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Stress overshoot, hysteresis, and the Bauschinger effect in sheared dense colloidal suspensions
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The mechanical nonlinear response of dense Brownian suspensions of polymer gel particles is studied
experimentally and by means of numerical simulations. It is shown that the response to the application of a
constant shear rate depends on the previous history of the suspension. When the flow starts from a suspension at
rest, it exhibits an elastic response followed by a stress overshoot and then a plastic flow regime. Conversely, after
flow reversal, the stress overshoot does not occur, and the apparent elastic modulus is reduced while numerical
simulations reveal that the anisotropy of the local microstructure is delayed relative to the macroscopic stress.
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I. INTRODUCTION

Materials deform or flow under the application of stress.
Many exhibit both behaviors and their response depends on
the amplitude of the applied stress, and very often it depends
also on the past history of the materials. A common feature of
crystalline materials and amorphous systems, such as foams,
emulsions, or concentrated suspensions, is the existence of a
transition between an elastic response at small deformation
amplitudes to a plastic response, where the system flows,
at larger amplitudes. In general, under an increasing applied
deformation, the stress first linearly increases, and reaches a
steady state value at large deformations, but goes through a
maximum value before it reaches its steady-state value. This
stress overshoot is a common feature of many amorphous
materials, such as emulsions [1], foam [2], and suspen-
sions [3], and its amplitude depends on the increase rate of the
deformation [4].

Numerical simulations of binary Lennard-Jones glasses
suggest that the overshoot value, σover, scales with the ap-
plied shear rate γ̇ as σover ∝ ln γ̇ [5,6]. Conversely, numerical
simulations of attractive spherical particules exhibit a power-
law behavior, σ ∝ γ̇ 0.5 [7] and neutralized carbopol microgel
suspensions exhibit a weaker dependency σover ∝ γ̇ 0.13 [8].
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Moreover, experiments have shown that attractive colloidal
suspensions exhibit two distinct yield points, due to the
breaking of intercluster bonds and to collisions between clus-
ters respectively [9]. The second yield point is characterized
by a stress overshoot whose value depends on the applied
shear rate, as σover ∝ γ̇ 0.5, the exponent being almost inde-
pendent of the concentration.

The yielding mechanisms of hard sphere suspensions are
a priori different as they do not involve the breaking of attrac-
tive bonds between particules, but the escape from cages is the
main mechanism of yielding. Yield is related to the fact that
the Brownian motion is not sufficient to relax the structure
formed under stress and that the suspension is able to store
stress before yielding [10,11].

Moreover, at large deformation amplitudes, materials very
often exhibit a response that depends on their deformation his-
tory. In a typical experiment, a preshear is applied, consisting
of a constant or oscillatory deformation at high shear rate or
high amplitude, and the mechanical property of the system is
measured at some time tw after the end of this so-called reju-
venating protocol. For instance, the stress overshoot increases
with the time elapsed since the rejuvenation, tw. Past history
dependence of the mechanical response of a system is a com-
mon feature that is well known in the engineering literature.
Thus, metals exhibit a smaller resistance to compression when
they have been previously submitted to tension. This effect has
been discovered by Bauschinger when studying steels [12,13].
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A similar effect has been observed in atomistic simulations
of amorphous systems [14,15], and discussed in the athermal
limit, in terms of the elementary irreversible deformations
that occur in such systems, in the shear transformation zone
(STZ) [14]. In that context, Patinet et al. [16] have shown the
importance of the role of the local stress barrier anisotropy to
understand the origin of the Bauschinger effect in the defor-
mation of athermal glasses.

More generally, the Bauschinger effect is related to hys-
teresis behavior of the stress when the applied deformation
is cyclic and depends on the nature of the materials. It may,
moreover, present some other specificities, such as a drastic
reduction of the elastic response after the first cycle in filled
elastomers (the so-called Mullins effect). As far as concen-
trated suspensions are concerned, they exhibit a reduction of
their viscosity after the application of a high shear rate, a
phenomenon called thixotropy. The behavior may be seen as
a hysteresis response if one considers the stress vs shear rate
behavior: the flow curve is measured upon increasing the ap-
plied shear rate and then upon decreasing the shear rate. These
two flow curves do not superimpose, and the area enclosed
by the hysteresis loops decreases when the applied shear rate
decreases. Experiments in carbopol suspensions [17] have
shown that this behavior is also related to the appearance of
shear banding.

Here we study experimentally the nonlinear flow behavior
of a concentrated suspension of spheres which mimic hard
sphere behavior reasonably well. We consider mainly the two
behaviors described above, stress overshoot and nonreversibil-
ity of the flow, which manifests itself by a hysteresis behavior
and a change of the apparent elastic modulus upon flow rever-
sal. Moreover, we use numerical simulations to compute the
anisotropy of the structure of the suspension submitted to the
same deformation histories, and we study how the response is
related to the local microstructure.

II. SYSTEM

A. Experimental system

We use spherical particles of cross-linked polymer chains,
called microgels, that are swollen in a good solvent.
Several such systems have been developed, in particu-
lar N-isopropylacrylamide particles cross-linked with N,N′-
methylenbisacrylamide, whose swelling ratio in water may be
controlled by the temperature [18,19]. In the present study,
nonthermosensitive PS microgel particles are used [20,21].
Their structure P150-50 and dynamical properties [22,23]
have been studied in detail and closely match that of
hard sphere suspensions [24]. They have been used to
study glass transition behavior [25] and crystallization ki-
netics [26–28]. We use bidisperse suspensions of particles
with cross-link ratio 1:50 (i.e., there is on average one
cross-link per 50 monomer units) and radii of 175 nm and
150 nm with number ratio N = 3.1 (3.1 small particles per
one large particle). The system exhibits a glass transition
at φ = 0.58 [29].

B. Rheological measurements

An Anton-Paar stress controlled rheometer MCR-301 is
used in order to perform rheological measurements. All

FIG. 1. (a) Schematic illustration of the shear deformation pro-
tocol. A series of strain steps is applied to the sample, of constant
amplitude δγ = 5 × 10−3. The step duration δt is varied between
5 × 10−1 and 20 s in order to control the effective shear rate between
10−2 and 2.5 × 10−4 s−1. (b) Stress evolution between 10−1 and
10 s after the application of a step strain of amplitude 5 × 10−3.
The horizontal continuous line indicates the stress average over the
time interval [5 × 10−1, 10] s. The dashed lines indicate the stan-
dard deviation of stress over this time interval. (c, d) Evolution
of the stress as a function of the deformation, during the startup
flow. (c) Experimental data for φ = 0.62 and for different shear
rate values, increasing from bottom to top: γ̇ = 2.5 × 10−4, 5 ×
10−4, 10−3, 2.5 × 10−3, 5 × 10−3, 10−2 s−1. Continuous curves are
adjustment with the Generalized Maxwell Model. (d) Numerical
data for φ = 0.627 and γ̇ = 3 × 10−4, 6 × 10−4, 1.5 × 10−3, 3 ×
10−3, 6 × 10−3, 1.5 × 10−2, 3 × 10−2, 6 × 10−2, 1.5 × 10−1, and
3 × 10−1 s−1. Inset of (c) and (d): Evolution of the elastic modulus
as a function of the volume fraction. The dashed lines are power-law
adjustments, leading to G0 ∝ φm, with m = 14 for the experimental
data and m = 16 for the numerical data.

measurements are done in a cone-plate geometry of radius
12.5 mm and angle 2◦. In a typical experiment, the sample
is first rejuvenated by the application of an oscillatory defor-
mation of amplitude γ = 400% and frequency 1 Hz for 300 s.
Then, the system is let at rest for tw = 600 s and the mea-
surements are started. During all the experiments we follow
a deformation protocol with a quasiconstant absolute value of
the shear rate. In order to avoid inertia effects and to make
sure that each measurement is corresponds to an equilibrium
stress value, we apply a deformation protocol that follows
a series of steps. The strain is incremented or decremented
by a constant value, δγ = 5 × 10−3, separated by a constant
time δt [Fig. 1(a)]. An example of stress evolution after the
application of strain step is given in Fig. 1(b). The rheome-
ter response reaches equilibrium after time of the order of
3 × 10−1 s, and stress measurements are performed for times
longer than 5 × 10−1 s. We then define the effective shear rate
as γ̇ = δγ /δt whose absolute value is kept constant during
an experiment. Given the time of stress equilibration after a
strain step, the maximum shear rate available is 10−2 s−1. The
maximal deformation amplitude γmax is varied between 0.03
and 0.2.
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C. Simulations

In order to get the suspension microstructure, we perform
molecular dynamic simulations using LAMMPS. We con-
sider a binary mixture of particles, denoted A and B, that
interact through an inverse power-law potential. Experimental
measurements of the evolution of the elastic modulus with
the volume fraction allows to infer the interaction potential
between the particles, which is well described by [24]

Uαβ (ri j ) = kBT

(
σαβ

ri j

)42

, (1)

where α, β = A, B, and ri j is the distance between two par-
ticles. We choose σAA = 1 and σBB = 0.876. Assuming that
the interactions are additive, the cross characteristic length
scale is equal to σAB = 0.938. Particles are subjected to an
overdamped Langevin dynamics at T = 1.0 with a damping
parameter ξ = 4.0. The time step is fixed to δt = 10−3. The
shear rate value is determined so that the experimental and
numerical Péclet numbers are identical. We have

Pe = γ̇ τB = γ̇
R2

D
= γ̇

Rξ

kBT
. (2)

The experimental Péclet number is equal to 3 × 10−3, and
the numerical shear rate is chosen in order to match the Péclet
number obtained with Eq. (2), taking into account the largest
particles, of radius RAA = 0.5. This leads to the numerical
shear rate value: γ̇ = 1.5 × 10−3. Simple shear deformation
is obtained by the application of a succession of strain incre-
ments, δγ during times δt , to the cubic box of size L. At each
time step, the positions of the particles are updated according
to x′ = x + δγ y, y′ = y, and z′ = z. Then, the system is al-
lowed to relax through viscous dissipation during time interval

t . The applied shear rate is defined as γ̇ = δγ


t .
Cyclic shear experiments are performed, during which

the simulation box is strained up to a value γ = γmax.
Then the shear is reversed, i.e., the strain increment is −δγ ,
and the system is deformed up to γ = −γmax. Finally the
cycle is completed by the application of shear in the positive
direction back to γ = 0.

To compare the numerical simulations with the exper-
iments, we have to consider equivalent packing fractions.
To this aim, we use predictions of the mode coupling the-
ory to estimate the packing fraction φc = 0.585 at which
the breakdown of ergodicity occurs. We then determine the
relevant packing fractions φ from the separation param-
eter ε = φ−φc

φc
. As a result, we numerically consider φ ∈

{0.607, 0.617, 0.627}, corresponding to the experimental vol-
ume fractions {0.60, 0.61, 0.62}. Throughout this work, we
consider for each packing fraction 50 samples of size L = 60.

To characterize the anisotropy of the suspension, we con-
sider the fabric tensor F which has been used successfully for
instance in granular media and in silica or metallic glasses to
track residual anisotropy during cyclic shearing [31].

Microstructure-based rheological models [32], which aim
at deriving the flow properties of suspensions from their
microstructure, use tensorial descriptors of the suspen-
sions microstructure, such as the fabric tensor [33]. This
approach is well suited to describe the flow behavior of non-
Brownian suspensions and has also been used to describe the

deformation properties of Brownian concentrated suspen-
sions. In particular when the interactions between the colloidal
are attractive, their structure is strongly anisotropic and the
fabric tensor allows to monitor the structure of the network
formed by the attractive colloids submitted to shear [30,34],
and to describe the structure of the contacts [35,36] or the
structure of the stresses at contacts [37] between colloids in
concentrated suspensions.

Following [31], we define the local fabric tensor as

F (i) = 1

Nnn

∑
i, j∈n.n

ri j

ri j
⊗ ri j

ri j
, (3)

where
∑

i, j∈n.n denotes the sum taken over the nearest neigh-
bors of particle i and Nnn is the number of nearest neighbors.
The global fabric tensor is consequently expressed as

F = 1

N

N∑
i=1

F (i). (4)

The global fabric tensor F can be diagonalized, and its
eigenvalues λ1, λ2, and λ3 measure the degree of isotropy in
the x, y, z directions. For a fully isotropic system one expects
λ1 = λ2 = λ3 = 1

3 . We define the scalar quantity α which
quantifies the degree of anisotropy [31]:

α = 3

2

√√√√ 3∑
k=1

(
λk − 1

3

)2

. (5)

For a fully isotropic (resp. anisotropic) system, α = 0
(resp. α = 1).

D. The Generalized Maxwell Model

We use the Generalized Maxwell Model proposed by
Voigtmann et al. [38,39] in order to fit our experimental
data. This model is based on the Integration Through Tran-
sients [40] description of the flow of glassy systems and
allows for an analytic expression of the σ (γ ) flow curve. It
is first assumed that the stress may be expressed as an integral
over the past applied shear rates, which involves a memory
function, G(t, t ′):

σ (t ) =
∫ t

−∞
dt ′γ̇ (t ′)G(t, t ′), (6)

where G(t, t ′) depends on the applied deformation history. It
is written as

ν0

[
1 −

(
γ (t, t ′)

γ ∗

)2]
e−( γ (t,t ′ )

γ ∗∗ )
2

e− (t−t ′ )|γ̇ |
γc . (7)

The model thus involves four parameters. ν0 is the elastic
modulus at startup flow when γ −→ 0, γc/|γ̇ | is the charac-
teristic shear-induced relaxation rate value, and γ ∗ and γ ∗∗
capture the distribution of the shear-induced relaxation rates
over different length scales. In particular, it should be noted
that this expression of the memory function allows G(t, t ′) to
take negative values, depending on the relative values of γ ∗
and γ ∗∗.
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FIG. 2. Evolution of the stress maximum at the overshoot (a) and
of the overshoot stress relative to the stress at high shear rate (b) as
function of the applied shear rate for φ = 0.62 (experimental data,
•) and for φ = 0.627 (numerical data, �). (a) The lines are power-
law adjustments of the data, leading to σover ∝ γ̇ α with α = 0.14
(continuous line, experimental data) and 0.16 (dashed line, numerical
data).

This model has been shown to exhibit a well-defined stress
overshoot and yields a hysteresis behavior when the deforma-
tion is reversed.

III. STARTUP FLOW AND ELASTO-PLASTIC
TRANSITION

Let us consider the startup flow curve of suspensions of
volume fractions 0.60, 0.61, and 0.62 under the application
of a constant shear rate [Fig. 1(a)]. At low deformations, the
response is linear, and the elastic modulus is obtained and
plotted in the inset of Fig. 1(a). The elastic modulus G′ at low
deformation may be compared to the modulus obtained for
suspensions of PMMA particles. We have, at φ = 0.60, G′

0 =
9.8 Pa = 11.6 kBT

〈R〉3 Pa, close to the value 7.5 kBT
R3 obtained for

PMMA particules suspensions of identical concentration [41].
Moreover, we have G′ ∝ φm with m = 14 [Fig. 1(a) inset], in
agreement with measurements of Schneider [24] for a similar
system where m = 14 − 17 was reported.

Then after yielding, characterized by stress overshoot, a
plateau value of the stress is reached, corresponding to the
flowing state. The numerical results obtained for the corre-
sponding conditions are also given in Fig. 1(b). The evolution
of the maximum stress value, σover, from both experiments and
numerical simulations is given in Fig. 2(a). The amplitude of
the stress overshoot increases when the shear rate increases:
during a given amount of time, more stress is relaxed under
a lower shear rate. The overall set of flow curves may be
adjusted by the Generalized Maxwell Model. In particular
the memory function exhibits negative values, that allow for
the description of stress overshoot. The amplitude and the
position of this negative value is controlled by the parameters
γ ∗ and γ ∗∗. These parameters are slightly varied between
adjustment curves at different shear rates and are respectively
equal to 0.074 ± 0.013 and 0.092 ± 0.012.

The evolution of the stress overshoot amplitude as a func-
tion of the shear rate is well described by σover ∝ γ̇ α with
α = 0.14 for the experimental data and α = 0.16 for the
simulations. This value is close to the exponent obtained
for attractive carbopol gel particules where shear banding is

FIG. 3. Stress as a function of the deformation during the first
cycle of deformation: the deformation is increased from 0 to γmax,
then decreased from γmax to −γmax, and increased back from −γmax

to 0 at a constant absolute value of the shear rate. (a) Experimental
data for φ = 0.62 and γmax = 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15,
0.17, and 0. 20. The continuous black lines are adjustment of the data
with the Generalized Maxwell Model using a single set of parameter
values for all cycles. The thick segments are linear adjustment of the
σ (γ ) curves around zero stress, after flow reversal, from which the
effective modulus, Gback is computed. (b) Numerical data for φ =
0.627 and for the corresponding set of γmax values as experimental
data.

observed [8]. Although we do not have access to experimental
measures of the local particle velocity, the numerical simula-
tions do not exhibit any signature of shear banding, and the
computed shear rate is constant through the gap of the cell.
One may also consider the amount of excess stress stored at
yielding, relative to the stress corresponding to the maximal
sheared state, under plastic flow, that is, (σover − σ∞)/σ∞.
Experimental and numerical results are given in Fig. 2(b).
This measures the ability of the system to store stress relative
to the stress value of the suspension under a fully developed
flow. At low shear rates, (σover − σ∞)/σ∞ increases with the
shear rate, reflecting the fact that the suspension is able to
store more stress, but at higher shear rates the suspension
cannot deform more than in the fully developed flow and the
stress excess saturates. Our data are consistent with the results
obtained in [42], where the evolution of the stress also exhibits
a saturation of excess of stress at high shear rates.

IV. FLOW REVERSAL BEHAVIOR

Let us now consider the flow behavior after flow reversal.
The suspension is first submitted to a constant shear rate
γ̇ = 5 × 10−3 s−1 up to a deformation value γmax and then to
a reverse flow of same shear rate. The evolution of the stress is
given in Fig. 3, for φ = 0.62, both experimental results (a) and
numerical results (b) are given. A strong hysteresis behavior
is observed, already reported in athermal systems [43]. The
stress-strain relationship after flow reversal is markedly dif-
ferent from the startup flow curve. One gets a strong reduction
of the stress overshoot. Adjustment of the reverse flow curves
may be obtained from the GMM model using the parameters
determined from the adjustment of the startup flow curve, and
reproduce the reversal flow behavior. In order to understand
this reduction, we consider the memory function G of the
GMM model. As already discussed, during the startup flow,
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FIG. 4. (a, b) Evolution of the effective modulus, measured as
the slope of the σ vs γ curve when the stress is null, after flow
reversal [see Fig. 3 for experimental systems (a) and numerical
systems (b)] as a function of the maximum deformation applied,
γmax. In (a) dashed lines are the evolutions of Gback obtained from the
adjustment of the experimental data with the Generalized Maxwell
Model (see also Fig. 3). The horizontal thick lines correspond to the
elastic modulus at rest, defined as the slope of the startup flow curves
when γ −→ 0 [in (a), continuous lines: experimental data, dotted
lines: GMM data). (c, d) Evolution of the area of the hysteresis cycles
as a function of their maximum amplitude γmax. Vertical dashed line
indicates the γ value at the stress overshoot, γover. Continuous lines
are linear adjustments of the data for γ values larger and smaller
than the deformation at stress overshoot. Three volume fractions are
studied, increasing from black to gray: φ = 0.60, 0.61, and 0.62 for
the experimental system and φ = 0.607, 0.617, and 0.627 for the
numerical system.

the memory function exhibits negative values responsible for
the stress overshoot; upon flow reversal, the memory is erased
by the e−γ /γc factor, and the overshoot is reduced.

Experimental and numerical results exhibit a softening of
the suspensions upon flow reversal [Figs. 4(a) and 4(b)]. We
compute the effective shear modulus Gback as the slope of the
stress vs strain curve when the total stress gets back to zero
[the slope is plotted in Fig. 3(a)]. This effective modulus upon
shear reversal is smaller than the elastic modulus at rest and
decreases when the maximum applied amplitude increases,
reaching a plateau value at large γmax. This trend is well repro-
duced by the Generalized Maxwell Model. Nevertheless, at
the highest studied concentration, the amplitude of the decay
is strongly overestimated by the model. More precisely, the
GMM cannot describe quantitatively both the value of the
overshoot and the amplitude of the reduction of the apparent
elasticity after flow reversal, and a slight overestimation is
also visible for the other volume fractions. This indicates that
the model does not capture the overall relaxation mechanisms
that play a role in the nonlinear response of the suspension, in
particular at the largest volume fractions.

Another characteristic feature of the nonlinear behavior of
the response is its hysteretic behavior. The area enclosed by
the hysteresis curves is represented in Figs. 4(c) and 4(d).
At low maximal deformation amplitudes, the area enclosed
by the hysteresis curves is close to zero, and the response is
close to purely elastic. Then, with increasing value of γmax,
the amplitude enclosed by the curves increases. Moreover the
experimental evolution of the area as a function of γmax ex-
hibits two behaviors, corresponding to γmax larger or smaller

FIG. 5. Results obtained from the numerical simulations.
(a) Evolution of the stress (left axis, continuous lines) and of the
xy component of the fabric tensor (right axis, dashed line) for a sus-
pensions of volume fraction 0.627 submitted to cycles of maximum
amplitudes γmax = 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, and
0.20. Both quantities, stress and fabric tensor, are normalized to their
maximal values.(b) Stress as a function of the xy component of the
fabric tensor, Fxy for γmax = 0.2. The continuous line is an elliptic
adjustment of the data. Inset: Stress as a function of Fxy during the
initial stress increase. The continuous line is a linear adjustment of
the curve for small stress values, up to σ = 3 Pa. (c) Evolution of the
phase ϕ (in degrees) between the stress and Fxy, deduced from the
elliptical adjustment of the σ (Fxy ) curve.

than the deformation at which the overshoot is observed,
γover: at large maximum deformation values, the enclosed area
increases slower than at smaller deformations, which may be
understood as the fact that the stress reaches a constant value
at high γmax. This behavior is not recovered in simulations,
where the slope of the area as a function of γmax does not
decrease at γover. This is due a slight difference in the width of
the hysteretic response at small deformation amplitudes.

These results show that, even though flow nonlinearities are
qualitatively explained by a simple model of the relaxation
mechanisms and may be reproduced by numerical simula-
tions, the exact dissipation mechanisms require a more precise
description of the interaction potential between the particles
and a more refined relaxation spectra.

V. MICROSCOPIC INTERPRETATION

To understand the microscopic origin of the Bauschinger
effect in the colloidal suspensions, we follow the anisotropy
during the deformation and, in particular, we use numerical
simulation to characterize the possible differences between
states when no constraint is applied on the systems, i.e.,
σ = 0. As we perform simple shear in the xy plane, we first
look at the evolution of Fxy, the xy component of the fabric
tensors with strain. The hysteresis cycles of the stress and
of the xy component of the fabric tensor, Fxy, are plotted in
Fig. 5(a), for a series of shear maximum amplitudes, γmax. Fxy

follows a similar hysteretic cycle as the stress: at low ampli-
tudes, the anisotropy increases linearly with the deformation
and takes the same values when the shear is reversed. When
the amplitude increases, stress overshoot develops and corre-
sponds to an overshoot of the anisotropy of the microstructure.
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Nevertheless, the evolution of Fxy as a function of the defor-
mation is delayed, when compared to the evolution of the
stress. In particular, after flow reversal, whereas the overall
stress comes back to a null value, the microscopic structure
still exhibits an anisotropy characterized by a positive value
of Fxy. The suspension has not relaxed back to its equilibrium
isotropic structure, and it might be expected that a different
linear response is obtained.

By plotting the evolution of Fxy with the stress [Fig. 5(b)],
one may quantify the delay of the microstructure anisotropy
relative to the stress. At startup flow, during the initial stress
increase, the stress linearly increases with Fxy up to the stress
overshoot [Fig. 5(b) inset]. At the overshoot, the stress follows
a sublinear increase with Fxy, and, when the strain is reversed,
it evolves according to an ellipse [Fig. 5(b) main graph],
which may be described as

σ = σ 0 cos ωt, (8)

Fxy = F 0
xy cos(ωt + ϕ), (9)

where ω = 2π
4

γ̇

γmax
, γmax being the maximum shear applied

during a cycle. This defines ϕ, the phase between the stress
and the xy component of the fabric tensor. The ellipse param-
eters are obtained by singular value decomposition of the data,
and the results are given in Fig. 5(c) where ϕ is plotted as a
function of the maximum applied deformation. It increases
during the initial startup flow phase until the deformation
corresponding to the stress overshoot and then remains con-
stant as a function of the maximum applied deformation. This
corresponds to the observation of the decay of the effective
modulus, which decays at low maximum shear amplitudes
and reaches a plateau at γ ≈ 0.1. This indicates that the
Bauschinger effect is associated with a phase lag between the

stress and the deformation that builds up during the initial
startup flow and remains constant when under the established
plastic flow regime.

VI. CONCLUSION

Concentrated colloidal suspensions exhibit a rich flow
behavior, and their mechanical properties depend on the pre-
viously applied stress. In particular, after flow reversal, the
deformation is not reversible. This leads to a hysteresis curve
in the σ (γ ) plane whose area is the energy dissipated during
a cycle. Moreover, the shape of the hysteresis curve does not
possess a central symmetry relative to the nondeformed state
at zero stress, and shearing in an opposite direction leads to a
different response from the deformation in the direction from
a rest state: the stress overshoot disappears and the apparent
elastic modulus is reduced after flow reversal. These observa-
tions are in agreement with numerical simulations [39], and
our own simulations show that the anisotropy of the suspen-
sion microstructure is retarded relative to the macroscopic
stress after flow reversal.
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