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Jammed solids with pins: Thresholds, force networks, and elasticity
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The role of fixed degrees of freedom in soft or granular matter systems has broad applicability and theoretical
interest. Here we address questions of the geometrical role that a scaffolding of fixed particles plays in tuning
the threshold volume fraction and force network in the vicinity of jamming. Our two-dimensional simulated
system consists of soft particles and fixed “pins,” both of which harmonically repel overlaps. On the one hand,
we find that many of the critical scalings associated with jamming in the absence of pins continue to hold in the
presence of even dense pin latices. On the other hand, the presence of pins lowers the jamming threshold in a
universal way at low pin densities and a geometry-dependent manner at high pin densities, producing packings
with lower densities and fewer contacts between particles. The onset of strong lattice dependence coincides
with the development of bond-orientational order. Furthermore, the presence of pins dramatically modifies
the network of forces, with both unusually weak and unusually strong forces becoming more abundant. The
spatial organization of this force network depends on pin geometry and is described in detail. Using persistent
homology, we demonstrate that pins modify the topology of the network. Finally, we observe clear signatures
of this developing bond-orientational order and broad force distribution in the elastic moduli which characterize
the linear response of these packings to strain.
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I. INTRODUCTION

Jamming of soft or granular materials constitutes a transi-
tion from fluid-like to a solid-like state that can support finite
stress. The disordered geometry of grain-grain contact forces
is a key aspect of these solids [1]. The out-of-equilibrium
nature of jammed phases has supported much activity in the
development of new statistical models [2,3]. Traditionally, the
transition to jamming is marked by control parameters of sys-
tem density, applied stress, and the analog of temperature for
macroscopically large grains and is depicted in the Liu-Nagel
jamming phase diagram [4,5]. To this venerable diagram it has
been suggested that a new axis might be added, representing
the density of quenched disorder [6]. This indicates an interest
in the jamming and glass communities on how quenched
disorder in the form of pinned grains affects the transition
of systems, either under applied drive or in its absence: The
so-called “Point J.”

One might be motivated to study matter with fixed degrees
of freedom for many reasons. Flowing states of matter are
impacted by obstacle-filled substrates in both ordered and
random geometries [7,8]. Pinned inclusions have modified
phase transition behavior [9,10] and obstacle lattices were
used to sort biomaterials [11,12]. Pinned particles in glass
formers can tune spatial heterogeneity, kinetic fragility, and
the transition point [13–16]. Scaling theory near Point J can
be extended to describe quenched disorder via a pinning sus-
ceptibility [17,18].

So-called “partly pinned systems” have served as a theoret-
ically advantageous model in which a fraction of equilibrated,
fluid particles were pinned to serve as a confining matrix,
through which the remaining, mobile particles flow [19]. In
the current study, in contrast with simulations where particle
positions were frozen during the creation of a fluid, jammed or
glassy state, pins are placed at the outset of the simulation and
are centers of force of negligible size. Their role is both to ex-
clude volume and to scaffold the emerging jammed structure.
We find that pins produce some surprises in terms of how they
tune the jamming threshold, reduce mean contact number, and
modify the network of forces thus enhancing the likelihood
both of weak and strong forces at jamming. These changes
are reflected in the linear elastic properties of the solid.

II. SIMULATION DETAILS

Particles are frictionless, soft, repulsive discs: The so-
called “Ising model” of jamming for their simplicity, yet
fidelity in reproducing the physics of more realistic models.
N frictionless particles and Nf dramatically smaller, fixed
particles called “pins” interact via the well-studied harmonic,
repulsive potential

V =
{

0, ri j > di j,

ε
(
1 − ri j

di j

)2
otherwise,

(1)
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where ri j is the distance between the centers of particles i
and j, and di j is the sum of the particle radii. Equal numbers
of large and small particles with the size ratio rL/rS = 1.4,
known to discourage ordered packing, are initially placed at
random in a two-dimensional simulation cell with periodic
boundary conditions. Pin radii are roughly a factor of 1000
smaller than those of small particles; the results are inde-
pendent of this size ratio. We study numbers of particles in
the range N = 230–920. Nf particles (a number which varies
depending on the type of analysis performed) are fixed in a
desired lattice geometry: Square, triangular, honeycomb, or
random.

We will see in what follows that both pin density for a
given lattice geometry and choice of lattice geometry serve as
tuning parameters of the packing. One can characterize the pin
density by introducing the parameter α, the ratio of the area
of a particle to the area of box per pin. However, given pins
are placed in different Bravais lattices with lattice constant a,
it is also worthwhile to characterize the density of pins by the
ratio of lengthscales λ ≡ rS/a. These are related via

λ2 = α
g

c
, (2)

where g is a geometrical factor equal to 1,
√

3/2, 3
√

3/4
for square, triangular, and honeycomb lattices and c = π

2 (1 +
1.42). A third measure of pin density which will be convenient
is Nf /N . When curves from multiple pin densities are shown
on the same plot, each color will represent a fixed value of
Nf /N so that square and triangular lattices may use the same
color scheme. It is the case that

α = φ Nf /N. (3)

Energy is minimized via the FIRE algorithm [20]. Final
configurations will be considered jammed in this study if
they have local mechanical stability (local jamming), positive
lowest vibrational mode (collective jamming), and percolation
(cluster spans the cell). Percolation has been found to be
necessary [21] as sufficiently dense pins enable the presence
of mechanically stable finite clusters. Unsupported particles,
“rattlers,” are excluded from further analyses of contacts,
force statistics, and elastic moduli.

We use two approaches to find the jamming transition.
The volume fraction φ(p) for these jammed configurations
with different final pressures p can be linearly extrapolated to
p = 0 to identify the configuration-averaged, critical volume
fraction φc. Alternatively, one could identify the φ at which
a distribution of configurations has a point of inflection in its
jamming probability [5,21]. Both criteria agree in our work.
Further, for analyses which seek scaling behavior, a pressure
sweep protocol employs several hundred initial configura-
tions, and for each, modifies particle size in a search for a
target pressure, which is successively reduced.

About the units: Unless otherwise stated, for derived quan-
tities like pressure and elastic moduli, we use as an energy
unit ε and as a length unit rs. About the notation: While N is
used above to indicate an input parameter in the simulation,
below we will sometimes refer to the number of particles in
the rigid, spanning cluster at jamming. This excludes rattlers,
the fraction of particles which have zero contacts at minimum
energy. As is conventional in the jamming literature, we will

FIG. 1. Jammed configuration with λ = 0.33 and α = 0.23 cor-
responding to Nf = 64 pins arranged in a square lattice, highlighting
the network of interparticle forces. Bond colors differ by contact type
and widths indicate strength of force. Pins which (fail to) contact a
particle are (black) red. Pins are greatly magnified for visibility.

not introduce new notation but will try to be clear in stating
when N excludes or includes rattlers.

Figure 1 illustrates a sample jammed configuration of par-
ticles formed around a square lattice of 64 pins, with α = 0.23
and λ = 0.33. At low pressures, typically only a fraction
(roughly half) of the pins participate in the stability of the
configuration.

III. JAMMING THRESHOLD

At low pin densities, Fig. 2 aligns with results from a
wealth of earlier studies [6,17,21–23]: A reduction in φc with
increasing pinned particle concentration. Here, this is a rather
trivial result since pins occupy negligible volume and serve
only to stabilize the particle network. While this work em-
phasizes ordered pin lattices, we observe the result that, at
low pin densities, when typical obstacle separations are very
much greater than a particle diameter, randomly pinned lattice

FIG. 2. Jamming packing fraction φc versus pin to particle ratio
α for square (red, �), triangular (green, �), honeycomb (blue, ◦),
and random (black, filled circles) pin lattices. At low α, φc collapses
for all lattices and is linear, with slope in rough agreement with a
mean field, isostaticity argument. As α increases, there is deviation
from linearity and plateaus which are commensurate with values of
λ (dashed and dotted lines, λ = 0.18 and 0.25 for large and small
particles, respectively) where pairs of particles in contact would first
experience excluded volume from adjacent pins (inset sketch).
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thresholds are in full agreement. Moreover, the linearity of
these random lattice results extend to higher pin densities,
allowing us to obtain a more precise estimate of the initial
slope of φc(α).

There are practical issues to studying very dense random
pin “lattices,” for example, they tend to stabilize many finite
clusters. This limit, however, could prove interesting for future
work: We note that at high random pin densities, we should
approach a static version of the random Lorentz gas (RLG),
a model of a single particle moving among many pins which
has been very useful for studying the connection between real
glassy systems and mean-field theory [24–26]. It seems likely
that the RLG can be viewed in some sense as the limit of large
pin density, when pins are placed randomly rather than on a
lattice. Just as the RLG has proven useful for studying cor-
rections to mean-field theory in the dynamics, dense random
pinning may prove useful to study corrections to mean-field
theory in mechanical properties.

Interestingly, Fig. 2 shows that φc(α) evolves from a
lattice-independent, linearly decreasing function to a more
complicated form, featuring plateaus which begin at lattice-
dependent values of α. The onset of major plateaus roughly
corresponds to λ = 1/4 (indicated by dotted lines for each
lattice geometry), when two small particles can no longer “fit”
between neighboring pins. Also visible is the departure from
linearity at roughly λ = 0.18 (dashed lines) when the same is
true for two large particles between pins. Clearly, there must
exist other “magic numbers” when small clusters in a max-
imally random jammed packing [27] would be disrupted by
pins. The slight increase in φc with pin density (in square and
triangular lattice plateaus) is an observation of fixed degrees
of freedom actually raising a jamming threshold by disrupting
packing.

The initial linear decrease of φc(α) in Fig. 2, which con-
tinues to the highest densities for randomly- spaced pins,
was explained by the argument that pin separation a replaces
the correlation length which diverges at jamming [6,17]. One
finds φ(0) − φ(α) = −mα with m = 0.11. The order of mag-
nitude of this slope is surprisingly well estimated by a simple
mean-field, counting argument. The number of contacts at
jamming is given by the Maxwell criterion for isostaticity:
critical contact number zc = 4 in d = 2 dimensions [28].
There are a fraction of f pins which each provide a contact
with a single particle. That is, a fraction f of pins are critical
to the stability of the system whereas the remaining fraction
experience zero force and can be removed with no impact on
stability. (Interestingly, we find that f has no observable trend
with pin density, nor are the adjacent critical pins spatially
correlated.) Further, it is overwhelmingly unlikely that these
tiny pins are in contact with more than one particle at Point
J. In the limit α → 0 this suggests that the critical number of
particles Nc required for jamming with a fixed lattice and box
size is

Nc(α) − Nc(0) = − f Nf /4. (4)

Substituting f = 0.55 ± 0.05 from analyzed configurations,
in the limit of small α ≈ Nf

N φc(0) and upon converting from
Nc(α) to φc(α), we find m = 0.16 ± 0.02. One might argue
that this crude counting argument overestimates the slope in

the absence of particle rearrangement or deviation from the
jammed structure without pins. (Four pins must be closely
spaced if they are to replace contacts from missing particles.)
However, one expects rearrangement, which is to say devi-
ation from the jammed structure without pins, as described
below.

IV. EXCESS BONDS, CONTACT NUMBERS,
AND SCALING BEHAVIOR

Above the critical packing fraction, N nonrattler parti-
cles are held in place by neighbors. The isostatic limit is
achieved when the average number of contacts felt by par-
ticles is the minimum required for collective stability when
the number of particulate degrees of freedom equals the
number of constraints [28,29]. Point J is isostatic in simple
models like polydisperse hard and soft frictionless spheres,
as well as grains with circular asperities which model fric-
tion [30], but is the exception in richer models of granular
and soft matter, including anisotropic particles and other fric-
tional models [31,32]. In the presence of pins, the system
still has Nd degrees of freedom, but the translational zero
modes are absent. Thus the criterion for isostaticity is general-
ized [21,22] as having Nbonds

iso interactions or “bonds” between
particles where

Nbonds
iso = dN − qd (5)

with q = 1 or 0, without and with pins, respectively.
To support a finite pressure (or equivalently, have a pos-

itive bulk modulus), there must exist a set of nonzero bond
compression forces that produces no net force on any particle.
Such a vector of forces is known as a state of self stress
and to have exactly one such vector an extra contact is re-
quired [33–35], giving

Nbonds
min = dN − qd + 1. (6)

At finite pressure p one defines Nbonds
excess(p) as the number of

bonds over and above Nbonds
min .

We find that Nbonds
excess(p) → 0 as p → 0 in all lattice ge-

ometries studied, even when the number of pins rivals the
number of particles. Figure 3 illustrates the relationship be-
tween Nbonds

excess and p for the square pin lattice. One observes
the expected crossover from a low-pressure regime finite-
size scaling [36] to one which scales as Nbonds

excess ∼ pβ where
β = 1/2. This well-accepted critical value which has been
repeatedly observed in experiments and simulations [5,37,38]
is independent of pin density.

There is a jump from z = 0 to z = zc as Point J is ap-
proached from φ < φc [39]. In the absence of pins, Nbonds

excess is
trivially proportional to N (z − zc); scaling behavior is often
pitched as z − zc ∼ pβ . In the presence of pins it is no longer
true that Nz is twice the number of bonds since a particle-
particle bond supports two particles, but a pin-particle bond
supports only one. Thus, no simple stability argument leads
to a definition of zc(α), which is free to differ from the zero
pin value of zc(0) = 2d − 2d/N + 2/N [34]. Indeed, zc(α) is
a decreasing function as seen in Fig. 4, despite the system
remaining isostatic at Point J. This reduction in contacts was
observed in previous work on square pin lattices [21]. A
comparison with Fig. 2 suggests that, when φc is higher for
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FIG. 3. Number of excess bonds as a function of N2 p, a scaling
which collapses finite-size effects as in Ref. [36]. Filled symbols:
N = 230; open symbols: N = 920. Here rattlers must be excluded
from N to achieve collapses since the rattler fraction depends
strongly on pin density. The number of excess bonds goes to zero
at zero pressure, except for a small number associated with localized
states of self stress in two-dimensional bidisperse systems [36]; note
that pins appear to suppress this effect. Outside of the finite-size
region, Nexcess ∝ √

p regardless of pin density.

a given lattice (less facilitation of jamming), zc is also higher.
This makes sense; the pin lattice permits lower coordination,
hence less material in the rigid component of the structure.
Also previously observed has been a growth in the fraction of
rattlers with pin density. A jammed system made with tradi-
tional materials, which is both less coordinated and less dense
thanks to pins (in three-dimensional rods) has potential use as
a microengineered material. Further pin-related modifications
of the material, in the form of the force network and elastic
moduli, are discussed below.

FIG. 4. The critical contact number zc versus pin to particle
density ratio α. To determine zc(α), we fit a power law of the form
z(p) = zc(α) + pβ and extrapolate to p = 0. Colors and symbols are
as in Fig. 2.

FIG. 5. Contact force probability distribution p(F ), for square
(�) and triangular (�) lattices and N = 230 particles, where F is
normalized by the single-configuration average. Blue, orange green,
red, purple, and brown correspond to 0, 16, 36, 64, 100, and 121
pins, with densities and power law exponents τ as shown in Table I.
Data at each pin density come from a single fixed (very low) pressure
p; at different pin densities p ranges from 7.5 × 10−8 to 7.9 × 10−8.
Insets of the figure (left, square, and right, triangular lattice) show
strong force chains that end at pins.

V. FORCE NETWORKS

A. Probability distribution functions

Experiments using microscopy or photoelasticity provide
empirical measurements of the distribution of contact forces
in granular packings [40,41]. Experimental force data can
also inform theoretical models which produce simulations of
realistic jammed materials [42]. In any static packing, one
finds particles in mechanical equilibrium with a nontrivial
distribution of forces. The fragile, jammed state has long been
recognized to have a distribution of forces with extended force
chains [43] that lead to probability distributions with “long
tails”[44] when compared with solids which are either ordered
or disordered but in regimes of strong jamming, yield, or
flow [45,46]. Exponential tails were observed in experiments
on foams, emulsions, and granular packings [38,42,47]. Sim-
ulational models featuring a variety of repulsive forces have
exponential tails [48]. One subtlety relevant to our analysis
concerns the lack of self-averaging near jamming in that the
average force 〈 f 〉 varies substantially from configuration to
configuration. It was shown that P(F ), where F ≡ f /〈 f 〉
is normalized by each configuration’s average, 〈 f 〉 shows a
Gaussian, not an exponential tail [49]. (The force ensemble,
which is able to probe exceptionally rare forces, also ulti-
mately reveals a Gaussian behavior in d = 2 [50].) On the
other hand, if the ensemble of configurations corresponds to a
single pressure, then using the ensemble-averaged mean force
will also be best modeled with a Gaussian tail (something we
confirmed for the data of Fig. 5, below).

Several thousand configurations at a single pressure near
p = 0 were averaged to produce the contact force distributions
in Fig. 5. For zero pins, the distribution is well fit by a Gaus-
sian as expected [49]. With pins, there are heavy tails which
gain weight with pin density. The insets to Fig. 5 are snapshots
showing chains of exceptionally strong forces which termi-
nate on pins. Well-known methods for robustly fitting tails
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TABLE I. Power law exponent τ , for tail of force distribution,
where g indicates distribution is adequately fit as Gaussian and “-”
indicates that neither a Gaussian nor power law fit is meaningful.

Square lattice Triangular lattice

Nf α λ τ α λ τ

0 0 0 g 0 0 g
16 0.058 0.112 − 0.058 0.104 −
36 0.130 0.167 8.71 0.130 0.156 8.09
64 0.228 0.222 5.18 0.230 0.207 6.22
100 0.351 0.275 4.09 0.346 0.254 4.65
121 0.422 0.301 3.72 0.414 0.278 4.33

of probability distributions to heavy tails [51,52] provide fits
of the form of a power law P(F ) ∼ F−τ . A comparison is
also made with alternative heavy tailed distributions, which
is a best practice to determine goodness of fit [52]. Alterna-
tive forms are moderately competitive; but on the heuristic
assumption that tails obey a power law the exponents are
shown in Table I. In the table, τ is the maximum likelihood
estimator for the power [51]. The “tail” of the distribution
is set by minimizing the Kolmogorov-Smirnov (KS) statistic.
This procedure is sound for Nf = 36–121; however, a KS
minimum with a corresponding plateau in τ does not exist for
Nf = 0, 16.

Apparent in Fig. 5 and Table I is that the shape of the
tail is progressively less well parametrized by α as pin den-
sity increases. The jamming threshold in Fig. 2 supports this
notion, as well as suggesting the possibility that for suffi-
ciently high pin densities the exponent τ is marginally better
parametrized by λ, hence the pin separation in units of particle
size.

When will a distribution of granular forces exhibit heavy
and possibly power law tails? For increasingly coordinated
packings, the authors of Ref. [50] showed increasingly heavy
tails (albeit in the limit of forces much rarer than a non-
force-ensemble study like ours can resolve). The q-model [53]
for bead packings under gravity shows that exponential tails
are the rule for a wide variety of probabilistic models for
near neighbor forces, so long as force balance is required on
each bead. Mean-field theory and simulation as well as exact
calculation [54] reveal only one exceptional case. This critical
model, in which forces are transmitted in unbranched chains
through layers of beads, yields a power law distribution of
weights w on a typical bead: p(w) ∼ w−c with c = 4/3 in
d = 2. While more theoretical work on a model with pins is
indicated, based on q-model results we might speculate that
τ = 4/3 is a lower limit on the scaling exponent we observe.

In the presence of pins, the distribution of forces becomes
much broader. Figure 6 shows that not only unusually strong
forces, but also unusually weak forces are much more com-
mon. The scaling behavior of weak forces is well studied,
and there are known inequalities that relate scaling of the
low-F region of P(F ) to the distribution of gaps between
particles [55]. While we leave the analysis of these scaling
exponents for future work, we note here that pins are effective
at serving two purposes involving weak forces which come
into play when there is a localized rearrangement. One is to

FIG. 6. Low-F end of the force distribution of Fig. 5, showing
an enhancement of the likelihood of extremely weak forces, which
grows with pin density. Data at each pin density come from a single
fixed (very low) pressure p; at different pin densities p ranges from
7.5 × 10−8 to 7.9 × 10−8. The insets show examples of pins serving
as, on the lower left, a contact for a buckler and, on the upper right,
enablers which contact either one or (extremely rare at low pressure)
both particles involved in the weak bond.

provide weak lateral forces to support bucklers [56], particles
with the minimum number of contacts. The other is to provide
forces roughly collinear with the line between particle centers.
We term such pins “enablers” because, like pins which support
bucklers, they enable unusually small interparticle overlaps,
hence forces. Examples of bucklers and enablers are shown in
the inset of Fig. 6.

B. Locations of contacts

In our recent study on square bond lattices [21] it was noted
that pins induced spatial order. Pin-induced oscillations in the
radial distribution function correlated with crystal-like peaks
in the scattering function S(�k). Now we visualize the topol-
ogy underlying these data by mapping the likely positions of
points of contact (bonds) between particles. As in the earlier
study, these maps aggregate a range of pressures slightly
above the jamming threshold. Figure 7 depicts several cases in
which we aggregate data from statistically identical unit cells
around each pin in a single configuration and also average
over several thousand configurations. At low pin density like
Nf /N = 36/230, α = 0.10, the spatial frequency of contacts
between particles has its maximum on circles, one particle
diameter from a pin. At a pin density where two circular loci
intersect, there develop “figure-eight” interference patterns.
Figure 8 shows how these come about from the constraint that
two particles that pack between two pins. Data for Nf = 64
has three such figure-eight features, two from small-large
particle contacts and one from large-large. The four-fold sym-
metry of the lattice is obvious here and for Nf = 100, where
there is an additional figure-eight stemming from small-small
particle contacts. While the aforementioned interference fea-
tures are centered on the horizontal and vertical axes passing
through a pin, for Nf = 100 there are additional prominent
features at 45◦. These arise from interference of large-large
particle packing between next-nearest-neighbor pins. Figure 7
additionally shows a triangular pin lattice with Nf = 64. In
this case there is the expected sixfold symmetry. Figure-eights
arise from contacts between large-large particles; the density
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FIG. 7. Heat maps of the likelihood of locations of bonds be-
tween particles, for N = 230. Red dashed lines denote diameters of
small and large particles. Correspondence between Nf and particle
density is as in Table I. Color bar represents a logarithmic scale,
from likely (yellow) to unlikely (purple). This range varies slightly
between subfigures; but all correspond roughly to one order of mag-
nitude. (a) Nf = 36 square. (b) Nf = 64 square. (c) Nf = 100 square.
(d) Nf = 64 triangular.

is just slightly below that needed for large-small contacts
anchored by pins, as seen by the near-touching of circular
contours around adjacent pins.

Figure 9 shows typical bond locations as in Fig. 7,
with bonds filtered by force magnitude. A telling difference
between these figures is that the strong interparticle bonds
mapped in Figs. 9(a), 9(c), and 9(e) describe particles di-
rectly in contact with a pin, or more subtly, connected to pins
through adjacent particles. On the other hand, Figs. 9(b), 9(d)
and 9(f) show that the weak interparticle bonds tend to occupy
locations which are quite close to a pin. The locations con-
tributing to the strong-F end of P(F ) of Fig. 5 are observed
to change little when pressure is lowered, as seen in Figs. 9(c)
and 9(e). However, the weak bonds become less concentrated

FIG. 8. If the particle on the left is imagined fixed and particle
on right is imagined to move while both remain in contact with
neighboring pins, the points of contact (red) trace out the figure-eight
pattern shown.

FIG. 9. Heat maps of preferred interparticle bond locations for
square pin lattices, filtered according to forces in the top (a), (c), and
(e) 95th and (b), (d), and (f) bottom 5th percentiles. Red dashed lines
denote diameters of small and large particles. All lattices are square.
Correspondence between Nf and particle density is as in Table I.
Color bar represents logarithmic scale for frequency of contact at
a location. Nf = 36 in (a), (b); Nf = 64 in (c)–(f). (a)–(d) are for
a range of pressures slightly above Point J, while (e), (f) are for a
single, very low pressure P = 8 × 10−8.

near the pin as in Figs. 9(d) and 9(f). This might be understood
by energetic considerations; the marginally stable state prefers
pins in contact with a single particle. However, when pressure
is slightly increased, a second particle can move into contact
with both a particle and pin, leading to a weak particle-particle
contact at the low-F end of the probability distribution.

C. Orientations of bonds

In Fig. 5 of Ref. [21], the distribution of the bond angles
was compared for square pin lattices of various densities. The
distribution P(θ ) became progressively more anisotropic, with
fourfold symmetry as one expected given a square pin lattice.
In the current study, we expect to see fourfold or sixfold
symmetry from square or triangular pin lattices, respectively.
The data shown in Fig. 10 from moderately dense pin lattices
indeed have the expected symmetry.

There is a high level of detail in P(θ ) as a function of pin
density, which is further compounded if one splits out bonds
only between particles of given sizes. On the other hand, one
can concisely represent the degree of angular ordering with an
order parameter as in Fig. 11. This shows the order parameter
mq ≡ |〈eiqθ 〉| with q = 4 for square and q = 6 for triangular
pin lattices and N = 230 particles. As seen in earlier work for
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FIG. 10. Histogram proportional to the probability P(θ ) that a bond makes angle θ with the horizontal axis. (a) On left and center are pin
configurations indicating horizontal, x direction. On right is illustrative pair of particles i and j, with bond angle θi j . (b) P(θ ) for N = 230.
Blue: No pins; Orange: Square lattice with Nf = 100 and λ = 0.275; Green: Triangular lattice with Nf = 64 and λ = 0.207.

the square lattice [21], an angular ordering transition occurs
somewhere around λ = 0.25. For the triangular lattice, this
transition occurs at a lower value of λ (hence an even lower
value of α). This abrupt increase in mq with cubatic or hexatic
ordering is reminiscent of a phase transition as seen in the
nematic order parameter in uniaxial liquid crystals with an
ordering field [57] or with hard rods immersed in matrices
of randomly placed hard spheres [58]. Moreover, Fig. 11
shows that mq need not continue to increase with increased pin
density above the transition. Clearly, there are certain “magic
numbers” for both square and triangular lattices at which the
bonds’ orientations show evidence of being organized by pins.
The onset of orientational order presents a difficult packing

FIG. 11. Order parameter mq as a function of particle-lattice
constant ratio, λ. (a) Square lattice q = 4; (b) triangular lattice q = 6.
Color is either black or red or green depending on the sign of
〈Re(eiqθ )〉.

problem, amplified by the bidispersity of the particles. In
Fig. 11, the onset distance between pins for orientational order
to emerge is the length of a linear two particle bridge com-
posed of small particles, but for the triangular lattice is quite
close to the distance spanned by a two-particle bridge com-
posed of large particles. It is quite likely that the decreasing
state space for clusters of not only two, but three (and more)
particles as pin density increases is a significant contributor to
orientational ordering.

Finally, while mq is a positive definite quantity as defined,
we use color (black versus red or green) to indicate changes in
sign in the quantity 〈Re(eiqθ )〉. This is an indicator of a shift
in the particular way that the lattice symmetry is manifested.
In particular, Fig. 12 shows such a phase shift for the square
lattice; in lieu of π/4 and 3π/4 being the most likely bond an-
gles for Nf = 121, bonds are most likely oriented at 0 or π/2
for Nf = 144, 169. This shift in most probable orientation
turns out to be consequential for the elastic properties of the
jammed solid. In Fig. 14 we will see an excellent correlation
between this shift in symmetry and the behavior of the Zener
ratio, which indicates breaking of the isotropy of the elastic
tensor.

D. Topological analysis

To better understand the multiscale character of the stress-
bearing structures in the system, we leverage topological data
analysis to analyze the network formed by particles (nodes
of the network) and the interparticle forces (edges of the
network). Specifically, we follow the procedure presented in
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FIG. 12. Histogram proportional to the probability P(θ ) that a
bond makes angle θ with the horizontal axis for the square pin
lattice with N = 230. Blue, orange, and green correspond to Nf =
121, 144, and 169, which are the three highest values of λ analyzed
in Fig. 11(a).

Ref. [59] to determine the persistence of features in the contact
force network as we apply increasingly aggressive filtration
of the network by omitting forces below some threshold and
study how the persistence depends on both pin density and
pin arrangement. The quantities of interest to emerge from
this analysis are the zeroth and first Betti numbers, β0 and
β1. For a given filtration of the contact force network, β0

is the number of disjointed (not connected by any edges)

FIG. 13. (a) The zeroth and (b) first Betti numbers, normalized
by the number of nonrattler particles, plotted against the filtering
force (normalized by the mean force). The zeroth Betti number is
a measure of the number of disjointed components of the network
whereas the first Betti number is a measure of the number of loops in
the network.

FIG. 14. Shear moduli of packings formed in the presence of
pins. (a) The angle-averaged shear modulus Ḡ shows pin-density-
independent scaling behavior, with a finite-size plateau that is
independent of pin density, but a different scaling prefactor. Colors
are same as in Fig. 3 (while pink represents a further higher pin
density Nf /N = 169/230); open symbols are N = 920 while filled
symbols are N = 230. (b) Scaling prefactor in Ḡ = CḠp

√
p decreases

as a function of pin density in square lattices. (c) Zener ratio, measur-
ing cubic anisotropy in the shear moduli, is roughly, but not perfectly,
independent of pressure at all pin densities for square lattices. (d) For
triangular lattices, the pressure-averaged Zener ratio is independent
of pin density. For square lattices, a strong cubic anisotropy in
elastic constants develops at the same λ as bond-orientational order
(Fig. 11).

components of the network. β1 counts the closed paths of four
or more edges which bound an empty region of the filtered
network. These quantities prove to correlate with the mechan-
ical response of granular systems in useful ways. For example,
the time evolution of persistent features has been shown to
correlate with material failure [60] and impact dynamics [61].
Of more relevance to the present study, the persistent features
of packings illuminated the structural effects of the particle
shape [62], exposing the sensitivity of bulk properties of pack-
ings to particle-scale constraints imposed by grain geometry.
Thus persistent homology is a promising strategy to explore
the effect of the quasilocal constraints imposed by pins on a
packing inside a pin lattice.

We find that the presence of pins has a dramatic impact
on the topoological properties of the contact force network.
Betti numbers are plotted versus filtration in Fig. 13. We see
that, in systems with no-to-few pins, the zeroth Betti number
is insensitive to very small filtrations before turning up to
reach an approximately Gaussian peak. As the number of pins
is increased, the small-force plateau vanishes and the peak
in β0 becomes dramatically heavy-tailed. These basic trends
appear to be qualitatively insensitive to the geometry of the pin
array. Similarly, as the pin number is increased, β1 transitions
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from roughly Gaussian to an extremely heavy-tailed curve,
qualitatively insensitive to the pin array geometry.

These results suggest the pins play an important role (re-
flected by the heavy tail in β0) as sinks for stresses in the
packings. Chains of strong interparticle forces are able to
terminate at the pins akin to container boundaries in the Jansen
effect, but on a much more local scale. We might hypothesize
based on this interpretation alone that pressures in the pack-
ing would be less correlated on scales greater than the pin
spacing than for packings without pins. Though testing this
prediction is beyond the scope of the present study, the scaling
of β1 provides a complementary picture. The persistence of
loop-like features at high-filtration suggests that large stresses
are transmitted around regions of relatively low-stress, visibly
anchored at a subset of pins.

VI. ELASTIC PROPERTIES

How does the presence of pins affect the response of a
packing to perturbations? For a solid, the simplest description
of the macroscopic response is linear elasticity and at the
ordinary jamming transition the elastic moduli show critical
scalings near the jamming transition, with bulk modulus

B ∼ p0 (7)

and shear modulus

G ∼ √
p (8)

in an infinite system. In a finite system, G shows clear finite-
size corrections, crossing over to a plateau G ∼ 1/N at small
values of pN2 [36].

The elastic modulus tensor, from which these elastic con-
stants are derived, may be defined as

Ci jkl ≡ ∂2E

∂εi j∂εkl
. (9)

In a normal packing, the meaning of the global εi j is
unambiguous, and (for example) a shear εi j may be realized
by transforming the vectors a j defining the periodic cell as
a′

i = εi ja j .
In our packings with pins, there is no longer a unique

choice of global deformation. One may imagine deforming
a sample while the pins remain fixed in their original lattice.
This deformation is incompatible with the periodic simulation
as it changes the ratio between the sample volume and the pin
lattice unit cell volume; thus, simulating this deformation is
somewhat complicated.

A different definition of strain which is much simpler to
analyze is a strain in which the array of pins is also forced to
deform along with the periodic cell. This second definition,
which we adopt, also has the convenient feature of preserving
the connection between the bulk modulus, the packing frac-
tion, and the pressure which exists in pin-free packings

B = φ
d p

dφ
= φ2

V

d2E

dφ2
. (10)

In practice we calculate the elastic moduli using exact
linear response by inversion of the dynamical matrix.

A. Shear modulus in the presence of pins

As an ensemble, ordinary jammed packings are isotropic.
Packings formed in the presence of a square lattice of pins,
however, lose this isotropy, as is evident from Figs. 10–12,
and thus require an extra elastic constant to describe them
completely in two spatial dimensions:

B = 1
4 (Cxxxx + Cyyyy + 2Cxxyy), (11)

G1 ≡ Cxyxy, (12)

G2 ≡ 1
4 (Cxxxx + Cyyyy − 2Cxxyy). (13)

We may equivalently describe the shear response by the
combination of the angle-averaged shear modulus

Ḡ = 1
2 (G1 + G2), (14)

and the Zener ratio

ar = G1/G2. (15)

Figure 14(a) shows the angle-averaged shear modulus Ḡ as
a function of pressure for square lattices. The scaling behavior,
with the expected exponent of 1/2 as in Eq. (8), appears to be
independent of pin density, and the magnitude of the finite-
size plateau of Ḡ appears to be unaffected by pin density.
The prefactor CḠp between Ḡ and

√
p outside the finite-size

regime, however, appears to decrease with increasing pin den-
sity, roughly independently of pin geometry even for large λ,
as illustrated in Fig. 14(b).

Figure 14(c) shows that the Zener ratio ar has a fairly
weak pressure dependence, and thus in Fig. 14(d) we plot its
mean over all pressures as a function of pin density λ, for
both square and triangular lattices. As might be expected for
systems with perfect sixfold symmetry [63], the triangular pin
lattice induces no sign of cubic anisotropy at any pin density,
while the square lattice does at sufficiently high density. Com-
paring to Fig. 11, we see that the anisotropy ar − 1 �= 0 of
the elastic constants coincides with the onset of orientational
order m4. Furthermore, when m4 changes sign, the sign of the
anisotropy changes as well.

One can understand this qualitatively by considering the
affine part of the elastic modulus tensor. Recall that the affine
moduli GA represent the energy cost of forcing the particles
to follow the applied deformation affinely; this represents an
overestimate of the true elastic moduli because this affine
deformation will tend to produce net forces on each particle
which must be relaxed away to reach the true sheared state
(and, in fact, for the shear modulus, GA is a gross overestimate
since it does not go to zero as p → 0).

We may easily show that

(ar )A = 〈sin2 (2θ )〉
〈cos2 (2θ )〉 = 1 − 〈cos(4θ )〉)

1 + 〈cos(4θ )〉 ≈ 1 − 2Re 〈ei4θ 〉.
(16)

Thus, the correlation we previously saw between
ar and m4 qualitatively matches that which is ex-
pected for the affine moduli. The agreement is not
quantitative, however; a comparison of the numerical
values shows that this prediction from m4 underes-
timates the degree of anisotropy by a factor of 2
to 3.
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FIG. 15. (a) Bulk modulus as a function of pressure for square
pin lattices, showing plateau at low pressure p. Colors as in Fig. 3;
the modulus decreases at high pin densities. (b) Low-pressure bulk
modulus B0, divided by its value with λ = 0 (no pins), in blue. B0

decreases as the pin density is increased. Orange: 〈B0/B0,A〉 shows
a slightly weaker decrease, showing that the reduction in affine bulk
modulus associated with reduced jamming density plays some role
in this reduction of B0, but only a small one. Green: 〈B0/B0,theory〉,
where B0,theory is given by Eq. (17), showing perfect agreement with
theory.

B. Dependence of the low-pressure bulk modulus on pin density

As pressure is decreased toward zero, the bulk modulus
plateaus, as seen in Fig. 15(a). Thus an important result is that,
as with the shear modulus, pins do not alter a critical scaling
exponent; in this case 0, for B(p) as in Eq. (7). Yet the plateau
value B0 has a systematic dependence on pin density. One
might assume that the introduction of pins should stiffen the
system and increase B. Indeed, at fixed φ, this should be true.
However, as we saw earlier, increasing pin density allows the
packing to jam at a lower φc, with larger numbers of rattlers
so the rigid network is even less dense than one might expect
from a knowledge of φc alone. Thus the limiting value B0 need
not increase with pin density and indeed the trend in Fig. 15
is that it decreases.

How can we rationalize this trend? The basic idea is that
introduction of pins allows lower-density, more-fragile pack-
ings to form. Qualitatively, a reduction in the bulk modulus
is seen in experiments on granular packings where increased
polydispersity leads to increased effective porosity and re-
duced stiffness [64]. Further, for a broad range of systems
with structural disorder, increasing disorder causes lattices
near isostaticity to stiffen [65]; the flip side is that the ordering
provided by pins would have the opposite effect. To make this
idea precise, we note that the plateau bulk modulus may be

expressed as [66]

B0,theory ≈ εNbonds
min

d2V

〈σ f 〉2
bonds

〈σ 2 f 2〉bonds
, (17)

where σ is the sum of radii for a particular bond, d = 2 in
our case, and the volume V is thus the area of the system. The
left-hand factor expresses the fact that a less-dense packing
has a lower affine bulk modulus B0,A: With fewer particles
participating in the packing, fewer bonds are present and thus
the energy cost of an affine deformation is reduced. The right-
hand factor accounts for the nonaffine relaxation in the limit of
small pressure; a packing with a broader distribution of forces
is able to relax a greater fraction of the stress initially imposed
by an affine compression.

We thus see that the packings with pins are expected to
show a reduction in zero-p bulk modulus due to both factors:
A reduced φc and a broader distribution of forces. Figure 15(b)
confirms this explanation by plotting the average value of the
low-pressure bulk modulus B0, divided by its value at λ = 0.
The blue curve shows the decay of B0 as the pin density
increases. Further curves show the average values of B0/B0,A

and B0/B0,theory. The final curve is perfectly flat, showing
that the theory explains the decrease of plateau bulk modulus
with pin density. Dividing this by the affine modulus, on the
other hand, only removes a small part of the decrease with
pin density. Thus, although the reduced density at jamming
explains part of the reduction in B0, the dominant effect is the
change in nonaffine relaxation, which may be related to the
broadening of the distribution of forces.

We thus found two nontrivial effects of the pin lattice on
the elasticity of the resulting packings. In the shear moduli,
a cubic lattice of pins induces a cubic anisotropy, which is
closely correlated with the development of bond-orientational
order at sufficiently large pin densities. In the bulk modulus,
we find that the lattice of pins stabilizes packings with much
lower bulk moduli than normal packings and that this reduced
modulus is intimately connected to the broader distribution of
forces which is found in the presence of pins.

VII. CONCLUSION

Simulated jamming of bidisperse soft discs with the addi-
tion of a lattice of fixed pins permits one to tune the jamming
threshold and structure of the force network, as well as mod-
ify the solid’s elastic properties. A fragile, marginally stable
jammed solid exists at zero pressure, with the familiar value
of critical exponent β = 1/2 for scaling of the number of
bonds above the isostatic limit. Also familiar are the critical
exponents that describe the bulk and average shear modulus as
a function of pressure. However, both the jamming threshold
φc and the critical contact number zc are dependent on the lat-
tice density and identity, with φc showing plateau-like features
where lattice-specific, local packing effects are important. For
small pin densities, the investigated quantities are independent
of the lattice geometry. Maps of contact locations within one
unit cell of the lattice reveal an inhomogeneous, patterned
structure indicative of packing around pins. At sufficiently
high pin density, the pattern’s symmetry matches that of the
lattice. Distributions of bond angles show anisotropy; with an
angular order parameter that rises from zero when the particle
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diameter becomes comparable to pin separation. The bond
angular probability distribution undergoes detailed changes as
the pin density changes. For a square (but not triangular) pin
lattice, this correlates with deviations of the Zener anisotropy
ar from unity. The result is a disordered solid with two distinct
shear moduli.

Dramatic pin-mediated changes occur in the distribution
of forces, including enhanced probability at both weak and
strong forces. A heuristic power law model for the strong tails
is employed: P(F ) ∼ F−τ , with exponent τ found to decrease
with increasing pins. Considerations of persistent homology
are employed, which show equally dramatic effects of pins
in enhancing loop-free topological structures at low force
filtration and supporting both types of topological structure
at higher force filtrations.

This wealth of structural changes has consequences for
elastic behavior. In broad terms, both bulk and shear moduli
decrease with pin density. A more detailed theoretical treat-
ment demonstrates that changes in contact number, density,
and enhanced breadth of force distribution all contribute to
the reduction in bulk modulus, with the increased nonaffine
relaxation associated with the broad force distribution being
the main factor. Thus, the placement of supporting pins prior

to jamming is a promising technique to engineer a disordered,
jammed material in two dimensions which is less dense and
less rigid, with mechanical anisotropy in the form of two
different shear moduli. Photoelastic experiments on grains
jammed in the presence of pins, as well as extensions to
other situations of interest like jamming and yielding in the
presence of shear or three-dimensional materials supported
by fixed rod-like structures, are promising avenues for future
work.
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