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Vector formalism for active nematic liquid crystals in two dimensions
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Specific features of two-dimensional nematodynamics give rise to shortfalls of the tensor representation of the
nematic order parameter commonly used in computations, especially in theory of active matter. The alternative
representation in terms of the vector order parameter follows with small adjustments the classical director-based
theory, but is applicable to 2D problems where both nematic alignment and deviation from the isotropic state are
variable. Stability analysis of nematic alignment and flow is used as a testing ground. A director-based analysis
demonstrates a shortfall of the standard theory, which does not ensure relaxation to equilibrium in a passive
system. It also demonstrates the inadequacy of the director-based description, which misses a stabilizing effect
of perturbations of the modulus ensuring stability of a passive system on scales far exceeding the healing length.
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I. INTRODUCTION

Studies of active nematics commonly deal with 2D pat-
terns in thin layers with tangential alignment on containing
walls [1], as well as in thin elastic sheets [2] and cellular
layers [3,4]. Tensor representation is commonly viewed as
necessary when not only the orientation but the modulus of
the nematic director is variable. The tensor description has
been pioneered by Doi [5] and extended to include spatial
inhomogeneities [6] and interactions between the nematic
alignment and flow [7–9]. The tensor order parameter Qi j =
�(nin j − δi j/d ) contains the modulus � and is made traceless
by adding the last term, where d is the number of dimensions.
The immediate advantage of the tensor order parameter over
the director n is, besides the presence of the modulus, its
invariance to rotation by π stemming from its dependence on
twice the inclination angle.

Even though computational models are commonly re-
stricted to 2D, they are often based on the Beris-Edwards 3D
model [7] adjusted to 2D just by setting d = 2 in the above
definition. In this way, one does not take advantage of substan-
tial simplifications brought about by a lower dimensionality.
Moreover, as argued below, a simpler approach based on a
vector order parameter not only allows for full description of
the nematic state in 2D, but has a preference over the tensor-
based theory by avoiding the loss of distinction between splay
and bend elasticity.

II. SPECIFICS OF TWO DIMENSIONS

A. A missing elastic constant

The tensor-based Landau–de Gennes Lagrangian (LdGL)
in 2D is

L = −α0
[
Qi jQi j + 1

2 (Qi jQi j )
2
] + Ld, (1)

where the coefficient at the fourth-order term is chosen to set
the value of the modulus � to unity in a perfectly aligned

nematic; summation over repeated indices is implied through-
out. The two constituents of the distortion Lagrangian Ld are

L1 = 1
2 K1|∂kQi j |2 = 1

4 K1(|∇q1|2 + |∇q2|2),

L2 = 1
2 K2|∂ jQi j |2 = 1

4 K2[(∂1q1 + ∂2q2)2 + (∂2q1 − ∂1q2)2].
(2)

Another possible construction, |ε jk∂kQi j |2, where ε is the
antisymmetric tensor, leads to the expression identical to L1.
Varying the distortion energy Fd = ∫

Lddx defines the molec-
ular field tensor

hi j = −∂L/∂Qi j + ∂kπi jk, πi jk = ∂L/∂ (∂kQi j ). (3)

The tensor Q is conveniently parametrized as

Q = 1

2

(
q1 q2

q2 −q1

)
,

q1 = � cos 2θ,

q2 = � sin 2θ,
(4)

where θ is the inclination angle and � =
√

q2
1 + q2

2 . The
molecular field is a vector when expressed through the vector
q but still based on the tensor LdGL

hk = −∂L/∂qk + ∂iπik, πik = ∂Ld/∂ (∂iqk ). (5)

Two independent constants are sufficient in 2D, but ex-
tra terms in L2, ∂1q1∂2q2 − ∂2q1∂1q2 vanish upon variation,
so that they do not contribute to the molecular field, and
its distortion part is expressed as hd

i = 1
2 K∇2qi with K =

1
2 (K1 + K2) or, equivalently, hd

i j = K∇2Qi j . Similarly, in 3D
there are only two independent elastic constants in the leading
order. A third constant could be only obtained by adding a
higher-order term Qi j∂iQkl∂ jQkl . It does not look contentious
that different terms in the classical director-based expression
of the distortion energy, (div n)2, (n · curl n)2, (n · curl n)2

contain different powers of the n; but the tensor order pa-
rameter, unlike n, has a physical reality, and it is an apparent
drawback that elastic anisotropies cannot be fully captured in
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the framework of a standard Landau model restricted to the
fourth combined order in Q and spatial derivatives.

Most commonly, the “one-constant approximation” is used
in simulations, assuming all elastic coefficients to be equal.
Since LdGL is, in any case, a crude approximation allowing
for qualitative insights, equality of bend and splay elasticities
may appear to be not quite disturbing: the distinction would
be certainly restored in higher orders. However, this turns out
to be an artifact of the tensor formalism in 2D.

B. Vector nematodynamics

The tensor Q can be constructed by merging two vec-
tors, q/

√
2 and q′/

√
2, where q′

i = εi jq j . Hence, the vector
q, which is invariant under rotation by π , alone carries all
necessary information, but the Q-tensor formed by this merger
can be brought back whenever a linear tensor expression is
called for. It might be disturbing that q, as a vector, is odd
under parity inversion, but we shall see that it does not affect
the relations derived below. The important advantage of the
vector-based description is restoring the distinction between
bend and splay elasticities. In 2D, curl q is a pseudoscalar,
and LdGL is expressed, without involving higher orders of q,
as

L = − 1
2α0|q|2(1 − 1

2 |q|2) + 1
2 K1(div q)2 + 1

2 K2(curl q)2,

(6)

where, for the sake of similarity to the director-based descrip-
tion, the elasticities Ki are multiplied by two. This leads to the
molecular field

h = α0q(1 − �2) + hd, hd
k = ∂iπik,

hd
1 = K1

(
∂2

1 q1 + ∂1∂2q2
) + K2

(
∂2

2 q1 − ∂1∂2q2
)
,

hd
2 = K1

(
∂2

2 q2 + ∂1∂2q1
) + K2

(
∂2

1 q2 − ∂1∂2q1
)
, (7)

or, setting K = 1
2 (K1 + K2), K ′ = 1

2 (K1 − K2),

hd
1 = K∇2q1 + K ′[(∂2

1 − ∂2
2

)
q1 + 2∂1∂2q2

]
,

hd
2 = K∇2q2 + K ′[(∂2

2 − ∂2
1

)
q2 + 2∂1∂2q1

]
. (8)

The simple expression hd = K∇2q is obtained at K ′ = 0, but
generally this constant does not vanish. This kind of rank
reduction is specific to 2D, since the bend and twist terms in
3D would require a higher power of q, but it testifies of an
advantage of the vector, compared to tensor, formalism in 2D.

Constructing the Lagrangian based on the vector q in
lieu of the Q-tensor enables extending to 2D systems with
a variable modulus the classical Ericksen-Leslie (EL) for-
malism [10] with minimal adjustments. As in the standard
director-based theory, the acceleration of the fluid is deter-
mined by the generalized Navier–Stokes equation

ρDtvi = ∂ j
(
σ s

i j + σ d
i j − pδi j

)
, (9)

where Dt = ∂t + v · ∇ denotes the substantial derivative ac-
counting for advection with flow velocity v, σs is the viscous
stress tensor, σ d

i j = −πik∂ jqk is the distortion stress, ρ is den-
sity, and p is pressure. The dynamics of the order parameter q
stems from the change of entropy S at a constant temperature

T , which is is expressed in an incompressible fluid as

T Dt S =
∫ (

σ s
i j si j + h · N − p∇ · v

)
dx, (10)

where pressure serves as a Lagrange multiplier enforcing the
continuity equation ∇ · v = 0 and si j is the shear tensor, fur-
ther separated into the symmetric and antisymmetric parts:

si j = 1
2 (∂iv j + ∂ jvi ), �i j = 1

2 (∂iv j − ∂ jvi ) = 1
2εi jω,

(11)

where ω = ∇ × v is the vorticity pseudoscalar. The vector N
represents the rate of the advection and rotation of the order
parameter by fluid flow. At this point, a slight modification is
due. Rotation does not affect the modulus, and the distortion
energy does not change when both the nematic alignment and
the fluid as a whole are rotated with the same angular velocity.
Since q rotates with twice director’s speed, the director-based
energy-conserving counterpart to a rotation ∂t xi = ωεi jx j is,
rather than ∂t ni = ωεi jq j in the EL formalism, is

∂t qi = 1
2ωεi jq j, ∂t xi = ωεi jx j . (12)

Accordingly, the antisymmetric part of σs is halved to 1
4 q × h.

We also take note that, since the 2D vorticity is a pseudoscalar,
the expression ω × q makes no sense in 2D, and the change
of q due to advection and rotation is presented by vector N =
Dt q − 1

2� · q.
The contributions to the entropy source are presented as

products of fluxes and conjugate forces with coefficients hav-
ing the dimension of viscosity. Based on Eq. (10), σ s

i j is
identified as the force conjugate to si j and h as the force
conjugate to N. The forces are tied to the fluxes by linear
relations with coefficients having the dimension of viscosity
arranged into tensors of an appropriate rank. In the EL theory,
higher-rank tensors accounting for viscous anisotropies are
composed by adding higher powers of n with respective orien-
tational viscosities. A similar construction with higher powers
of q adds higher powers of the modulus. The lowest-order
expression is

σ s
i j = μsi j + 1

2γ ′
2(qiNj + q jNi ), (13)

hi = γ2q jsi j + γ1Ni, (14)

where μ is the common dynamic viscosity. The Onsager
reciprocity relations determine the relation between the pa-
rameters γ ′

2 = γ2. The dynamic equations of the vector q,
which is the counterpart of the director-based equation

Dt ni = �i jn j − χsi jq j + �hi, (15)

follows from Eq. (14):

Dt qi = 1
2�i jq j − χsi jq j + �hi. (16)

Here � = 1/γ1 is the mobility parameter and χ = γ2/γ1 is
the dimensionless alignment parameter, which determines
the response of the director to local shear. The system
Eqs. (9), (14), (16) describes the combined evolution of the
order parameter and flow. In the theory of active dynamics, the
sum σs + σd is called passive stress, expressed when based on
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n or q as

σ
p
i j = 1

2χ (nih j + hin j ) − 1
2 (nih j − hin j ) + πik∂ jnk, (17)

σ
p
i j = 1

2χ (qih j + hiq j ) − 1
4 (qih j − hiq j ) + πik∂ jqk . (18)

III. STABILITY ANALYSIS

A. Instabilities in the director-based theory

We will further apply the vector-based formalism to the
analysis of instabilities caused by the feedback loop between
advection-induced distortions of a nematic alignment field
and flow it generates [11]. In order to emphasize the role of
perturbation of the modulus, we start with the analysis in the
framework of the EL theory, elaborating upon the numerical
study in a confined geometry [12].

Onsager reciprocity relations do not apply to active media,
so that, strictly speaking, the entire nematodynamic theory
based on these relations should be revised. Short of going
this far, theorists commonly add the active stress σ a, which
is expressed through the director as σ a

i j = −ζnin j with the
parameter ζ positive for extensile and negative for contrac-
tile activity. This expression, taken literally, is problematic,
since entropy-changing contributions to the stress tensor have
to be odd under time reversal [13]. The contradiction can
be resolved by letting ζ = dt c, where c is the concentration
of an active chemical, such as ATP in intracellular pro-
cesses. Then the term becomes odd under time reversal, as
required, and can shift entropy either way. If there is no
feedback of alignment on the active chemical and its con-
sumption rate is constant, chemistry may remain behind the
scenes.

We first test a passive system, where a perfectly ordered
state is expected to be stable. However, even in this case, there
are two questions to decide: whether perturbations of a per-
fectly aligned state may cause a deviation of the modulus from
unity and whether arbitrary values of the alignment parameter
are admissible. We consider perturbations of an ordered state
with |n| = 1 in an unbounded domain. In view of the circular
symmetry with respect to the unperturbed alignment, it is
sufficient to view the problem in 2D: this is the case when
free-flow description is applicable. A constant background
velocity is irrelevant due to Galilean invariance, and can be
eliminated by transforming to a comoving frame. The un-
perturbed alignment direction is irrelevant in an unbounded
domain, and can be chosen along the x1 coordinate, so that
n0

1 = 1, n0
2 = 0.

In the leading order, only a small perturbation εn2 does
not perturb the modulus. We expand it in the Fourier series
n2 = εn̂2eik·x where k = k{cos ϕ, sin ϕ} is the wave vector.
The molecular field, defined by the distortion part of Eq. (7)
with q replaced by n, is transformed as

ĥ1 = − 1
2 k2n̂2(K1 − K2) sin 2ϕ,

ĥ2 = −k2n̂2(K1 sin2 ϕ + K2 cos2 ϕ). (19)

The distortion stress vanishes upon linearization, and the
passive stress Eq. (17) is linearized and transformed

as

σ̂
p
11 = 1

2χ ĥ1, σ̂
p
12 = 1

2 (χ + 1)̂h2,

σ̂
p
21 = 1

2 (χ − 1)̂h2, σ̂
p
22 = 0. (20)

It is advantageous to express the perturbation velocity ṽ
through the stream function, ṽi = εi j∂ j�, expand the latter as
� = ε�̂eik·x, and take the curl of Eq. (9). The contribution of
passive stress is expressed then as εik∂k∂ j σ̂

p
i j , which leads to

the Fourier-transformed hydrodynamic equation

(ρDt + μk2)�̂ = − 1
2 k2n̂2[(χ + 1)K1 sin2 ϕ

+ (χ − 1)K2 cos2 ϕ]. (21)

The transformed linearized Eq. (15) also defines dynamics of
n̂1:

Dt n̂1 = �ĥ1 + 1
2χ�̂ sin 2ϕ,

Dt n̂2 = �ĥ2 − 1
2 �̂(1 + cos 2ϕ). (22)

Any nonzero n1 causes deviation of the modulus from unity.
However, the equations of the other two variables do not
depend on n̂1. Therefore the director-based analysis is still
justified as long as the alignment is stable, but an instability
excites n1 and changes the modulus as well.

Stability is determined by the eigenvalues λ of the matrix
J defining the dynamics of �̂, n̂2. Its elements are

J�� = −μ, Jn� = − 1
2 (1 + χ cos 2ϕ),

J�n = − 1
2 [(χ + 1)K1 sin2 ϕ + (χ − 1)K2 cos2 ϕ],

Jnn = −�(K1 sin2 ϕ + K2 cos2 ϕ)]. (23)

Common powers of k are canceled here in each row, so
that if instability arises, it happens simultaneously on all
wavelengths. The trace of J is always negative, so that an
oscillatory instability is excluded, and the determinant is

K1 sin2 ϕ[μ� − 1
2 (χ + 1)(1 + χ cos 2ϕ)]

+ K2 cos2 ϕ[μ� − 1
2 (χ − 1)(1 + χ cos 2ϕ)]. (24)

It turns out that stability is not warranted in the entire para-
metric domain. This can be seen most clearly at K1 = K2 = K
when the determinant simplifies to

K
[
μ� + 1

4χ2(1 + cos 4ϕ) − 1
2

]
. (25)

The part of the determinant excluding μ� is negative in the
flow-tumbling regime at |χ | < 1 when the director contin-
uously rotates under shear, but also at |χ | > 1, when the
director tends to align at a certain angle to the flow direction,
negative values persist at |χ | < 2 at ϕ close to ±π/2. A per-
fectly aligned stationary state is always stable only at �μ > 2.
This should be impossible in a fully dissipative system, but
is not ruled out since substituting the dynamic equations of
the director and stream function into the equation of entropy
change Eq. (10) mixes variables odd and even with respect to
time reversal [14]. This computation confirms that the stan-
dard theory [10] does not ensure relaxation to equilibrium. It
also demonstrates inadequacy of the director-based descrip-
tion: we shall see below that perturbations of the modulus
serve as an efficient stabilizing factor.
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Active stress adds to the hydrodynamic equation the term
1
2 k2ζ n̂2 cos 2ϕ containing a lower power of k, so that it dom-
inates the determinant at long scales, and an arbitrarily small
activity causes instability at some perturbation angle ϕ. The
leading term of the determinant flips its sign when cos 2ϕ

equals zero or −χ−1, so that both extensile and contractile
activity causes instability at some perturbation angle. This is
corrected in a realistic case of a confined geometry.

A geometry allowing for perturbations at any angle is the
surface of a cylinder with the radius l . Then the largest avail-
able wave number is k = l−1 at ϕ equal to the angle between
the axis of the cylinder and the unperturbed orientation of the
director, and the instability threshold is

ζ = l−2

cos 2ϕ

[
4μ�(K1 sin2 ϕ + K2 cos2 ϕ)

1 + χ cos 2ϕ

+ K1(χ + 1) sin2 ϕ + K2(χ − 1) cos2 ϕ
]
. (26)

If the cylinder is wrapped along the x2 or x1 coordinate, the
largest wave number is at ϕ = 0, π or ϕ = ±π/2, respec-
tively. In the first case, the instability threshold ζ ∗ solves

l2ζ ∗(χ + 1) + K2(4μ� + 1 − χ2) = 0. (27)

The threshold diverges at χ = −1 and vanishes at μ� =
1
4 (χ2 − 1). At χ > −1, contractile activity is destabilizing;
it should exceed a negative value of ζ ∗ by its absolute value
when μ� > 1

4 (χ2 − 1) [region A− in Fig. 1(a)], but at lower
values of μ� (region B−), an arbitrary small contractile activ-
ity is destabilizing. This is mirrored at χ < −1 with extensile
activity destabilizing when it is sufficiently strong at μ� <
1
4 (χ2 − 1) (region A+) and at an arbitrary strength otherwise
(region B+). In the second case, ζ ∗ solves

l2ζ ∗(χ − 1) = −K1(4μ� − 1 + χ2). (28)

The regions A± and B+ are situated as in Fig. 1(b), while the
region B− is missing.

More constraints appear in a domain bounded by solid
walls with no-slip boundary conditions, but the situation when
instability may be caused by an arbitrary small activity is
nonphysical. It reflects the appearance of instabilities in the
absence of activity and reveals once more the inadequacy of
the director-based description.

B. Instabilities in the vector-based theory

Adjusting the above analysis to the case of a variable
modulus, we start again with testing a passive system and
consider perturbations of the ordered state q0

1 = 1, q0
2 = 0 in

an unbounded domain (which may be, as before, a 2D slice
of 3D space). The description allowing for a variable modulus
has an intrinsic scale of energy density α0 and the length scale
ξ = (K1/α0)1/2, which is a microscopic healing length. The
natural time scale is (α0�)−1. The dimensionless parameters
are μ̂ = μ�ξ, ρ̂ = ρα0�

2ξ 3. We will further use them with
hats omitted, and retain the same notation for the variables in
dimensionless equations.

Since the circular symmetry allows for a 2D description
even in the 3D world, it is possible to neglect friction for
the time being in order to clearly see the effect of a variable
modulus. As before, deviations from the base state εq̃i are

FIG. 1. Instability regions on a cylinder wit the axis parallel
(a) and perpendicular (b) to the unperturbed orientation. See the text
for explanations.

expanded in the Fourier series q̃ = εq̂eik·x. Unlike (20), the
molecular field (7) has an algebraic part in the dimension-
less form qi(1 − �2), reduced now to a single component
ĥ0

1 = −2εq̂1. The distortion part of Eq. (7) is transformed as
ĥd = −εk2H · q̂ with

H =
(

cos2 ϕ + κ sin2 ϕ 1
2 (1 − κ ) sin 2ϕ

1
2 (1 − κ ) sin 2ϕ sin2 ϕ + κ cos2 ϕ

)
, (29)

where κ = K2/K1. The passive stress is linearized and
Fourier-transformed as

σ̂
p
i j = 1

2χ
(
q0

i ĥ j + ĥiq
0
j

) − 1
4

(
q0

i ĥ j − ĥiq
0
j

)
. (30)

After taking the curl of Eq. (9), the contribution of the passive
stress to the Fourier-transformed hydrodynamic equation is
expressed as εik∂k∂ j σ̂

p
i j = −k2f · q̂, where

f =
(

χ sin 2ϕ

0

)
+ k2

8

(
[1 + 2χ − κ (1 − 2χ )] sin 2ϕ

(1 + 2χ ) sin2 ϕ + κ (1 − 2χ cos2 ϕ

)
.

(31)
The resulting form of the hydrodynamic equation is

(ρDt + μk2)�̂ = −k2f · q̂. (32)
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Turning to the dynamic equation of q̂, we compute the
Fourier transform of Eq. (11)

ŝ = 1

2
εk2�̂

(− sin 2ϕ cos 2ϕ

cos 2ϕ sin 2ϕ

)
, �̂ = 1

2
εk2�̂ε, (33)

to obtain the transform of the linearized equation (16)

Dt q̂ = ĥ + 1

2
k2g�̂, g =

(
χ sin 2ϕ

−( 1
2 + χ ) cos 2ϕ

)
. (34)

Stability requires the eigenvalues λ of the following matrix
to have negative real parts:

J =
⎛
⎝−k2μ/ρ, − f1/ρ, − f2/ρ

1
2 k2g1, −2 − k2H11, −k2H12
1
2 k2g2, −k2H21, −k2H22

⎞
⎠. (35)

The Routh-Hurwitz stability criterion is a0 > 0, a1a2 − a0 >

0, where a j are the coefficients of Det(λI − J) = ∑3
0 a jλ

j ; I
is the identity matrix. The leading terms of these conditions
are computed as

a0 = 2k4(μ/ρ)(sin 2ϕ + κ cos2 ϕ),

a1a2 − a0 = 2k2[2μ/ρ + 1 − cos 2ϕ + κ (1 + cos 2ϕ)],
(36)

so that, unlike Eq. (24), stability is ensured in the long-scale
limit due to a stabilizing influence of perturbations of the
modulus. However, the full expressions are quite complicated
and do not formally exclude a short scale instability on wave-
lengths approaching the healing length.

Active stress σ a = −ζQi j adds to the hydrodynamic
equation (32) the term 1

2 k2ζ (q̂1 sin 2ϕ − q̂2 cos 2ϕ), which
modifies the entries in the first row of Eq. (35) to

J12 = (
1
2ζ sin 2ϕ − f1

)/
ρ, J13 = −(

1
2ζ cos 2ϕ + f2

)/
ρ.

(37)
The threshold value ζ ∗ flipping the sign of a0 satisfies

ζ ∗ cos 2ϕ(1 + 2χ cos 2ϕ) = 16μ(sin2 ϕ + κ cos2 ϕ). (38)

The right-hand side is always positive, and the left-hand side
flips its sign at cos 2ϕ = − 1

2χ−1 and ϕ = ±π/4, so that the
plane ϕ, χ is separated into the regions of positive (C) and
negative (E) thresholds shown in Fig. 2. Since at any χ there
is a perturbation angle falling in either region, activity of either
sign can cause an instability: contractile in the region C and
extensile in the region E, but in each case a finite strength is
necessary, attained with respect to perturbations directed at
the angle ϕ that corresponds to the maximum absolute value
of the expression multiplying ζ ∗, which, as can be easily seen,
is attained at ϕ = 0, π for χ > 0 and at ϕ = π/2 for χ <

0, and for both cases equals 1 + |χ |. Other extrema of this
expression are lower by their absolute value, and instability is
never observed at an arbitrarily small activity.

Instability is always monotonic, since the leading term of
the second Routh-Hurwitz stability criterion,

a1a2 − a0 = 2[2μ/ρ + 1 − cos 2ϕ + κ (1 + 2 cos 2ϕ)],
(39)

is independent of activity and always positive.

FIG. 2. Domains of instability due to contractile (C) and exten-
sile (E) activity.

C. Frictional motion

A quasi-2D formulation of a problem in the 3D world is
possible in a thin layer 0 < z < l with tangential alignment
on the upper and lower boundaries. The nematic alignment
is then constant across a thin layer, but velocity is constant
only in the case of free-slip boundary conditions. They are
often assumed both in analysis and simulations, but may be
realized only in a suspended film, which is known to be
unstable.

In the realistic case of solid confining walls, no-slip bound-
ary conditions apply, leading to the parabolic velocity profile
v(z) = 1

6 v0l−2z(l − z), where v0 is the average in-plane veloc-
ity. The momentum flux to the walls −2μ∂zv|z=0 = 1

3μv0l−1

is compensated by the force F = −∇ · (p + σ ) driving fluid’s
motion. This defines the average velocity v0 = 3Fl/μ, and
the total flux is j = Fl2/μ′, which is equivalent, neglect-
ing viscous anisotropy, to Darcy’s law with the coefficient
3l2/μ. Accordingly, Eq. (9) is replaced by the frictional
equation

ρDtvi = −μ′vi − ∂i p − ∂ jσ
p
i j, (40)

containing the effective friction coefficient μ′ = 1
3μ/l2. We

further restrict to this expression, which corresponds to the di-
agonal viscous stress tensor σ s

i j = − 1
2μ′|v|2. The stress tensor

accounting for anisotropy and modulus dependence is

σ s
i j = − 1

2 |v|2[(μ′ + μ′
1�)δi j + μ′

1Qi j]. (41)

Frictional dynamics with a friction coefficient dependent
on properties of particles and a substrate is also observed in
an adsorbed nematic layer. In fluid layers, frictional dynamics
restricts Galilean invariance, since nonuniform advection due
to the parabolic velocity profile, may cause distortion of the
nematic alignment field, which is only eliminated in the case
of a high rotational mobility, �μ � 1.

In the case of frictional dynamics, the Fourier transform of
Eq. (41) replacing Eq. (32) is

(ρDt + μ′)�̂ = f · q̂, (42)
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so that the elements of the first row of the matrix Eq. (35)
supplemented by the active term become

J11 = μ′/ρ, J12 = (
f1 + 1

2ζ sin 2ϕ
)/

ρ,

J13 = (
f2 − 1

2ζ cos 2ϕ
)/

ρ. (43)

Friction plays a stabilizing role, and activity fails to cause a
long-scale monotonic instability in this case.

IV. CONCLUSIONS

The vector-based description of two-dimensional dynam-
ics adjusts the director-based theory to problems involving
changes of the modulus of the order parameter. It not only
enables easier computation, compared to commonly used rou-

tines based on flattening the 3D tensor representation, but
evades degeneracy of elastic constants in the lowest order
Landau–de Gennes description.

The parallel stability analysis based on the director- and
vector-based formalisms for a 2D slice of 3D space, which
is possible due to the circular symmetry with respect to
the unperturbed alignment, demonstrates inadequacy of the
director-based description allowing for instability even in the
absence of activity at a sufficiently low ratio of hydrodynamic
to orientational viscosities, supporting the criticism of the
standard theory [14]. Stability is restored on long scales due
to perturbations of the modulus, which play a stabilizing role,
allowing for instability only at a finite strength of either exten-
sile or contractile activity. Instabilities are further suppressed
in Hele-Shaw geometry with tangential nematic alignment on
containing walls.
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