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Self-propelled rods are a facet of the field of active matter relevant to many physical systems ranging in
scale from shaken granular media and bacterial alignment to the flocking dynamics of animals. In this paper we
develop a model for nematic alignment of self-propelled rods interacting through binary collisions. We avoid
phenomenological descriptions of rod interaction in favor of rigorously using a set of microscopic-level rules.
Under the assumption that each collision results in a small change to a rod’s orientation, we derive the Fokker-
Planck equation for the evolution of the kinetic density function. Using analytical and numerical methods, we
study the emergence of the nematic order from a homogeneous, uniform steady state of the mean-field equation.
We compare the level of orientational noise needed to destabilize this nematic order and compare our results to
an existing phenomenological model that does not explicitly account for the physical collisions of rods. We show
the presence of an additional geometric factor in our equations reflecting a reduced collision rate between nearly
aligned rods that reduces the level of noise at which nematic order is destroyed, suggesting that alignment that

depends on purely physical collisions is less robust.
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I. INTRODUCTION

Interactions between self-propelled rods have been the sub-
ject of many studies on what is known as active matter. These
studies were motivated by attempts to understand interactions
of rod-shaped cells [1-5] and motor-driven filaments such as
microtubules [6-8]. How the mechanisms of rod interactions
in such systems give rise to self-organization is a fundamental
question that continues to draw interest. For example, me-
chanical interactions between the rods result in their local
alignment and, under certain conditions, the emergence of ne-
matic order. These phenomena have been extensively studied
in the spirit of the alignment model of Vicsek et al. [9]; see,
for example, Chaté et al. [10], Peruani et al. [11], Ginelli et al.
[12], Bolley et al. [13], and Degond et al. [14]. Such mod-
els typically assume the collective alignment of nearby rods
through mean nematic current or mean nematic orientation,
also known as the director. However, the rules proposed in
many of these studies lack first-principle derivations.

Boltzmann models of binary collisions provide a way to
rigorously derive the form of the collective alignment in
scenarios where the rods interact primarily through physical
collisions rather than long-range interactions. For example,
binary collision models for polar alignment of self-propelled
particles were studied by Bertin et al. [15]. The authors ob-
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tained a Boltzmann-type equation for rod number density
which they reduced to a system of macroscopic (hydrody-
namic) equations for the first two moments of the number
density. The steady states of the latter system were used
to extract information about the phase transition to an or-
dered phase. In the context of nonpolar alignment, Hittmeir
et al. [16] considered a model for the alignment of myxobac-
teria, deriving a Boltzmann-type equation for the cell motion
and a closed system of macroscopic equations, and proving
a number of analytical results about the existence of so-
lutions for these equations. Notably, this model was based
on instantaneous alignment from collisions regardless of the
difference in orientations, and the rules for collisions were
structured to include reversals at the expense of nematic
alignment.

Motivated by the mechanics of motion of Myxococcus xan-
thus [4,17] and monolayers of Bacillus subtilis [1,5,18], which
mainly reorient through physical-contact interactions, we con-
sider a model for the collective behavior of self-propelled
rods in which nematic reorientation occurs gradually over
a series of sequential binary collisions. These can be colli-
sions between the same two rods or with others nearby. Our
goal is to derive from microscopic collision rules a tractable
continuous-time equation governing the evolution of the rods’
spatial distribution, which we can then use to obtain quan-
titative information about the impact of density and noise
parameters on self-organization. We assume that each colli-
sion results in the reorientation of rods by a certain amount,
assumed to be small. Thus, the change in a rod’s orientation
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FIG. 1. Alignment geometry for a colliding rod changing from (a) or (b) to a given orientation 6. (a) Parallelogram P; is formed by vectors
le(f) and VAt e(6;). Parallelogram P, is formed by vectors /e(6;) and vAr e(8). A 6 rod (solid arrow) reorients to a different orientation
(dotted arrow) upon interaction with a 8, rod from P, or P,. A 0, rod reorients by the same angle in the opposite direction (dotted arrow).

(b) Same as panel (a) but with a collision in P, or P, resulting in a 6 rod.

over some time is the result of cumulative small changes due
to multiple collisions. The nematic alignment we consider
differs from Ref. [16] in this respect.

The paper is organized as follows. In Sec. II, we derive
an Enskog-type equation for the rod number density and, in
a certain asymptotic regime, the mean-field Fokker-Planck
equation. Our approach is similar to the treatment for grazing
collisions of molecules in gas dynamics [19]. We introduce
an averaging-type agent-based model that, at the macroscopic
level, is equivalent to the binary collision model (BC model).
The Fokker-Planck model obtained for the BC model turns out
to be similar to the heuristic liquid crystal model (LC model)
of Peruani et al. [11]. Our kinetic equation differs from the
latter by a factor in the alignment rate that accounts for a
decrease in collisions as cells become nematically aligned.
This naturally leads to the question of comparing qualita-
tive and quantitative differences between dynamics generated
by these two models. We address this question in Sec. IV
where we consider the stability of a spatially homogeneous
steady state with a uniform distribution of orientations for
both alignment models augmented by diffusion (noise) in rod
orientation. Linear stability can be calculated explicitly, as
was done in Ref. [11]. In Sec. IV B we discuss the nonlinear
stability for the models of interest, using a numerical solver
for the nonlinear mean-field equations. We obtain parameter
values for the phase transition to a nematically ordered phase
and compute steady-state orientation distributions for several
representative cases. Our findings show that self-propelled
rods are less ordered in the BC model compared to the LC
model due to decreased chance of collisions between cells
with similar nematic orientations. Therefore, the transition to
the disordered phase occurs at a lower level of rotational noise.

II. BINARY COLLISION MODEL

A. Derivation of Boltzmann-type equation

We consider a collection of N rods moving on a square do-
main [0, L] x [0, L] with periodic boundary conditions. Rods
are rigid and move along their longer axes, with their midpoint
denoted by the coordinates x. Let [ be the length of the rod
with corresponding unit orientation vector e. We denote the
rod speed by v. In our model we assume that the collision be-
tween a rod with orientation e = e(6) = (cos 8, sin0), which
we call a 6 rod, with a 6; rod results in a nematic reorientation
of both rods, yielding new angles 6* and 6] according to the

rules
0% =6 +8¢p(61 —0),

ey
0F =61 — 8¢(61 — ),

where ¢(0) is a w-periodic, odd function, positive on the in-
terval (0, 7 /2) and negative on the interval (7 /2, ), and § €
(0, 1) is small numeric parameter that controls the strength of
alignment. We are implicitly assuming here that § is the result
of rescaling ¢ to order O(1). The function ¢ = sin(20) is a
typical example with a microscopic interpretation that we use
in Sec. IV. We assume that a collision between rods occurs
when the head of one rod is in contact with the other (see
Fig. 1). We assume that interactions are predominantly binary
and the contribution from simultaneous interaction of more
than two rods is negligible. We also allow rods to overlap
each other spatially. We refer to this model of alignment as
a BC model. The probabilistic description of alignment is
based on the one-particle distribution function of rod positions
and orientations, f, with the corresponding rod number den-
sity F(x,0,t) =Nf(x,6,t). As collisions happen between
pairs of particles, we also need the two-particle distribution
function f @(x, 6, x;, 6, 1), which stands for the density of
the joint probability distribution for a random pair of cells,
and the corresponding function F®(x, 0, x1,6;,1) = N(N —
) fP(x,0,x;,6;,t), which stands for the number of pairs
of cells (averaged over an ensemble) when given two spatial
regions and two sets of orientations.

We first must calculate the change in F = N f due to colli-
sions. The value of f at a given orientation 6 decreases when a
6 rod interacts with a 8 rod (0; # 0) [Fig. 1(a)] and increases
when a 6* rod and a 6§ rod produce a 6 rod postcollision
[Fig. 1(b)]. To describe the latter we need to swap the roles
of 6 and 6* in Eq. (1), and then use the system to find 6* in
terms of the precollision orientation 6; as well as the given
angle 6. First,

0 = 6% 4 8¢(0; — 6%). )

It follows using substitution that 6 —6 =6 —0* —
3¢ (0] — 0*). Denote the solution & of

w=0—35p)
by ¥s(w). Then, we compute
duts = {1 = 8¢'[Ys(@)]} ", €)
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which shows that the inverse function s exists when § is
sufficiently small. Given 6 and an arbitrary precollisional
orientation 0}, we can determine the other precollisional ori-
entation 6* so that the (6%, 6;) collision results in a 6 rod,
given by

0" =07 — s (0 —6). “)

We now need to calculate the change in the number of
rods over the time interval (¢, f + At), denoted by NA f. We
do this by splitting the change into decreasing and increas-
ing contributions Af = A~ f — AT f, with lima,_o(A™f —

AT/ At = (%)+ - (%)’ = %, the total or Lagrangian
derivative of f. This captures the total change in time of the
given quantity with respect to all variables that f depends on

and can alternatively be expressed via the chain rule as

2
df dx; do
— =9, O f — +0af —. 5
o ,f+; S — 5)

dx, d
and (ﬁ, ﬁ) =

about the

In our context we have ijz_(: =0
v[cos(@), sin(f)] due to our assumptions
self-propelled nature of the rods.

First, we approximate the number of rods within a given sp‘atial region and orientation range by N f(x, 8, ¢t )dx df. Figure 1(a)
shows the geometry involved when calculating possible collisions corresponding to loss with P; and P, as the parallelograms
where collisions can occur with a given rod. Figure 1(b) corresponds similarly to a gain of cells with a given orientation with
parallelograms P; and P,. The magnitude of decrease in the number of rods with the orientation angle in (6, 8 + d6) in At time
equals the number of rods in this range times the number of collisions, per rod, with another rod in (6, 8; + d6;). Since the
differentials dx and d6 ultimately drop out, we do keep track of them for these steps. The expected number of collisions with
rods in this range is given by summing the expected number of pairs where the second rod is in P; or P,. This is made formal by
integrating the pairwise joint density N(N — 1) f, over these domains and over 6;:

re o
NAf(x,e,t)=N(N—1)</ /f<2><x,0,xl,el,r)dxld91+/ /f<2><x,9,x],el,odxldel), (6)
- JP - JP,

where the parallelograms P, and P; are as in Fig. 1.
To obtain a closed-form equation for f, we assume the equivalent of molecular chaos, expressed as statistical independence
of the pairwise joint distribution f® in terms of the single-particle distribution:

FPx,0,x1,60,1) = f(x,0,1)f(x1,601,1). (7)
This yields

A F(x,60,t)=(N—1) !

-7

< f(x,G,t)f(Xl,Ql,t)dxl-i-/ f(X,G,I)f(xl,el,t)dm)d@l. (8)
Py P

A change of variables from Cartesian x = (x, x) to an e(9), e(0;) coordinate system gives an extra factor of | sin(6; — )| in
the integrand, taking into account the relative nematic orientations when determining the collision frequency of two rods with
orientations 6 and 6;. This is analogous to the collision factor derived in Ref. [20]. Since the length of integration in the e(6)
direction is proportional to v At, by dividing both sides of Eq. (6) by At and taking the limit A — 0, we obtain the magnitude
of the negative contribution to the rate of change of f(x, 6, t) over all possible 6, as

df - b4 1/2 /
(—> = (N — 1)/ / | sin(0; — 9)|f(X,9J)|:f<X — >e(0)) +Ze(9),91,l>
dt = Jop 2

+f(x + ée(@) + ze(6,), 61, t>]dzd91, 9

where z is the variable of integration in the e(9;) direction.

Similarly, the increase NA™ f can be expressed using the expected number of collisions for a rod in (6*, 6* + d6*) with a
(67, 67 + db;) rod in At time such that the resultis arod in (8, 6 4 d6). For this derivation, we need to proceed carefully, taking
into consideration the relationships among 6, 6%, and 6;". In particular we need to use the mapping (4) between 6 and 6* when
relating f(x, 0, t)dxd6 to [f(x, 6%, t)dxdO*][f(xi, 05, t)dO;]. Since the differential dx again drops out by the end, we do keep
track of it. As in the previous case, there are two types of collisions depending on whether 6; € P, or 6f € P, [see Fig. 1(b)]:

T

ATf(x,6,1)df = —(N — 1) ( f(x,0%,6)do* f(xy, 67, t)dx,
Py

-7

+ | fx, 9*,t)d9*f(x1,Ql*,t)d)q)d@f. (10)

P

Using Eqs. (4) and (3) at w = 0] — 6, we find
do* = Y567 — 0)d6 = {1 — 5¢'[ys (67 — 6)]1)~'d6. (11)
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Note that 6 and 6} are independent, so d6 in Eq. (10) subsequently drops out. We then obtain the positive rate term in the limit
At — 0 as

df + T 1/2
() =oov= [ [ wior —oxsintwsco; - oo
t —nJ-i2

l l
X |:f<x - Ee(é’l*) + ze(6%), 67, t) + f(x + ze(G*) + ze(67), 07, t)}dzd@f. (12)
Finally, using that the total derivative of f can be expressed as o, f + ve - Vx f, we get the kinetic equation
of +ve@)- Vif

T 1/2 /
= (N — 1)1')/ Y507 — 0)|sin[ys (0] — 0)]f(x, 0%, t)|:f(x - 56(91*) + ze(0%), 07, t)

xJ-12
+ f(x + ée(@*) + ze(67), 6/, t)]dzd@f‘
T plf2 ]
—(N — 1)1_)/ / |sin(91*—9)|f(x,9,t)|:f(x—5e(9f)+ze(9), 91*,t>
- J—1/2
+ f(x + Se0) +ze(01), 07, t)]dzd@l*. (13)

Note that we also changed the notation from 6; to 6} in the last integral to match variables of integration. We take care of the
remaining occurrences of 0* in the next section’s asymptotics.

B. Asymptotic expansion and mean-field derivation

Let T = £ be the characteristic timescale associated with traversing the domain length L. We scale the variables b
3 g g y

x=2 =L, f&0,D)=I1(x0,1) (14)
X—L, =7 f(X,0,1)=L"f(x,0,1).

The kinetic equation scales accordingly and takes the following form (with a slight abuse of notation, we keep using the old
notations X, ¢, and f for the new variables X, 7, and f):

of +e)- Vxf

x  pl/Q2L) i
=N - 1)/ / V50 — 0)] sin[ys(0] — O)]If(x, 9*,t)[f<x - ZG(QT)Jrze(@*),@*,t)

—=1/(2L)
l
+f(x + ie(@*) + ze(6)), 67, t>:|dzdeik
7 plJL) I
—(N — 1)/ [ | sin(@; — 6)|f(x. 6, z)[f(x — —e(0) +ze(0), 07, ;)
= Jyn) 2L

+f(x+ ie(9)+ze(91),9*,t>}d2d91". (15)

Assuming small §, we introduce the following series approximations:

0" = 0 — (0] — 0)5 + 0(8%), (16)
Y307 —0) = 1+ /(67 — 6)8 + 0(8?), (17)
Vs (07 —0) = (6] — 0) + ¢ (6 —9)8+0(82), (18)

B f(x,0,1)0% —0)+ 0[(6* —6)] (19)
—dOF —0)dpf(x,6,1)8 + O(8?).

f(x,0%,1)— f(x,0,1)
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Additionally, for any continuous function G(8), we can expand

/ | sinlys (67 — 0)1|GO}) db}
— [ (1sin®; — 0)] + sign [sin(8} — 6)]cos(8? — O)$(OF — )8)G(E}) db}:

-7

+0(8%) sup |G(0)]. (20
Finally, we can expand f in powers of [ /L to get
/
f(x — 5700 +2e(0"). 67, r) = f(x,6f,1)+ OUL™). 21
Substituting all these expansions into the kinetic equation (15), we derive the asymptotic relation
(N —Dié T * * * *
Of+e@) Vuf = ——F——0%|f(x.0.0) [ |sin(0] — )| — 0)f(x, 01, 1)d0)
+ O(NIL™'8%) + O(NI*L72%5). (22)

To finalize the model, we postulate two hypotheses. The first is that the strength of alignment per collision, §, is small and that
NISL™" is nonvanishing and finite. Since NI§L™' = (NL™2)(L1)8, which can be interpreted as the average number of collisions
when traveling the domain length multiplied by the maximum change per collision, this condition implies that many small
changes in a rod’s orientation accumulate to a finite magnitude. In this case § is inversely proportional to the number of rods in
a narrow band of width /. The second hypothesis is a macroscopic limit assumption: /L~! is small and the number of rods, N, is

large. Under these hypotheses, the leading-order approximation of Eq. (22) is a mean-field, Fokker-Planck equation:

T

Of +e@) Vxf + Ko <f(X, 6,1)

-7

where

_NIs

7 (24)

K

8,1/L <1, and N > 1. Note that unlike what one might
expect, k is not invariant to parameter changes that keep the
mean density N/L? fixed. This is due to the time rescaling
being proportional to L. If we double L and keep the mean
density fixed, ¥ doubles as well, but this is a reflection of one
unit of time, and the average number of collisions a rod would
undergo in that time interval also doubles. However, our phase
transition results in the next sections are independent of any
scaling that keep the mean density fixed.

In the derivation of the kinetic equation we assume that § is
small while NTI‘S is finite. We would like to describe two model
scenarios in which these assumptions can be justified. The
first situation is a statistical black box approach. Suppose that
one has limited information about the precise mechanism of
alignment of self-propelled rods, except that (i) alignment is
nematic and collisions are mostly binary, and (ii) the change of
angles in collisions is proportional to the angle between inter-
acting cells. Suppose that statistical analysis of an experiment
reveals that there is some characteristic length L such that,
when the average angle between cell orientations is 6, the
changes of cell orientation over distance L are proportional to
60y. Estimating the average number of collisions over distance
L as %l, one can formulate an effective law that each binary
interaction changes a cell angle by the amount 66, so that

NZSQ ~ 6
7 oo = to,

| sin(6y — 0)|p (61 — O)f (X, b1, t)d91> =0,

(23)

(

which leads to the smallness of § when NI/L > 1; i.e., the
number of collisions per length L is large. The other situation,
perhaps less applicable to the motion of myxobacteria but still
of sufficient interest, is the case when the time of contact of
cells in collisions is short and the torque generated during the
collision is finite. For example, bacteria could be able to crawl
over one another without fully aligning. In this case, § can be
taken to be proportional to the time of interaction, and L can
be taken to be the distance over which changes in orientations
are of finite magnitude.

C. Alignment to mean nematic orientation

In what follows, we replace the factor N — 1 in Eq. (24)
with N since both have the same asymptotic behavior for N >
1. Following Ref. [11], we choose the alignment function to
be ¢(0) = sin(20). This functional form is commonly used
and is related to frictional force balance, commonly found
in environments at low Reynolds numbers that bacterial cells
experience. It can be derived in different contexts, such as
bacterial alignment in a colony due to growth [21]. In our case
it comes from the force a colliding rod receives perpendicular
to its orientation, proportional to sin(6) cos(6), from opposing
frictional forces generated by the second rod.

With this choice, one can introduce a local mean nematic
orientation and Eq. (23) can be interpreted as a continuous
alignment to such a mean orientation. The mean orientation
is, in general, specific for each rod; i.e., it depends on 6
through the rate of collisions with other rods. Indeed, we
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can write

/ Isin(0) — 0)|p(61 — 0)f (X, 61,1)db,

[sin(@; — 0)[e* =9 f(x,0,,1)db,

-7

=1Im |:e2i9 / |sin(6; — 6)|e*? f(x, el,t)del}

e

=Im

= |J|sin[2(® — 6)], (25)

where

b g
Jx.0.1) = / i@ — )1 f(x. 61.1d6,  (26)
is a mean nematic current, with the polar angle 20(x, 6, t)
defined by the condition

20 = 3! / |sin(@; — 0)[e*” f(x, 61, 1)d6r, (27

g

or equivalently we get an angle such that
/ | sin(@ — 0;)|sin[2(0; — ®)]f(x,0;,1)dO; = 0. (28)
-7

The kinetic equation in this case is
O f +e0) Vxf +xd{f|J]sin[2(® —O)]} =0. (29)

Discussions of similar models based on the mean nematic
current can be found in Chaté er al. [10], Ginelli et al. [12],
and Degond et al. [14].

III. AGENT-BASED MODELS OF ALIGNMENT

In this section we describe a simplified agent-based model
that can be used in Monte Carlo simulations to obtain suitable
approximate solutions of Eq. (23). In this model we do not
need to trace pairwise interactions of rods, but instead use a
more computationally efficient method of accumulating align-
ments over a neighborhood of a rod. While this is the approach
often take for phenomenological models of alignment, we
use the form of the mean nematic current we derived from
microscopic rules in previous sections to help ensure consis-
tency. Consider an agent-based model of N rods moving on a
square domain with the side length L with periodic boundary
conditions. Let the positions of rod centers {x;} and orienta-
tion angles {6;} evolve according to the ordinary differential
equations (ODEs):

Xm' - (9
o = ve i)
do; . .
— =Va D |sin®; = 0)lsin(2(6; —6)]
[xi—X;|<R
+~2Dg (), i=1,...,N, (30)

where y, > 0 is the strength of alignment, R is the interaction
radius, D is the rotational diffusivity (diffusion coefficient),
and {&;(t)};=1....n is the vector of independent whites noises.
The above model is closely related to a model of nematic
alignment of self-propelled particles by Peruani et al. [11]
that was built on the geometry of alignment of liquid crystals.

In particular it assumes only angular diffusion so that rods
move with constant velocity. We refer to the model of Peruani
et al. [11] as the liquid crystal (LC) model of alignment. The
difference between the two models is a factor | sin(6; — 6;)| in
the rate of alignment.

We would like to determine ranges of values of y, and
R such that the agent-based model (30) corresponds to the
BC model from the last section. To this end, we compare
Eq. (23) to the mean-field equation describing the dynamics
of the probability density distribution function f for model
(30). Following Ref. [11], the latter can be expressed as a
Fokker-Plank equation,

O f +ve®d) Vyf
+YaN [V (O)f(x,6,1)] = D3} f, 31)

with the angular transport velocity

Vr(0) =/ /n | sin(6; — 6)
|x;—x|<R J —1

x | sin[2(0) — 0)]f (x1, 01,1)d01dxy,

found by rewriting the function underlying the rate of change
in angle due to collisions Z|x,-—x,|<R | sin(0; — 0;)| sin[2(6; —
0;)] in Eq. (30) as a local integral with the number density F =
N f, and then factoring out N. D > 0 is the rotational diffusion
coefficient from the rotational noise in the agent-based model.
Finally, rescaling x, ¢, and f with Eq. (14) yields
ValNL DL _,

5 [Vr/L(0)f(x,0,1)] = 739f-

(32)
The additional local integrations over a region |X; — X| < % in
Vg1 differ from our model (23), but they can be matched with
a simple series expansion for f(x, 6, t). Assuming ’Li < 1,we
can expand f(xy, 6, 1) in a power series f(x,0,t) + O(R/L)
around x analogously to Sec. II, yielding to first order

of +e@) Vif

v.NL 7 R?
+ 7 730 f(x,0,1)

of+e@) Vyif +

b4

| sin(6; — 0)|

. DL ,
x sin[2(0; — 0)]fo(x, 01,1)d6) = Tagf. (33)

Note that in terms of parameters, Eq. (23) corresponds to
model (33) when £ « 1 in such a way that NR?L~? remains
constant and
YaN R?
77:__
v L
from which we find that the rate of alignment y, and the
interaction radius R are functionally dependent:

198
vaR: = 22 (35)
T

, (34)

IV. STABILITY OF A HOMOGENEOUS UNIFORM
STEADY STATE

A. Linear stability

Consider the mean-field equation (23) with added diffusion
in orientation:
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T

of+el) Vif +kop <f(x, 0,t)

-7

| sin(0) — 6)|p (61 — 0)f(x, 01, t)d91> = pd; f, (36)

where 1 > 0 is a nondimensional diffusion coefficient. Following Ref. [11], we consider the problem of stability in the space of
spatially homogeneous solutions f(x, 6,¢) = g(0, t). The BC model’s equation for g is

08+ Kkde <g/ | sin(0) — 6)| sin[2(61 — 0)]g(01, t)d91> = pud;e. (37)

¥4

The function gg = 1/(27) is a steady-state solution of Eq. (37). By introducing the perturbation from steady state g = go + €g,

and by linearizing Eq. (37) around g(, we obtain

1 T .
081+ 50 </ Isin(0) — 0)|sin[2(6) — 0)]g1(01, t)d91> = nd;ei, (38)

2w -

with the rescaled viscosity coefficient n = £. Equation (38)
admits solutions in the form

gr=e"e", nel, (39
provided that
oy )
A=— —nn, (40)
T

where o, is the eigenvalue corresponding to the eigenfunc-
tion " of the operator I[g] = [”_|sin(6; — 6)| sin[2(6) —
0)]1g(01,1)do,. For all odd n, o, = 0, and for even n,

o, =2n( ! — ! > “41
m=—Dm+1) @©B-=3)n+3)

Among these values, only o, = 32/15 is positive. Thus, when
n<n = %, perturbations of the constant steady state go
will grow in the direction of sin[2(6 — 6)], for some 6. For
comparison (see Ref. [11]), we recall that for the LC model
the critical value is 1. = 0.25. Equation (37) can be used to
show that asymptotically, for n close to 7., the steady-state
amplitude of perturbations is of the order (. — 1)'/?, i.e.,

8(0) ~ go(0) + co(ne — n)? sin[2(0 — 6)].  (42)

The stability condition 1 < 1, can be written in terms of
parameters of the agent-based model as a balance among the
diffusivity, the density, and the strength of alignment:

8 N

D> ——

15L2

In the linear case the instabilities grow without bound. The
nonlinear equation, however, will take the perturbations to

a well-defined steady state, which we compute by solving
Eq. (37) numerically in Sec. IV B.

(VaR?). (43)

B. Nonlinear stability
1. Numerical scheme

Equation (37) can be schematically written as
3¢ + By (eg) = 135, (44)

where the velocity e = e(9, g, t) is computed using a nonlocal
integral operator. We use an operator-splitting method to nu-
merically integrate equations of this type. Thus, the advection
and the diffusion parts of this equation are integrated using

(

different discretizations. The diffusive part is integrated nu-
merically using a standard central finite-difference scheme.
We use the local Lax-Friedrichs method from LeVeque [22]
for the advection part. In particular, if we consider the wave
equation written in the flux form 0,g + dpF = 0 (where F =
eg), then we use the following numerical method to advance
the solution during one time-step:

. . At
gl =g — A—@[FHl/z — F—12], (45)

where g{{ = g(kA#@, jAt) and numerical fluxes are given by

Ferir = 5 (gl + vini8hs1) = his12(8hyy — 81)s  (46)
with vy = v(kA6, jAt) and
Aix1/2 = max(|vel, [vig1])/2. 47

We used N =400 points for the discretization and At =
2.5 x 1073 in all simulations. We also verified our simulations
with N =800 and Ar = 6.25 x 10~* for several selected
simulations (several different initial conditions) and did not

FIG. 2. Evolution of g(6,¢) to a steady state in an unstable
regime. The result of numerical simulation of Eq. (37) at times r = 0,
10, 13, and 25 starting from random initial data. By time t = 25 the
numerical solution reaches the steady state.
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FIG. 3. Steady states according to the binary collision (BC) model and the liquid crystal (LC) model. Figure shows plots of the function
g(0,t) at time ¢ when the solutions reach steady states, according to the numerical simulation of Eq. (37) and the corresponding equation for
the liquid crystal model. The solutions start with the same random initial data. Left panel: = 0.05. Right panel: n = 0.2.

observe any significant difference between simulations with
low and high resolutions. Thus, we can conclude that simula-
tions with N = 400 and At = 2.5 x 1073 are well resolved
and the numerical diffusion due to the Lax-Friedrichs dis-
cretization of the advection part is not significant.

2. Numerical simulations

We used the above numerical scheme to obtain solutions of
Eq. (37) and study its dependence on the diffusivity parameter

—e&—BC model| |
——LC model
0.8 1

0.9

041 1

02 b

NN

0.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3

FIG. 4. Nematic order parameter S as a function of diffusivity
7n. The figure shows nematic order S at the steady states, computed
numerically, averaged over 20 different simulations with random
initial data, when 7 ranges from 0.02 to 0.3 with an increment of
0.02. Dotted lines mark the critical diffusivities for the corresponding
linear models.

n = £. For initial data we selected 10* random orientations
from the uniform distribution on the interval [—m, 7r]. The
probability distribution function (PDF) was binned on the
mesh in the 6 variable, with bin width A6. Figure 2 shows
the result of one such simulation in the unstable regime, when
the solution converges to a nonuniform steady state (the plot
corresponding to ¢ = 25). We performed the comparison of
numerical solutions of Eq. (37) with the numerical solutions
of the liquid crystal model. Figure 3 shows the difference
in steady states obtained from both models starting from the
same initial data for two different levels of noise. For lower
noise levels, the BC solution reaches a less ordered state due to
the presence of the factor | sin(f; — 6)| in the rate alignment,
which decreases the alignment strength among rods. Increas-
ing the noise to the regime where the binary collision model
is completely disordered but the liquid crystal model is not,
we see the latter is perturbed from the uniform state in the
direction of the mode sin[2(6 — 6y)] for some phase 6.

Figure 4 shows the phase transition in the nematic order
parameter S(¢) = |S(¢)|, where

S(r) = / i M0, 1)d0, (48)

-7

is a function of the diffusivity coefficient 7 = £ for both the
BC and the LC models. In these figures, S was computed
when the solution reached the steady state, and the average
was taken over 1000 distinct solutions with the initial data
corresponding to 10* rods with orientations randomly selected
uniformly in the interval [—m, 7 ]. In the ordered regime, the
nematic order is stronger in the LC model for the same value
of n, while for both models the nematic order decreases at
approximately the same rate at the phase transition (Fig. 5).
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FIG. 5. Rate of decay of the nematic order parameter S as func-
tion of diffusivity n for n < n.. Red dashed line corresponds to
the fit log(§) ~ 0.5log(n. — n). Note that log(n. — n) ~ —4.5 cor-
responds to n = 1.6.

V. DISCUSSION

We have developed an approach to modeling interactions
of self-propelled rods from a set of microscopic collision
rules. Using a Boltzmann-like framework [19], we derived
a mean-field model under the assumption that binary colli-
sions are the dominant type of interaction and that a collision
results in a small change in a rod’s orientation. We show
for a common choice of the alignment function that the
resulting Fokker-Planck equation can be matched to com-
monly used mean-field models assuming alignment of rods
in a local neighborhood [11], albeit with a modified align-
ment function. These models have an additional second-order
term from added rotational diffusion. Restricting to spatially
homogeneous solutions, we calculate both analytically and
numerically when the constant solution with a uniform dis-
tribution in orientation space becomes unstable, resulting in
the emergence of nematic order.

Our approach differs from standard treatments for this type
of phenomenon [10-12,15]. We avoid as much as possible
postulating phenomenological rules for how rods align, in-
stead using first principles to derive the form of the mean
nematic current, which is a purely local quantity spatially.
In particular, our nematic current has an additional factor of
| sin(6, — ;)] that takes into account the geometry of colli-
sions. It accounts for a decrease in the collision rate between
rods with similar nematic orientations 0; and 6,, as those rods
are closer to being parallel with each other and are less likely
to collide. Furthermore, we show that this additional factor
does not change the functional form of the phase transition
measured via the nematic order parameter S, but does no-
tably raise the densities and lower rotational noise levels at
which the transition occurs. The physical interpretation is that
a decrease in collisions between rods with similar nematic

orientations will decrease the total rate of alignment in the
population and make it more susceptible to noise. As such,
a higher density or lower rotational diffusion is needed to
produce the phase transition to an ordered state.

As a final note on our modeling approach, our treatment of
6 as a small parameter from rescaling ¢ is not needed under
conditions where rods are locally aligned. The function ¢ will
naturally be small in such situations, assuming the change
in orientation upon collision is small for small differences
in angles, as a large discontinuity at ¢(0) would imply rods
actively repel each other when nearly aligned. This suggests
our model can be used to analyze situations where the change
in angle per collision is not necessarily small, but rods are
locally aligned into streams or clusters.

The alignment of active particles can be generated by
two general mechanisms. The first is interactions at a dis-
tance. These can be through hydrodynamic interactions, e.g.,
alignment through long-range interactions via forces in a
medium [23-25], or through more general flocking interac-
tions [9,26]. The second is short-ranged physical interactions,
such as the type we considered in this paper. They depend
on the physical geometry of the particles under consideration,
arise from physical collisions, and often appear when model-
ing granular media [27,28] or biological phenomena. These
phenomena range in scale, but are generally found on the
macromolecular scale when considering interaction of biolog-
ical filaments [6-8] or cellular populations [1,2,4,21,29,30].
At larger scales, organisms’ sensory organs tend to result in
longer-ranged interactions.

The effect the presence our geometric factor has on the in-
fluence of level of noise has some interesting implications for
active nematics. Since it lowers the threshold at which nematic
order is destroyed, this suggests that systems that depend on
purely physical collisions to align are less robust to effects that
introduce noise into the rods’ orientations. In the context of
cellular interactions, this could influence emergent behaviors
such as swarming [1,18] or aggregation [29,31,32] that often
depend on some manner of cellular alignment. The noise itself
could come externally, such as from heterogeneity or external
forces in the medium the cells are interacting with, or it could
be internal noise coming from the biochemistry of the cell. In
either case, having an alternative alignment mechanism that
acts at a longer range, such as through hydrodynamic forces
or by actively shaping the environment through the use of an
extracellular matrix or biofilm [2,30,33], provides a greater
level of robustness for when alignment is desired.
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