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Large-scale frictionless jamming with power-law particle size distributions
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Due to significant computational expense, discrete element method simulations of jammed packings of size-
dispersed spheres with size ratios greater than 1:10 have remained elusive, limiting the correspondence between
simulations and real-world granular materials with large size dispersity. Invoking a recently developed neighbor
binning algorithm, we generate mechanically stable jammed packings of frictionless spheres with power-law
size distributions containing up to nearly 4 000 000 particles with size ratios up to 1:100. By systematically
varying the width and exponent of the underlying power laws, we analyze the role of particle size distributions
on the structure of jammed packings. The densest packings are obtained for size distributions that balance the
relative abundance of large-large and small-small particle contacts. Although the proportion of rattler particles
and mean coordination number strongly depend on the size distribution, the mean coordination of nonrattler
particles attains the frictionless isostatic value of six in all cases. The size distribution of nonrattler particles that
participate in the load-bearing network exhibits no dependence on the width of the total particle size distribution
beyond a critical particle size for low-magnitude exponent power laws. This signifies that only particles with
sizes greater than the critical particle size contribute to the mechanical stability. However, for high-magnitude
exponent power laws, all particle sizes participate in the mechanical stability of the packing.
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I. INTRODUCTION

Packings of stiff granular particles with a high degree of
size dispersity are of widespread geophysical and industrial
relevance, with applications including powder technology and
the mechanics of soil and construction materials [1–6]. The
distribution of particle sizes can adopt discrete or continuous
forms, both of which have been shown for frictionless parti-
cles to produce overall packing densities, φ, that are greater
than the frictionless, monodisperse value φmono ≈ 0.64 [7].
The simplest discrete form is the bidisperse case, for which
Furnas [3] predicted the theoretical limiting value of φbi ≈
0.87 for an infinitely large size ratio; recent large-scale nu-
merical simulations of bidisperse packings produced packing
densities approaching the Furnas limit [8,9]. To date, most
three-dimensional (3D) numerical simulations of continuous,
highly disperse systems with size distributions of diverse
functional forms have been limited to largest-to-smallest par-
ticle size ratios of order 10 or less, and typically only reach
packing densities ∼0.71 or smaller at low confining pressures
[8,10–15]. To our knowledge, the main exception is the work
of Oquendo-Patiño and Estrada [16–18], who considered
power-law-like particle size distributions. These distributions
were generated by matching the scaling behavior of the
cumulative particle size distributions to early experimental
observations by Fuller and Thompson [1]. Oquendo-Patiño
and Estrada [16–18] simulated particle size ratios of up to 32
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and achieved packing densities close to 0.86 depending on the
characteristics of the particle size distribution.

Here, we consider power-law particle size distributions
to study packings of highly disperse particles. From a nu-
merical perspective, power laws are one of the simplest
continuous distributions, since there are only two parameters
governing the distribution: the maximum particle size ratio
and the power-law exponent. Power-law distributions have
been measured to emerge naturally from various fragmen-
tation mechanisms, including that of sea-ice floes [19] and
comminution [4,20–23]. Further, power laws display scale
invariance and fractal behavior; the geometric Apollonian
packing is one example of a fractal packing with an under-
lying power-law size distribution [24–27].

One of the challenges associated with simulating power-
law distributions is that the tail of the distribution has
significant weight and decays slowly, thus requiring the simu-
lation of very large size ratios of particles to accurately sample
the distribution. Computational costs of 3D discrete element
method (DEM) simulations with broad particle size dispar-
ities have been prohibitive until recently due to algorithmic
limitations. Conventional neighbor list generation methods,
e.g., those available by default in popular molecular dynamics
(MD) packages like LAMMPS [28,29] exhibit poor scaling
with increasing size ratios and become intractable beyond
particle size dispersity of order 10 [30]. Ogarko and Luding
[31] recently developed an improved neighbor list generation
scheme for highly size-dispersed systems. A similar approach
has since been implemented in LAMMPS by Shire et al. [32].
This implementation has been expanded upon and was used
to study bidisperse packings of both frictionless and frictional
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particles with particle size ratios of up to 40 [9]. For our
study, we have exerted this simulation capability further to
investigate strongly disperse power-law-distributed systems of
frictionless particles with unprecedented particle size ratios of
up to 100.

Packings of highly disperse particles require careful treat-
ment as relaxation may occur over disparate timescales.
Unlike volume-controlled jamming protocols, pressure-
controlled jamming protocols are guaranteed to produce
mechanically stable packings and yield greater accessi-
bility to the jamming point in the low pressure regime
[33,34]. Recently, the isobaric-isoenthalpic (NPH) thermo-
dynamic ensemble, one example of a constant-pressure
protocol, was successfully applied to multi-friction-mode
monodisperse packings [35] and to frictionless and frictional
bidisperse packings [9]. The NPH ensemble implementation
in LAMMPS can be leveraged to enforce the condition of
zero shear stresses applied to the simulation box concurrently
with isotropic compression. For the highly disperse systems
considered in this article, permitting the relaxation to zero of
the off-diagonal components of the internal stress tensor, Pint,
is crucial as this technique produces packings that are also
stable with respect to shear deformations.

This article describes numerical simulations performed
using a constant-pressure (NPH) compression protocol to gen-
erate jammed packings of frictionless, power-law-distributed
disperse spherical particles. The interparticle contact model
is described in Sec. II A. Section II B elucidates how dis-
tributions of particle sizes are generated and characterized.
Section II C contains a brief description of the multineighbor-
ing scheme used in this article. Further details and benchmark
results can be found in the Appendix. The packing protocol
is described in Sec. II D. In Sec. III A, the results of packed
systems of power-law-distributed particles are characterized.
Finally, Sec. III B examines several properties of the resultant
force-bearing networks.

II. METHODS

A. Contact model

Spherical particle-based 3D DEM packing simulations
were conducted using the GRANULAR package in LAMMPS
[28,29,36]. The scope of this article is limited to frictionless,
purely repulsive normal contacts, where particles interact via
a damped Hookean pair potential penalizing overlap. The
normal force Fn between contacting particles i and j with
diameters Di and Dj and separation ri j = ri − r j is

Fn = knδn̂ − Meffγnvn, (1)

where kn = 1 is the Hookean spring constant, δ = (Di +
Dj )/2 − |ri j | is the overlap, Meff = MiMj/(Mi + Mj ) in
terms of the particle masses Mi and Mj , and γn = 0.5 is a
damping coefficient, reflecting particle inelasticity. The unit
vector connecting the particle centers is n̂ = ri j/|ri j |, and vn

is the relative velocity of the two particles projected along n̂.
Note that, in principle, the net normal force in Eq. (1) can
be attractive, i.e., if the damping component is greater than
the Hookean component when particles are moving apart. An
extra switching function is employed to set the magnitude of
Fn to zero if this condition occurs during the simulation. We

do not expect this formulation to cause any significant changes
for slow compression simulations, but it may be an impor-
tant consideration for high-rate deformation simulations, for
instance.

The material density of individual particles is ρ = 1, such
that particle masses Mi are proportional to the particle vol-
umes Vi and given by Mi = ρVi = ρπD3

i /6. The unit of length
is the smallest particle diameter Dmin = 1, and the unit of pres-
sure is kn/Dmin; all lengths and pressures are given in terms
of these quantities. The simulation time step is �t = 0.02τ ,
where τ = √

Mmin/kn with Mmin ≡ ρπ/6.

B. Particle size distributions

Particle sizes are represented using diameters D and are
distributed according to power-law distributions such that the
probability of finding a particle with diameter between D
and D + dD is P(D)dD ∝ D−βdD, where β is the power-law
distribution exponent. Particle sizes are limited to a range
1 � D � λ, where the parameter λ denotes the maximum size
ratio of the distribution. Each system is required to have at
least ten particles with diameters larger than 0.95λ, meaning
that the total number of particles in each system depends upon
both λ and β. In the geophysical literature, distributions of
particle sizes are often given in terms of their fractal dimen-
sions df , meaning that the number of particles ND larger than
size D satisfies ND ∼ D−df [4]. For power-law particle size
distributions,

ND ∝
∫ ∞

D
D′−βdD′ ∝ D1−β

1 − β
, (2)

for β > 1, so df = β − 1.
A central quantity of interest is the cumulative volume

fraction (CVF), which gives the fraction of particle volume
(and mass, since ρ is constant) contained in particles smaller
than a given size. The CVF is easily obtained for power-law
distributions with β < 4 as

CVF =
∫ D

1 D′3−βdD′
∫ λ

1 D′3−βdD′
= D4−β − 1

λ4−β − 1
. (3)

The CVF exponent, α, is defined using Eq. (3) as α ≡ 4 − β,
and gives the scaling of the CVF in the limits Dα 	 1 and
λα 	 1 as CVF ∼ (D/λ)α . Note that α plays a similar role as
the grain-size distribution (GSD) exponent η in Refs. [16–18],
i.e., GSD ∼[(D − 1)/(λ − 1)]η, but cannot be compared di-
rectly (except in the specific case α = η = 1.0, corresponding
to β = 3) as the underlying particle size distributions in
Refs. [16–18] are not power laws characterized by a single
exponent.

This article mainly considers exponents in the range 3.0 �
β � 3.8, or 0.2 � α � 1.0, emblematic of soil comminution
[4,20–23]. Several of these CVFs are shown in Fig. 1(a) plot-
ted against the reduced particle diameter (D − 1)/(λ − 1). A
simple interpretation of Fig. 1(a) is that more than half the
particle volume (mass) is contained in particles with diam-
eters smaller than the arithmetic mean diameter (λ + 1)/2,
or reduced particle diameter 1/2, for α < 1.0—the concave
down curves in Fig. 1(a)—and more than half the particle
volume is contained in particles larger than (λ + 1)/2 for
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(b)(b)(a)

FIG. 1. (a) Cumulative volume fractions for select values of α and λ = 50. Points are computed from the particle distributions used in
the simulations and lines are the analytic curves obtained from Eq. (3). The dashed black line corresponds to α = 1.5 and is included as an
example case for α > 1.0, for which the CVF is concave up. (b) Example packings obtained at applied pressure pa = 10−6, shaded by particle
diameter for the indicated α. Both simulation boxes are triclinic but have small tilt factors. The overall number of particles for α = 0.2 is ∼16×
larger than for α = 1.0, and the packed volume fractions are close to φ = 0.82 and φ = 0.80 for α = 0.2 and α = 1.0, respectively.

α > 1.0. As demonstrated in Sec. III A, the range of values of
α shown in Fig. 1(a) brackets the densest obtainable packing
for λ 	 1. As α → 0 (β → 4), the preponderance of particles
have diameters close to D = 1 and the total count of particles
rises sharply. For example, for λ = 50, the α = 1.0 system
has 233 653 particles while for α = 0.2 there are 3 739 236
particles. The corresponding packings obtained at low applied
pressure (see Sec. II D) for these two systems are shown in
Fig. 1(b), rendered in OVITO [37].

C. Efficient multineighboring scheme

To identify potentially interacting atoms (particles) in MD
and DEM packages, the most computationally efficient ba-
sic algorithm builds a neighbor list with all pairs of nearby
particles using a spatial grid with a length scale set by the
largest interaction cutoff. This becomes impractical as the size
disparity ratio λ increases, as the same bin size is used for all
particle pairs. An alternative approach was implemented into
LAMMPS by in ’t Veld et al. [30], which uses the smallest
cutoff to set the bin size and to adjust how many bins are
searched based on particle types [30]. In LAMMPS, particle
types are a discrete categorization used to set interaction pa-
rameters such as cutoffs for MD or friction coefficients for
DEM. While this method allows simulations to reach larger λ,
it also becomes exceedingly expensive as λ increases beyond
∼10. To overcome this limitation, an improved algorithm was
recently proposed by Ogarko and Luding [31] and initially
modified for LAMMPS by Stratford et al. [38] and Shire et al.
[32]. This approach further tailored the neighbor list construc-
tion based on a particle’s type to ensure that the computational
cost of building a neighbor list does not grow faster with λ

than the force calculation.
For this article, the implementation by Stratford et al. [38]

was expanded upon by fully integrating it with the LAMMPS
codebase and releasing it in the public LAMMPS distribution
[39]. The method is generalized to support DEM by removing

the use of particle types, since these are typically intended to
describe material properties and not necessarily particle sizes.
Neighbor list construction can be tuned by predefining a set of
diameter intervals irrespective of particle types, streamlining
optimization of simulations. The crux of the technique is that
each particle searches for neighbors with diameters that fall
in its own diameter interval and in larger diameter intervals.
This approach takes advantage of the inherent asymmetry in
the computational effort required to generate lists of neighbors
centering on small particles as opposed to using large particles
as the point of reference. Previous work demonstrated that
this method can be used to model jamming of frictionless
and frictional bidisperse packings up to λ = 40 [9]. Here,
this methodology is applied to study packings of frictionless
particles with a power-law distribution with λ as large as 100,
although larger λ are feasible. See the Appendix for arguments
regarding the computational complexity of the algorithm and
benchmark results.

D. Constant-pressure packing protocol

Packings are created via a constant-pressure protocol us-
ing the NPH ensemble implemented in LAMMPS [9,35].
The symmetric applied pressure tensor, Pa, has the form
Pa,xx = Pa,yy = Pa,zz = pa and all off-diagonal components
are zero. Here, pa is set to 10−6 to work in the limit of small
particle overlaps; for context, in systems of monodisperse
particles the typical fractional overlap is δ/D ∼ pa (in units of
D/kn). The simulation box is fully periodic and initially cubic.
Under the constraint of no overlaps, i.e., there are no inter-
particle forces at time t = 0, particles are randomly placed
throughout the simulation box at low volume density. The
overall particle volume fraction is defined as φ ≡ (

∑
i Vi )/V ,

where V is the instantaneous simulation box volume and the
sum runs over all the particles in the system. During the sim-
ulation, the applied pressure compresses the simulation box
and forces particles into contact; see Fig. 2 for an illustration
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FIG. 2. Particle volume fraction φ, overall mean coordination
〈Z〉 (dashed), and nonrattler mean coordination 〈Z〉nr (solid), plotted
against simulation times for λ = 50 and α = 0.7. The inset magnifies
the end of the simulation, at which time φ and 〈Z〉nr cease evolving.

of the typical variation of φ with simulation time. At the end
of the simulation, the internal pressure tensor balances the
applied pressure, giving Pint = Pa within numerical tolerance.
While the simulation box is triclinic, the box tilt factors are
typically small compared to the characteristic box side length.
The rate of compression is slow enough that the simula-
tion box volume monotonically decreases until the system
jams, and particle overlaps are much smaller than the particle
diameters.

As the number of particles and the distribution of parti-
cle volumes vary substantially, we do not identify the final
jammed state by using a fixed kinetic energy cutoff. Rather,
several criteria are used to determine when to stop jamming
simulations. In addition to the numerical equivalence of the
final internal and applied pressure tensors, other quantities are
also considered, including the evolution of φ and the mean
number of contacts per particle, 〈Z〉, where 〈·〉 refers to the
average over all particles. After jamming is achieved, φ and
〈Z〉 do not evolve in time and the total kinetic energy is
small: the average kinetic energy per particle is of order 10−13

or less. For several of the largest systems—λ = 50 systems
with β � 3.6 (α � 0.4)—a simulation time cutoff of at least
1.2 × 107τ and up to ∼4 × 107τ is employed out of computa-
tional necessity to stop simulations. Most quantities extracted
from the simulations, such as φ and 〈Z〉, evolve slowly if at all
after such long run times (see Fig. 2).

In frictionless, monodisperse systems under vanishingly
small pressure, the isostatic number of contacts per parti-
cle is Ziso = 6. The number of excess contacts per particle,
�Z = Z − Ziso, grows systematically with pressure as

√
pa

[7,35,40]. For highly disperse packings, a large proportion of
particles are rattlers, i.e, those particles participating in too
few contact pairs to be mechanically stable. Such particles
substantially dilute the calculation of 〈Z〉, but a separate, more
informative value, 〈Z〉nr, can be obtained by excluding rattler

FIG. 3. Variation in the particle volume fraction φ of jammed
packings plotted against α for the indicated values of the maximum
particle size λ. The vertical dashed line corresponds to the CVF ex-
ponent αA ≈ 0.53 corresponding to the random Apollonian packing.

particles from the calculation. The difference between the two
measures is evident by comparing the two red curves in Fig. 2.
This issue will be discussed in greater detail in Sec. III.

As a separate test of mechanical stability, we conducted
several additional simulations to verify that the packings with
the most extreme fractions of rattler particles are still stable
after removing rattlers (see Sec. III A). For example, for α =
1.0 approximately 83% and 97% of all particles are rattlers
for λ = 20 and 50, respectively. For several high-α values,
the simulations were restarted after removing rattlers from
the packed configurations and checked for reconvergence
of the macroscopic quantities, including φ and 〈Z〉nr, under
the same stress state.

A final useful metric, the Cundall parameter C, quantifies
the typical unbalanced net per-particle force, per contact, in
the system [16],

C =
∑

p |Fp|∑
c |Fc| , (4)

where the numerator sums over the magnitude of the net per-
particle force and the denominator sums over the magnitude
of each contact force. Our results showed that a value of C �
10−6 was indicative of a mechanically stable system.

III. RESULTS

A. Characterization of packings

Using the constant-pressure packing protocol, packing vol-
ume fractions φ were obtained for different power-law particle
size distributions. Results comparing the variation of φ with
α and λ are shown in Fig. 3. For each λ, φ is lowest at
the endpoints of the range of α considered and peaks near
the center of the range. The peak shifts slightly to smaller α

and becomes sharper with increasing λ. The sharpening trend
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with increasing λ is similar to behavior observed in bidisperse
packings, for which increasing the particle size ratio changes
φ at the Furnas peak from smoothly nonmonotonic to cusped
[9,41]. System size and packing equilibration constraints pre-
vent us from exploring the entire range of α for λ = 100 to see
if the sharpening trend persists in the power-law-distributed
case.

The results in Fig. 3 are consistent with the packing den-
sities obtained by Oquendo-Patiño and Estrada [16,18], who
employed the Hertz contact model and volume-controlled
isotropic compression. Several other differences between
our simulations and those described in Refs. [16–18] war-
rant mentioning. Based on the maximum fractional overlaps
quoted in Ref. [16], the peak pressure reached in the sim-
ulations conducted in that work is estimated to be of order
pa ∼ 10−4, or two orders of magnitude larger than in our
simulations. Test simulations we conducted for λ = 20 com-
paring the Hooke and Hertz contact models at identical pa =
10−4 using the compression protocol described in Sec. II D
showed that φ is ∼1% larger in Hertzian systems with all other
variables kept constant, perhaps because the Hertz model does
not penalize incipient particle overlap (the contact stiffness is
zero at first contact). Most importantly, as noted earlier, the
GSD characterized by the exponent η in Ref. [16] does not
correspond to an underlying single-exponent power-law size
distribution, except in the case α = η = 1.0.

Considering individual values of λ, it is possible to com-
pare our CVFs with the GSDs in Ref. [16] to estimate a value
of α that compares most favorably with η. For λ = 32—the
largest λ used in Ref. [16]—a GSD with η = 0.8 approxi-
mates a CVF with α = 0.75, η = 0.6 is similar to α = 0.5,
and η = 0.4 bears some resemblance to α = 0.2, etc. For η �
0.3, the approximated CVFs are logarithmic or have α < 0.
In general, α values are smaller than the corresponding values
of η. Moreover, the GSD tends to exhibit a higher particle
volume fraction contained by small particles, while the CVF
and GSD exhibit similar scaling behaviors as D → λ. Despite
this, the peak φ value obtained in this work is within ∼5% of
that in Ref. [16] and occurs at comparable α and η values,
for λ = 32. Given the role of λ, the discrepancy between
these results should reduce as the maximum particle size ratio
increases.

Figure 3 also indicates the CVF exponent of the power-law
particle size distribution corresponding to the random Apollo-
nian packing, αA ≈ 0.53 [18,24–27]. Interestingly, αA is quite
close to the corresponding α used to obtain the peak φ for
λ = 50, α = 0.55, and as noted above the peak trends toward
smaller α with increasing λ (see also discussion in Ref. [18]).
The power-law exponent of the Apollonian packing is conjec-
tured to be the lower bound of exponents that result in full
coverage obtained via geometric packing protocols [42]. The
corresponding upper bound in 3D is β = 4 (α = 0) [42]. Our
λ = 50 data can be compared with an extrapolation of data
from Ref. [27], which explored the physical fractal behavior
of random Apollonian packings. The densest packing we ob-
tained gave φ ≈ 0.85, a packing significantly less dense than
the corresponding Apollonian packing φA ≈ 0.93. Apollonian
packings are created using particle insertion methods, which
circumvent physical constraints on particle motion and have
not been tested for mechanical stability, while in DEM sim-

ulations particles cannot move freely through constrictions
(pores) smaller than their diameters. Thus, in jammed con-
figurations, DEM-generated microstructures are expected to
contain larger pores, resulting in overall looser packings than
traditional Apollonian states.

The presence of the peak at intermediate α in Fig. 3 sug-
gests that obtaining the optimal packing density depends on
balancing the abundance of the large-on-large particle contact
pairs comprising the majority of the force-bearing backbone
with the amount of small particles filling in the gaps between.
This supposition was suggested by Furnas [3] and is qual-
itatively supported by the snapshots shown in Fig. 1(b) for
α = 1.0 and α = 0.2. For the former, it is apparent that large
particles regularly contact others of comparable size, but the
relative scarcity of small particles available to populate the
gaps results in a somewhat porous microstructure. For the
latter, contacts between large particles are rare because they
are embedded in a sea of small particles. Qualitatively similar
behavior is observed in bidisperse packings, with high- (low-)
α power-law disperse packings corresponding to low (high)
fractions of small particles in the bidisperse case [9].

To quantify this observation, the joint probability distri-
butions for contacting pairs of particles are computed as
determined by the particle diameters, Pc(D1, D2), as are
the associated conditional contact probability distributions,
Pc(D1, D2)/P(D = D1), for λ = 50. The results, ordered such
that D1 � D2, are shown in Fig. 4 for several α. From
Fig. 4(a), the most probable pair of sizes for contact for
α = 0.9 occurs when both particles have intermediate diam-
eters ∼5 − 7, close to the geometric mean of the maximum
size ratio,

√
λ. Conversely, for α = 0.3 most contacts exist

between pairs of particles with diameters near the smallest
value. Of course, since large particles are less abundant by
construction, contacts between them make up a negligible
fraction of the full set of contacts. Figure 4(b) shows the con-
ditional contact probability distributions, which better account
for large particle scarcity. Figure 4(b) shows that contacts
including a particle with D1 ∼ λ = 50 are more common than
might be otherwise expected (because these particles have
the greatest surface area) and, further, that the diameter of its
contact pair partner falls from D2 ∼ √

λ for high α to D2 ∼ 1
for low α. This result underscores the increasing importance
of small particles in stabilizing the packing as α decreases.
Minh and Cheng [22] pointed out that changes in large parti-
cle connectivity from being large-particle-dominated to being
small-particle-dominated may reduce the propensity of large
particles to fracture. If this hypothesis is correct, then our
results indicate that low-α packings should be less susceptible
to interparticle fracture than high-α packings.

Figure 4 does not show a strong signature distinguishing
results for the densest packing obtained for λ = 50 (α = 0.55)
from results for other α. From Fig. 3, the densest packing
is not obtained for contact probability distributions that are
large-large (or large-intermediate) pair dominated (e.g., α =
0.9 in Fig. 4) or large-small pair dominated (e.g., α = 0.3
in Fig. 4), but rather for α = 0.55, which from Fig. 4 lies
somewhere in between these two extremes. This observation
aligns with the behavior of bidisperse packings, which reach
optimal density through a saturation of large-large and small-
small contact pairs [3,9].
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(a)

(b)

FIG. 4. (a) Joint contact probability distributions for particle diameter pairs with D1 � D2 for the indicated α and λ = 50. (b) Conditional
contact probability distribution for the same set of systems.

In power-law disperse systems, the number of contacts for
each particle depends upon its size, but the behavior of the
mean number of contacts or coordination 〈Z〉 is less clear.
As noted in Sec. II D, rattler particles strongly influence the
calculation of 〈Z〉. However, the overall value of 〈Z〉 and a
rattlers-excluded value 〈Z〉nr can be computed separately [43].
For the latter, rattler particles are identified by determining
particles with fewer than three contacts and removed from the
list of contact pairs. Note that each rattler removed decrements
the total number of contacts for its contact pair partners, so the
removal process is done iteratively [44].

After removing rattlers, the mean coordination is recom-
puted for the reduced contact list and the smaller set of
nonrattler particles. The results of these analyses for all parti-
cles and only nonrattler particles are shown in Fig. 5(a) as a
function of α and for two separate values of λ. Considering
first the overall value of 〈Z〉, shown using filled symbols,
the results are smaller than Ziso for all α and both λ values.
The largest 〈Z〉 is found for α = 0.2, while 〈Z〉 is close to
zero for α = 1.0 for λ = 50. After removing rattlers, Fig. 5(a)
shows that 〈Z〉nr is approximately equal to Ziso for all α and
λ (shown as open symbols). Since the value of pa used in
our simulations is small, the corresponding nonrattler value
of �Znr ≡ 〈Z〉nr − Ziso is likewise small but nonzero: typical
values found in this article are �Znr ≈ 0.01 − 0.03.

The results in Fig. 5(a) imply that the effect of rattler par-
ticles is significant for every system examined. An oppositely
related quantity to 〈Z〉 is the rattler fraction, fr, the fraction
of all particles that are rattlers. Figure 5(b) quantifies how fr

increases with α. In particular, for α = 1.0 and λ = 50 only
a few percent of particles are nonrattlers; this system, with
rattlers removed, is reproduced in Fig. 5(c). Rattler fractions
of comparable magnitude were also observed in Ref. [16]
for η = α = 1.0. Indeed, the trends shown in Fig. 5 closely
mirror those of Fig. 5 in Ref. [16] and seem to be fairly
universal. Furthermore, the rattler fraction variation with α

shown in Fig. 5(b) is reminiscent of the discontinuous jump
in small particle rattler behavior observed at the Furnas peak
in frictionless, bidisperse packings [3,9]. In Sec. III B, the
implications of these results on the distribution of particles
that participate in the mechanical stability of the packing will
be examined.

While these results show that the mean nonrattler coor-
dination is a constant, the exemplar packings depicted in
Fig. 1(b) suggest that the number of contacts per particle,
Z (D), depends upon both particle diameter D and the under-
lying distribution of particle sizes (see Ref. [22] for a similar
calculation for frictional particles). The quantity Z (D) is cal-
culated by binning particles by size and computing the mean
number of contacts per particle in each bin. Rattler particles
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(b)(a) (c)(b)(a) (c)( )

FIG. 5. (a) Mean coordination per particle including rattlers 〈Z〉 (filled symbols) and without rattlers 〈Z〉nr (open symbols) for the
indicated values of the maximum particle size, λ. (b) Fraction of rattler particles for the same systems. (c) Reproduced α = 1.0 packing
from Fig. 1(b) after removing rattlers.

are excluded from this analysis to mitigate transient effects
resulting from their short-lived participation in contact pairs.
Results for λ = 50 are shown in Fig. 6. The figure demon-
strates the scaling of Z − 3, i.e., the mean excess number of
contacts over the three contacts required for mechanical stabil-
ity, plotted against (D/λ)2; plotted in this way, the relationship
is linear and corresponding linear fits to data for large (D/λ)2

were computed (dashed lines). Note that (D/λ)2 = 0.01 cor-
responds to D = 5. The relationship Z − 3 ∼ D2 exhibits the
same D2 scaling with diameter as the particle surface area
and represents a slightly faster scaling than was observed in
Ref. [22] for smaller, frictional particles. It is clear from the

FIG. 6. Mean excess number of contacts per particle than are
required for mechanical stability (Z = 3) as a function of (D/λ)2 for
the indicated α and λ = 50. Rattler particles are omitted from these
results. Dashed lines are linear fits to the symbols of matching color.
Inset: The fraction of nonrattler particles fc participating in exactly c
contacts.

linear fits in Fig. 6 that the prefactor decreases with increasing
α, an intuitive result given that fewer intermediate and large
particles than small particles can be placed in the available
solid angle of any central particle [10,45]. From Fig. 4(b), this
exclusion of solid angle inherent to large-large contact pairs
has strongest significance for high α, resulting in the lowest
overall maximum per-particle contact count. Linear fits also
worked for both λ = 20 and λ = 100 (not shown), though the
prefactors generally depended upon λ for α � 0.8.

The results in Fig. 6 are striking given that 〈Z〉nr is ap-
proximately six, while Z (D) for the largest particles is at least
an order of magnitude larger. The inset of Fig. 6 shows the
fraction of nonrattler particles fc participating in exactly c
contacts, which is peaked at c = 4 and essentially indepen-
dent of α. This low coordination value is responsible for the
deviations away from linear scaling for small (D/λ)2. Note
that this analysis distinguishes between the discrete contact
count c and the bin-averaged quantity Z (D). Similar results
for fc were reported in Ref. [15] for smaller size dispersity
and different underlying particle size distributions. The range
3 � c � 10 encompasses between 90–95% of all nonrattler
particles for each α but only accounts for roughly 80% of
〈Z〉nr = ∑

c c fc. The remaining contributions to 〈Z〉nr come
from the high, but rare, contact participation counts of large
particles.

B. Nonrattler particle distributions

Rattler particles contribute to the overall volume fraction
and density of the jammed packing, but have no bearing
on its mechanical stability. Large particles are crucial to the
force-bearing network, while sizable fractions of the small
particles are rattlers. This suggests that the input particle
size distribution differs from the distribution of particles in
the force-bearing network. This section examines how the
shape of the input particle size distribution P(D) dictates
the resultant distribution of nonrattler particles, Pnr (D), and
is motivated by considering the volume fraction contributed
solely by nonrattler particles φnr, shown in Fig. 7. This
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FIG. 7. Volume fraction φnr contributed exclusively by nonrattler
particles for the indicated λ.

measure is akin to the mechanical void ratio in the geophys-
ical literature [46,47]. In contrast to the clear dependence of
the overall particle volume fraction φ on λ shown earlier in
Fig. 3, Fig. 7 shows that φnr is independent of λ (for λ � 20)
at high α. While not shown here, results for α = 1.5 and
α = 2.0 also collapsed for λ � 8. In this shallow power-law
limit (β → 0, α → 4.0), λ must become irrelevant. As α

grows, φnr gradually approaches the equivalent monodisperse
packing value with rattlers removed, φmono

nr ; for the constant-
pressure protocol and averaged over five realizations each
with 105 monodisperse particles, we obtained φmono

nr ≈ 0.629,
compared to the overall packing density φmono ≈ 0.639.

Several interesting trends are apparent for α → 0.3 in
Fig. 7. First, φnr levels off at low α, and second, the plateau
values steadily increase with λ. The λ � 20 data in Fig. 7
suggest that increasing λ may shift the collapse of φnr to
progressively smaller α. Since reducing α corresponds to in-
creasing the relative abundance of small particles compared
to large particles, a plateau in φnr implies that there may be
diminishing returns to adding more small particles as most
become rattlers. However, adding smaller and smaller par-
ticles, i.e., increasing λ, does lead to denser force-bearing
networks in the plateau regime. It is interesting that while
α ∼ 0.55 − 0.6 lead to the densest overall packings, the force-
bearing components of such packings are less dense than
those for smaller α. In most cases, the volume fraction lost
when rattlers are removed, φ − φnr, is smaller than 0.1, with
the largest shifts occurring for α = 1.0. This is an indication
that while rattlers may constitute a large fraction of the total
number of particles, they typically only account for a small
fraction of the total particle volume.

The removal of rattler particles permits the identification
of the nonrattler particle size distributions Pnr, the distribu-
tion governing the force-bearing backbone. Results for Pnr

obtained using λ = 50 are shown in Fig. 8. For each α, the tail
of the distribution maintains its original power-law character,
while the probability of retaining small particles is reduced,
with substantial dependence on α. As α → 1.0, the most prob-

FIG. 8. Distributions of nonrattler particles for the indicated α

and λ = 50. For each curve, the power-law behavior at large D
is unchanged from the initial particle size distribution, with expo-
nent β = α − 4. The limiting cases of such power-law scalings are
indicated.

able remaining particle diameters are close to
√

λ [e.g., refer
to the α = 1.0 packing image in Fig. 5(c)], while for α → 0.2
it is clear that the smallest nonrattler particles remain the most
probable. Indeed, aside from the exponent of the power-law
tail, only a small amplitude change for D ∼ 1 differentiates
α = 0.2 from α = 0.55, the densest overall packing. The re-
sults shown in Fig. 8, taken together with the context given by
Fig. 5(b) and Fig. 7, imply that high-α packings do not derive
mechanical stability from small particles, while particles of all
sizes are necessary to stabilize low-α packings.

The collapse of φnr with increasing λ for high α indicates
that in such cases the underlying distributions of nonrattler
particles should have similarities. Rather than considering the
nonrattler particle size distributions themselves, this analysis
focuses on the fraction of nonrattler particles F (x) that are
larger than x. This quantity has the advantages that it varies
monotonically from 1 to 0, and Eq. (2) dictates how it should
scale with D away from the endpoints. To compare data for
different λ on an equal basis, the particle diameters are nor-
malized by λ such that the scaled diameters fall in the domain
1/λ � x = D/λ � 1. Results for F (D/λ) are shown in Fig. 9
for several α and a wide range of λ. For each data set, F (D/λ)
is unity until the smallest nonrattler particle is encountered,
beyond which F (D/λ) drops to 0 in a manner that exhibits
the expected power-law behavior over narrow ranges of D/λ

and accelerates as D/λ → 1. The power-law regime broadens
as α increases, consistent with the results depicted in Fig. 8.

The most striking result shown in Fig. 9 is that F (D/λ)
is identical for all λ for α = 1.5, signifying that the shape
of the nonrattler particle size distribution is constant with
respect to increases in λ beyond λ = 8. Similar results were
obtained for larger α (not shown). However, as α falls to
1.0 and lower, data for the smallest λ increasingly deviate
from the other curves until all data sets are clearly distinct
for α � 0.7. In cases where F (D/λ) collapses, the constant
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FIG. 9. Fraction of nonrattler particles with diameters larger than D/λ. The dashed black lines and printed labels M mark the value of D/λ

for which F (D/λ) = 0.99 as estimated from the λ = 100 data. The inset to the upper left panel plots computed values of M for 0.7 � α � 2.0
that were obtained for λ = 100. Note that M was computed for several additional values of α for which we omit plots of F (D/λ) data.

value of D/λ determining the onset of F < 1 means that there
is a reduction of the effective width of the non-rattler parti-
cle size distribution, i.e., λ → λ∗, with λ∗ � λ. This results
from the removal of rattler particles with diameters smaller
than a threshold D∗

min > Dmin = 1. In what follows, the onset
value is referred to as the magnification, M ≡ 1/λ∗ = D∗

min/λ,
which can be estimated for different α. Specifically, using the
λ = 100 data shown in Fig. 9, M is determined by extracting
the onset value of D/λ for which F < 0.99. Note that there
is ambiguity in the precise determination of M based on the
threshold F value—for example, for α = 1.5, both the λ = 8
and λ = 10 data nearly collapse on top of the larger λ data
despite being smaller than the nominal λ∗ ≈ 10.5. However,
our tests showed that changes in the estimated magnifications
are sharper for higher F thresholds and the estimates of M
we obtained for our threshold choice are sufficient for the
discussion here.

The estimated values of M are given in the corresponding
panels of Fig. 9 for α � 0.7 and indicated with dashed black
lines. In addition, an inset plotting M(α) estimated from the
λ = 100 data is shown in the α = 0.6 panel, and includes data
for several α that are not shown in Fig. 9. In essence, the
definition of M permits us to determine a criterion, given by
1/λ � M, for which the nonrattler particle size distribution
is independent of λ. For systems satisfying this criterion,
particles with D < D∗

min are almost always rattlers. Moreover,

D∗
min replaces Dmin = 1 as the unit of length of the system; as

an intensive quantity, φnr is also independent of λ when M is
constant. Note that since the tail of the nonrattler particle size
distribution is unchanged from the original power law, it is still
possible to collapse F for each α, provided that a λ-dependent
rescaling factor is used. In such cases, however, φnr does not
collapse.

To help contextualize these results, the two separate limits
of M = 1 and M = 1/λ can be defined. The former is relevant
for high-α systems that approach the limit of monodisperse
systems, which is defined by a singular length scale set by the
particle diameter. The latter occurs in cases where the smallest
particles are necessary for ensuring mechanical stability of the
packing. From the trend depicted in the inset of Fig. 9, the
M = 1 limit is likely slowly approached for α > 2.

The results in Fig. 9 show that the force-bearing compo-
nent of the packing is invariant with respect to changes in
λ provided that the α-dependent scale λ∗ is exceeded. From
this standpoint, no additional benefit is gained by adding suc-
cessively smaller particles once λ � λ∗. However, the overall
properties and structure of the packing, including the pack-
ing density, still depend on the full particle size distribution.
Indeed, the relatively low density of the force-bearing com-
ponent suggests that the rattler particles play a significant
role in determining the final configuration, perhaps by re-
stricting the intermediate configurations that the force-bearing
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component can adopt. Intriguing avenues for possible future
study include successive, repeated jamming and removal of
rattler particles to isolate the limiting particle size distribution,
and in designing particle size distributions for use in con-
structing the densest possible packings that can be obtained
via compaction protocols. In addition, DEM simulations of
frictional and/or cohesive particles with large size dispersity
have not yet been systematically performed but are crucial to
connecting simulation results with real-world applications.

IV. CONCLUSION

We performed large-scale 3D DEM simulations to study
the packing properties of power-law disperse spherical par-
ticles. This article considered a wide range of power-law
particle size distributions, varying the range of particle sizes
and the exponents characterizing the power laws.

At fixed particle size ratio, the results showed that the
densest overall packings were obtained for power-law par-
ticle size distributions that achieved mechanical stability
while balancing contacts between pairs of large-large and
large-intermediate particles with pairs of small-small and
large-small particles. Distributions containing too many large
particles do not need small particles for mechanical stability,
and so most small particles were rattlers. Conversely, distri-
butions with too many small particles produce packings that
are dominated by large-small contact pairs, and so do not
generate contacts between pairs of particles with diameters
in the intermediate size classes. Further, despite the strong
dependence of the mean coordination and rattler fraction on
the CVF exponent, the mean coordination of nonrattler parti-
cles was close to the isostatic value, while the mean number
of contacts per nonrattler particle scaled quadratically with
particle diameter.

Considering only nonrattler particles, volume fractions of
nonrattler particles for input distributions with high α were in-
dependent of size dispersity for λ larger than an α-dependent
cutoff value λ∗, while for low α the nonrattler volume frac-
tion was insensitive to α. In the former case, the fraction
of nonrattler particles with normalized diameters larger than
D/λ was independent of λ, provided that λ � λ∗. This result
signifies a separate effective length scale of the force-bearing
network, as determined by α. For the latter case, the results
indicated that increasing the proportion of small particles has
little effect on the force-bearing component of the packing,
while adding smaller particles tended to improve both the
overall and nonrattler packing densities.

The results presented here provide insight into the internal
microstructure of large size dispersity particle packings and
broaden our understanding of the relationship between fea-
tures of the overall packing and its force-bearing backbone. In
turn, the understanding gleaned from studying these systems
may provide a pathway to optimizing the properties, mechan-
ical and otherwise, of designed particle packings.
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APPENDIX: MULTINEIGHBORING DETAILS AND
PERFORMANCE

To simulate systems with large disparity ratios λ in particle
sizes, we leveraged contact detection algorithms optimized for
highly disperse systems. In this Appendix, we focus on dense,
homogeneous systems and derive the leading order compu-
tational costs in λ for three methods. First, we describe a
typical approach for monodisperse systems [28,29]. Next, we
consider two additional methods designed for highly disperse
systems: an older method by in ’t Veld et al. [30] and a more
recent technique by Ogarko and Luding [31] and Krijgsman
et al. [48] that was extended and ported to LAMMPS by
Stratford et al. [38] and Shire et al. [32]. Our arguments
will highlight a fundamental advantage of the newest method.
A brief description of each approach is included although
further details can be found in their respective references.
Finally, we briefly describe changes in our implementation
of the newest method in LAMMPS aimed at continuous
particle size distributions and provide some benchmark data
for the power-law-distributed systems studied in the main
text. Before calculating contact forces, particle-based simula-
tions often construct a Verlet neighbor list which contains all
pairs of interacting particles [28,29]. In LAMMPS, a link-cell
method is used where particles are spatially binned onto a grid
with a bin size � in a process that takes O(NT) time, where
NT is the total number of particles. Particles use this binning
to efficiently generate a list of potential neighbors consisting
of particles within their own bin and in other nearby bins
that are within the interaction distance. This set of bins that
needs to be searched is known as a stencil. A distance is then
only calculated between these candidate neighbors as opposed
to all ∼N2

T pairs of particles in the system. In the default
algorithm in LAMMPS, labeled default, � is approximately
half of the maximum interaction distance such that the stencil
only includes a small number of adjacent bins [39,49]. This
method is very efficient for nearly monodisperse systems.

To illustrate how this algorithm fails at large λ, we consider
a d-dimensional, bidisperse packing of NL large particles and
NS small particles with diameters DL and DS, respectively,
and a volume fraction of small particles fS ≡ NSDd

S/(NSDd
S +
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FIG. 10. Relative cost of constructing a neighbor list compared
to a single force evaluation for 3D binary packings near jamming
with fS = 0.5 and the indicated values of λ and NL using the default
(green), multi/old (red), and multi (blue) algorithms. Tests were run
on a single processor. The dashed line represents λ3 scaling. Note
that typically there are many force evaluations between neighbor
list builds in LAMMPS and this reported value does not represent
a typical ratio over many time steps. For perspective at λ = 200,
building a single neighbor list took less than nine seconds using
multi but over 72 hours using multi/old. Builds were impractically
long to measure using the default method at λ > 100 or multi/old at
λ > 200.

NLDd
L). As in the main text, one can treat DS = Dmin = 1 such

that DL/DS = λ. We mainly focus on a fixed volume fraction
0 < fS < 1 such that NS = NLλd fS/(1 − fS) and NT ≈ NS 	
NL at large λ, but other cases are briefly discussed at the
end of the Appendix. In the default method, the bin size
� is set by DL such that each bin contains Nparticles/bin ∼
Dd

L/Dd
S = λd particles and the stencil only contains a fi-

nite number Nbins/stencil of nearby bins. Therefore, there are
NTNparticles/binNbins/stencil candidate neighbors and calculating
their distances is O(NLλ2d ). This cost is greater than binning
particles and dominates neighbor list construction for large λ.

To put this scaling in context, one can compare it to the to-
tal number of contacts in the system or the computational cost
of calculating forces. In a jammed system, each small particle
can only have a finite number of contacts independent of λ

while each large particle can have up to ∼Dd−1
L /Dd−1

S = λd−1

contacts. Therefore, the total number of contacts in the sys-
tem scales as NS + NLλd−1 ∼ NS ∼ NLλd . This implies that
the cost to build the neighbor list using the default method
dominates the total simulation time and simulations become
prohibitively expensive with increasing λ. This disparity is
seen in Fig. 10 for d = 3 and fS = 0.5, where the ratio of
time to construct the neighbor list versus the time to calculate
forces grows as λ3.

To reduce costs, an alternate algorithm was implemented in
LAMMPS by in ’t Veld et al. [30]. We refer to this algorithm
by its current name in LAMMPS, multi/old. The multi/old
method adjusts spatial binning based on a particle’s type, a

categorization of particles that is used to set interactions pa-
rameters including the distance cutoff for non-DEM particles.
In this approach, the size of a bin is set by the smallest interac-
tion length DS such that Nparticles/bin is constant and no longer
grows with λ. Therefore, a different stencil is needed for
each combination of particle types. These stencils extend out
to the order of DL/DS = λ bins for large-large pairs, (DL +
DS)/DS ∼ λ bins for large-small pairs, and a constant number
of bins for small-small pairs. While this method reportedly
accelerates highly disperse simulations up to a factor of 100
for λ = 20 [30], it does not address the fundamental scaling
with λ due to the search for large-small neighbors. Each small
particle searches Nbins/stencil ∼ (DL/DS)d = λd bins within the
large-small stencil to find potential large neighbors, where
most bins will not contain a large particle, such that O(NSλ

d )
or O(NLλ2d ) operations are still performed. This scaling, with
a smaller prefactor than default, is seen in Fig. 10. Practically,
we find simulations become intractable around λ of order 10.

To address this shortcoming, an additional twist described
in Refs. [31,38] uses a hierarchy of binning grids, one for
each particle type in the initial LAMMPS implementation by
Stratford et al. [38]. This method is referred to as multi, re-
flecting its current name in LAMMPS, and includes a separate
binning grid for each particle type with a bin size � set by
the same-type interaction distance. In a binary system, � is
set by DS for small particles and DL for large particles such
that Nparticles/bin does not depend on λ, similar to multi/old.
The key difference is that each particle looks for same-type
neighbors using its own set of bins while only small particles
look for large neighbors using the large bins. Large particles
do not search for small neighbors. Therefore, Nbins/stencil is also
independent of λ and construction costs are proportional to
NTNparticles/binNbins/stencil ∼ NT ∼ NLλd , equivalent to the force
calculation. This scaling is demonstrated in Fig. 10 where
the time to construct a neighbor list normalized by the time
to calculate forces has no significant dependence on λ up to
λ = 300 for multi. The only factor preventing simulations at
larger λ was the growing number of particles in the system,
already reaching NT = 27 million at λ = 300.

Here, we considered the case of fixed fS, although one
could consider a value of fS that grows or shrinks with λ. If
fS grew with λ approaching the limit of unity, then NT ∼ NS

would grow faster than λd , e.g., as λd+ε. For multi, Nparticles/bin

and Nbins/stencil would still both be finite such that neighbor
costs would still grow as NT ∼ λd+ε. This increase in cost
would mirror an increase in cost to calculate forces simply due
to having more particles. In contrast for default, Nparticles/bin

would still scale as λd such that neighbor list construction
would be O(NTλd ) or O(λ2d+ε ) and still dominate simulation
time. In the opposite limit, one could consider a shrinking
fS exemplified by the extreme case of NS = 1 where large
particles effectively only have a finite number of contacts with
other large particles. Again, Nparticles/bin and Nbins/stencil would
be finite in multi but now only large-large lookups would be
relevant such that building a neighbor list would be O(NL),
equivalent to calculating forces. For default, the one small
particle would be irrelevant and building the neighbor list
would resemble the O(NL) process for a purely monodisperse
system, identical to the scaling of multi although with reduced
overhead. Therefore, in all of these cases, the scaling of multi
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FIG. 11. Time in seconds to build a single neighbor list per
particle as a function of the number of collection intervals for
jammed packings of power-law-distributed grains for the indicated λ.
Calculations were performed on a single processor. Open symbols:
β = 3.0 (α = 1.0); filled symbols: β = 3.6 (α = 0.4).

will always match that of a force evaluation and will either
scale better than or equivalent to default, although prefactors
depend on the specific system.

For continuous particle size distributions, increasing the
number of collection intervals with increasing λ generally

improves performance as particles are binned using a bin size
� closer to their actual diameter. These savings grow until the
overhead of having additional collection intervals exceeds the
benefit. This is seen in Fig. 11 where the cost of neighbor list
construction is plotted as a function of the number of linearly
spaced intervals for a variety of jammed systems with differ-
ent power-law size distributions. The optimal number of bins
and their spacing ultimately depends on the specific system.
It is worth noting that as the optimal number of collection
intervals continues to grow with λ, the computational costs
of building a neighbor list could begin growing faster than
the force evaluations with λ as more binning grids need to
be created and searched. Practically, we have not yet found
this to be a limitation, particularly since the optimal number
of bins only reaches ∼10 for the systems considered here.
Similar studies on the optimization of power-law-distributed
particle sizes were also performed in Ref. [48].

For this article, we expanded the original multi-
implementation of Stratford et al. [38] to fully integrate it with
LAMMPS and added the method to the public distribution
of LAMMPS. As the particle type in LAMMPS is intended
to represent material properties such as moduli or friction
coefficients and not necessarily the size of a particle, we
also generalized their implementation and provided the option
for users to select an arbitrary set of particle size intervals
or collections independent of particle types. This approach
more closely reflects the original discussion of the method by
Ogarko and Luding [31] and helps streamline optimization of
neighbor list construction for continuous particle size distri-
butions.
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