while the energy required to separate two oppositely charged
particles can be obtained by integrating the Coulomb force
over the long interaction range:

EE ∼
∫ ∞

dp

FEdr = πr3
pσ

2
0

2ε0
. (30)

Substituting the parameter in Table I gives

EE

EC
	 1. (31)

Comparing Eqs. (28) and (31) shows that, even though the
electrostatic force is much smaller than the contact force, the
energy change caused by the electrostatic force is predomi-
nant. This feature can be attributed to the significant difference
in the interaction ranges of these two interactions. The short-
range contact interaction only affects particle behavior if
particles are in contact. When two particles are separating, the
longest interaction distance is the pull-off distance δC, which
is still much smaller than the particle size rp. Thus, when
integrating the normal contact force Fn over its interaction
range δC, the energy barrier EC is still limited. In contrast,
the long-range electrostatic force decays much slower and re-
mains nonnegligible within a long separation distance. Hence,
the electrical energy barrier is orders of magnitude higher than
the short-range adhesion.

In addition to the first-contact loss caused by the short-
range adhesion EC and the electrical energy barrier EE, a
certain amount of incident kinetic energy is dissipated by the
dissipation forces/torques and the frictions between contact-
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FIG. 10. Agglomerate structures before and after the collision at
vim = 0.1 m/s and κp = 10. The color bar is the same as Fig. 5.

ing particles, which cannot be estimated directly from scaling
analysis because it depends on the force-displacement history
of each collision. However, since the initial agglomerate struc-
ture and the impact points on the surface are set identical, the
energy dissipated by the damping forces/torques and frictions
in neutral and charged cases will not vary significantly. There-
fore, the distinct collision outcomes shown in Fig. 7(a) are
caused by the introduction of the electrostatic interaction.

C. Dominant factors under different incident velocity

Based on the analysis above, we discuss the governing
factors under different vim. When the incident velocity is low
(vim � 0.1 m/s), only the contacts near the impact point are
broken, and new ones are formed soon. As a result, the initial
agglomerate is only locally compressed near the impact point
(Fig. 10). To better illustrate the agglomerate restructuring
in the collision, we define the number of contacts between
same-sign particles as N id

C , so the relative change of N id
C is

fC,id = N id
C − N id

C,0

N id
C,0

, (32)

where the subscript 0 refers to the initial value before the colli-
sion. The number of contacts between opposite-sign particles
and its relative change can be defined similarly as Nop

C and
fC,op.

Figure 11(a) plots the relative change of the number of
contacts between both same-sign and opposite-sign particles
as a function of vim. In the low-vim range (vim � 0.1 m/s),
both fC,id and fC,op are observed to rise after the compression.
Because of the electrostatic attraction between opposite-sign
particles, the increase of fC,op is more significant, which
also reduces the electric energy of the system (�U < 0) in
Fig. 11(b). Since new contacts are formed soon after the initial
contact breakup, the charged particles are bound tightly by the
contact interaction. Thus, the electrostatic interaction cannot
drastically alter the collision outcomes within the low-vim

regime.
If the incident velocity becomes larger and lies within the

moderate range (vim ∼ 0.2 m/s), the incident kinetic energy is
sufficient to break most of the contacts in the original agglom-
erates. As a result, most particles exist in the form of singlets
shortly after the collision, as indicated by the instant at t =
0.02 s in Fig. 6. Nevertheless, the kinetic energy is not high
enough for particles to overcome the electrical energy barrier
and escape. Instead, these particles stay close to each other
and start to self-organize. Driven by the electrostatic force,
opposite-sign particles tend to attract each other, while same-

FIG. 11. (a) Relative change of the contact number between
same/opposite-sign particles fC,id/op and (b) change of the normalized
electrostatic potential energy �U/(2πr3

pσ
2
0 /ε0 ) at different vim. Error

bars in (a) are not shown for clarity.

sign particles are likely to repel each other, both of which
minimize the electrical energy of the system [Fig. 11(b)].
When the self-organization is finished, N id

C reduces more dras-
tically compared with Nop

C [Fig. 11(a)], leading to a staggered
arrangement of positive and negative particles in the agglom-
erate. Furthermore, for the same vim, both fC,id and fC,op

exhibit slighter increase as κp rises [Fig. 11(a)]. This can be
explained by the enhancement of the pairwise electrostatic
attraction and the weakening of the repulsion due to parti-
cle polarization (insets of Fig. 15). Therefore, the contacts
between both same-sign and opposite-sign particles are more
likely to retain after the collision.

It is worth noting that the electrostatic problem becomes
highly coupled when considering particle polarization be-
cause a charged particle could polarize surrounding particles,
and in return, it also becomes polarized. Consequently, the
complicated electrostatic interaction between multiple parti-
cles cannot be predicted by the simple Coulomb interaction.
Figure 12 displays the schematic of typical postcollision frag-
ments containing particles with large charging densities. The
numbers in Fig. 12 refer to the free charge density σ f with
units of μC/m2, and the color denotes the normalized sur-
face charge density σ/σ0 given in Fig. 5. In Fig. 12(a), the
target particle denoted by the red arrow carries a positive
net charge (σ f = 5 μC/m2). Since the nearby particles are
highly charged, the target particle is significantly polarized,
and a clear separation of the negative and positive charge can
be observed. As a result, the surface charge is negative in
the region near the positive neighbor, leading to the electro-
static attraction between two same-sign particles. Similarly,
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FIG. 12. Fragments containing highly charged particles. The
color bar is the same as Fig. 5.

the electrostatic force also becomes attractive between two
target particles (denoted by the red arrows) and their same-
sign neighbors in Fig. 12(b). This observation highlights the
influence of highly charged particles in agglomeration be-
cause such particles could polarize neighboring particles and
promote particle sticking [44,45].

Finally, if the incident velocity is high (vim ∼ 0.5 m/s),
each particle could obtain sufficient kinetic energy to escape,
giving rise to the complete fragmentation of the initial ag-
glomerate. Here, fC,id and fC,op thus approach −1 as vim is
large enough [Fig. 11(a)]. As for the change of the electrical
energy [Fig. 11(b)], �U rises as κp increases, indicating a
rapid growth of the electrical energy barrier for polarizable
particles. Nevertheless, since the kinetic energy prevails, par-
ticles will eventually separate, and the fragmentation ratio � f r

in Fig. 7(a) is close to unity for vim ∼ 0.5 m/s.

IV. CONCLUSIONS

By employing the BEM-DEM coupled simulation, the im-
pact breakage of the agglomerate formed by tribocharged
particles is investigated. Compared with neutral conditions,
the charged agglomerate undergoes more pronounced re-
agglomeration after the impact, which effectively increases
the strength of agglomerates. When quantifying the collision
outcomes using the fragmentation ratio � f r , the change is
found to peak at a moderate incident velocity vim. Moreover,
if the induced surface charge due to polarization is included,
the electrostatic force becomes more attractive, leading to
higher resistance against fragmentation. Scaling analysis re-
veals the dominant role of the short-range contact interaction
when particles are in contact, which tightly binds primary
particles and retains the original agglomerate structure. The
electrostatic interactions are shown to play a major role in
the transient breakup and re-agglomeration process, which
tend to assemble charged particles into ordered structures.
At last, by considering the dominant ranges of both contact
and electrostatic interaction, the physical picture of the im-
pact breakage is presented. Initially, the original agglomerate
structure is hyperstatic, so each particle is in contact with
several neighbors and tightly bound. When the agglomerate is
at rest, the contact force is much larger than the electrostatic
force, so that the agglomerate can retain its original structure.
The interparticle contacts can only be broken by the incident
kinetic energy. For a small incident velocity vim, the impact
is too weak to cause fragmentation. Instead, the agglomerate
is only partially compressed, with all the individual parti-
cles bounded by their neighbors through contact interactions

FIG. 13. Schematic of the impact breakage of charged agglom-
erates. Green bars denote interparticle contacts.

[Fig. 13(b)]. If the collision is energetic enough to destroy the
interparticle contacts, particles could move freely under the
long-range electrostatic force [Fig. 13(c)]. When the charged
particles cannot obtain sufficient velocity to escape, they will
be attracted back and rearrange mainly in a positive-negative
staggered way [Fig. 13(d)]. On the contrary, single particles
with large kinetic energy could escape in a violent collision,
causing the complete fragmentation of the initial agglomer-
ates.

In this paper, we focus on the process of wall impact, so
the long-range electrostatic interaction only affects particle
behavior in the transient breakup and re-organization process.
Once new contacts are formed, the fragments will be held
together by the short-range contact interactions and do not
significantly restructure anymore. If the interparticle contacts
can be frequently broken by external forces, such as vibra-
tion, charged particles could continuously adjust their position
driven by the electrostatic interaction. Eventually, particles
carrying opposite charges could mix well, even creating crys-
talline structures [67,68].

Based on the findings above, several interesting directions
can be given. First, this paper focus on the effect of the elec-
trostatic force between charged particles with various levels
of polarization. Other conditions, such as the size/shape of
the agglomerate or primary particles, the impact angle, and
the surface energy density are not considered, so efforts are
required to extend this paper to broader parameter spaces and
simulation conditions.

Second, the BEM-DEM coupled framework can capture
the dynamic evolution of the induced charge when simulating
the impact breakage of charged agglomerates containing 50
particles. In terms of computation cost, BEM-DEM supported
by FMM-GMRES is more efficient compared with standard
BEM-DEM. In future studies, through sophisticated imple-
mentation of FMM, the computation cost of BEM can be
further reduced (Appendix E), so this framework can be
applied to large-scale particulate systems, such as particle
packing and agglomeration/aggregation. For the packing and
clogging of microparticles [69,70], it has been shown that
solely employing the point-charge model [34,36] and the
dipole model [37] could already lead to distinct packing
structures formed by charged particles. Thus, how the ne-
glected induced higher-order multipoles will affect the final
contact network will be worth pursuing. For the agglomera-
tion/aggregation of charged particles [71,72], the electrostatic
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force has been reported to significantly extend the bind energy
and help overcome the bouncing barrier [41,42], but more ef-
forts are needed to investigate how the induced charge affects
the structure and growth rate of agglomerate.

Third, the medium around the particles is assumed to be a
vacuum in this paper, so particles are only affected by contact
and electrostatic interactions. For applications where particles
are immersed in the fluid phase, the particle-fluid interaction
must be included [73]. Because of the irregular agglomerate
morphology, the associated fluid forces could be complicated
[74]. Thus, to extend the current framework to multiphase
flow problems with charged solid particles, computational
fluid dynamics should be implemented in a sophisticated
way to evolve the surrounding flow field and account for the
particle-fluid interaction [75,76].
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APPENDIX A: NORMAL CONTACT FORCES BETWEEN
COLLIDING PARTICLES

As introduced in Sec. II B, the normal contact force con-
tains the normal elastic force F ne

i j and the normal dissipation
force F nd

i j :

F n
i j = −(

F ne
i j + F nd

i j

) = −4FC(â3 − â3/2) − ηnvrel · n. (A1)

The first term of Eq. (A1) is the normal elastic force. Here,
FC is the critical pull-off force, and â = a/a0 is the contact
radius a normalized by its value a0 at the zero-load equilib-
rium state. Also, â can be related to the normal overlap δN =
2rp,c − |xi − x j | through δN/δC = 61/3(2â2−4â1/2/3), where
δC is the critical pull-off distance, and rp,c is the collision ra-
dius. If δN < −δC, two contacting particles detach from each
other, and the contact interactions are no longer considered.
The critical values mentioned above are given as

FC = 3πγ R, a0 =
(

9πγ R2

E

)1/3

, δC = a2
0

2(6)1/3R
.

(A2)

Here, γ is the surface energy density, R = (1/ri + 1/r j )−1

is the effective radius, E = [(1−σ 2
p,i )/Ei + (1−σ 2

p, j )/Ej]
−1 is

the effective elastic modulus where σp,i and Ei are Poisson’s
ratio and the elastic modulus of particle i, respectively.

The second term of Eq. (A1) is the normal dissipation
force proportional to the normal relative velocity vrel · n. The
normal dissipation coefficient is defined as ηn = αn(MKn)1/2,
where αn is related to the restitution coefficient e, M =
(m−1

i + m−1
j )

−1
is the effective mass, and Kn is the normal

stiffness coefficient [49,77].

FIG. 14. Schematic of (a) the patch locations and (b) the split of
the near-field and the far-field domains.

APPENDIX B: FMM

In this appendix, the general concept of FMM is introduced.
In Fig. 14(a), the surface patches (shown as green points) are
randomly distributed in the domain. The electric field E(ri) at
the location of the target patch ri (red point) is

E(ri ) =
∑
j �=i

K (ri, r j )(σ f , j + σb, j )a j, (B1)

where K (ri, r j ) = (ri − r j )/4πε0|ri − r j |3 is the kernel func-
tion, (σ f , j + σb, j )a j is the net charge on the jth patch.

In FMM, the computation domain is first divided into a tree
structure of boxes [Fig. 14(b)]. The original domain is the
largest parent box. Then each parent box is further divided
into several child boxes until the lowest level is generated. The
lowest-level box containing the target patch ri is denoted by
B. The near field N(B) is defined as the domain occupied by
B and its neighboring boxes of the same level [blue-shaded
region in Fig. 14(b)], while the rest of the domain is the
far field F(B) [brown-shaded region in Fig. 14(b)]. The field
strength can thus be split into two parts, the contribution from
N(B) and that from F(B):

E(ri ) =
∑

r j∈N (B), j �=i

K (ri, r j )(σf, j + σb, j )a j

+
∑

r j∈F (B)

K (ri, r j )(σf, j + σb, j )a j . (B2)

Since the patches in N(B) are close to the target location,
the first term on the right-hand side of Eq. (B2) is directly
computed using Eq. (B1). As for the contribution of F(B),
however, it is not necessary to resolve the electric field gen-
erated by each far source patch. Instead, the contribution from
all the patches within each far box can be approximated using
the multipole expansion [56,78,79]. For each target patch,
since most of the source patches belong to F(B), the com-
putation cost is significantly reduced. FMM has been applied
in previous works to handle the many-body electrostatic prob-
lems [34,37,80].

APPENDIX C: GMRES

Consider a linear equation:

Ax = b, (C1)

where A is a n × n invertible matrix, and b is a known vector
of size n. It is time consuming to solve the inverse matrix A−1

to obtain the solution x = A−1b. Instead, the idea of GMRES
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is to construct a Krylov subspace, in which the approximated
solution can be found [81]. This method has been applied in
previous studies to solve the electrostatic problem [51,52,55].

In the mth iteration, we first construct the mth-order Krylov
subspace K (m) defined by A and b:

K (m) = span{b, Ab, ..., Am−1b}, (C2)

where b, Ab, …, Am−1b are the basis vectors of K (m). Then
the approximated solution in K (m), which is written as

x(m) =
m∑

i=1

α
(m)
i Ai−1b, (C3)

with α
(m)
i being the coordinate of the ith basis vector Ai−1b,

is determined using the least square method to minimize the
norm of the residual:

|r(m)| = |b − Ax(m)|. (C4)

If |r(m)| is smaller than the preset criterion, the approxi-
mated solution x(m) is sufficiently close to the exact solution
x, so x(m) is output as the final solution.

If |r(m)| is still large, the (m + 1)th iteration is initiated.
The (m + 1)th basis vector Amb is first computed through the
matrix-vector product:

A × Am−1b = Amb. (C5)

Here, the mth basis vector Am−1b is already known in
the mth iteration. Then the (m + 1)th-order Krylov subspace
K (m+1) is constructed to find the new approximated solution
x(m+1). Because K (m) is a subspace of K (m+1), the norm of
the residual will continue to decrease after each iteration as
|r(m+1)| � |r(m)|.

Since the basis vectors b, Ab, …, Am−1b could capture the
dominant eigenvectors of the matrix A, the dimension of K (m)

is much smaller than the dimension of the system when the
iteration converges, i.e., m � n, which means the number of
iterations required is generally small. In addition, the most
expensive calculation in GMRES is the matrix-vector product
[Eq. (C5)], which is of the order of O(n2) for a dense matrix
A.

APPENDIX D: INTERACTION ENERGY BETWEEN
CHARGED DIELECTRIC PARTICLES

The total electrostatic potential energy of the system can
be computed by

U = 1

2

∫
S
σ f (r)ψ (r)dS. (D1)

Here, ψ(r) is the electric potential at position r, and S
refers to all surfaces in the system. However, not all the
potential energy can be converted to or from the kinetic
energy of the particles. We take the example of two iden-
tically/oppositely charged particles. The free charge density
is set as σ f = σ0 for the positive particle and σ f = −σ0 for
the negative particle. The dielectric constant of particle is
κp = 10. Figure 15 displays the normalized potential energy
U/U0 as a function of d/rp, with d being the surface-to-surface
distance between two particles and U0 = 2πr3

pσ
2
0 /ε0 being

the characteristic potential energy. As the surface-to-surface

FIG. 15. Dependence of the normalized electrostatic energy
U/U0 on the distance d/rp between two identically/oppositely
charged particles for κp = 10. Insets display the distribution of the
normalized surface charge density σ/σ0.

distance d increases, the normalized energy U/U0 approaches
a constant but nonzero value. At this large separation distance,
the electrostatic interaction between these two particles is neg-
ligible, so each particle can be treated as an isolated particle
with an isolated potential energy:

Uiso,i = 1

2

∫
Si

σ f (r)ψiso(r)dSi. (D2)

Here, ψiso(r) is the electric potential at position r generated
solely by the surface charge of the isolated particle i. There-
fore, Uiso,i only shifts the total potential energy by a specific
value but does not affect particle behavior. As a result, the
interaction energy Uinter can be obtained by subtracting the
isolated energy of all the individual particles from the total
potential energy U:

Uinter = U −
Np∑
i=1

Uiso,i. (D3)

Here, Uinter measures the electrostatic energy that is con-
sequential to the interaction between charged particles and is
thus employed in the discussion.

APPENDIX E: COMPARISON OF WALL TIME

Table II lists the wall time of different cases shown in
Fig. 5. The simulated duration is T = 0.085 s in physical

TABLE II. Wall time of typical simulations.

Wall time twall (s)

Cases Mean value Standard deviation

Neutral 2674.2 356.8
κp = 1 8018.1 732.7
κp = 4 28 059.9 1062.8
κp = 10 36 946.4 1508.6
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space, which is equal to 8500 electrical time steps dtE or
340 000 collision time steps dtC in the simulation. For the
same case, the wall times are averaged among parallel runs
and presented in the form of the mean value and the standard
deviation.

In the neutral cases, the BEM calculation is ignored, so
we only need to resolve the contact interactions between each
pair of colliding particles. The computation cost is therefore
related to the total number of particles Np. In comparison, for
charged particles, we must consider the interaction between
each pair of surface patches, so the cost of the BEM is deter-
mined by the total number of surface patches in the system
Ntot = Np × Npat, with Npat being the patch number on each
particle. Since Npat is generally of the order of O(102)–O(103),
the cost of the BEM is most expensive in this paper. In the
previous work [51], the calculation cost of the BEM in two
simple cases have been discussed. When only using GMRES

in the BEM, the cost scales as O(N2
tot ). If the GMRES-FMM

coupled method is applied, the cost is found to reduce to
O(N1.333

tot ) and O(N1.564
tot ). In future investigations, the cost can

be further reduced by optimizing the tree structure generated
in FMM [80], applying the parallel FMM [79], or using the
plane-wave-based operators [78,82]. The calculation could
be expected to scale as O(Ntot), so this framework could be
applied to large-scale particulate systems.

In addition, one can observe that the wall time increases
with the particle dielectric constant κp. If κp = 1, since κp =
κ0, the right-hand-side vector in Eq. (10) is b = 0. In this case,
Eq. (10) directly leads to the zero induced charge. We only
need to call FMM once to calculate the field strength generated
by the free charge [Eq. (5) or Eq. (18)]. The electrostatic
force/torque can then be obtained using Eq. (11). However,
if κp > 1, the vector b in Eq. (10) becomes nonzero, so a
GMRES-FMM iteration must be conducted to solve the induced
charge σb. With the increase of κp, more iterations are needed
before σb converges, which requires more computation time.
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