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Percolation transition in phase-separating active fluid
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The motility-induced phase separation exhibited by active particles with repulsive interactions is well known.
We show that the interaction softness of active particles destabilizes the highly ordered dense phase, leading to the
formation of a porous cluster which spans the system. This soft limit can also be achieved if the particle motility
is increased beyond a critical value, at which the system clearly exhibits all the characteristics of a standard
percolation transition. We also show that in the athermal limit, active particles exhibit similar transitions even at
low motility. With these additional new phases, the phase diagram of repulsive active particles is revealed to be
richer than what was previously conceived.
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I. INTRODUCTION

Active matter systems consist of microscopic entities that
consume chemical energy and convert it to mechanical mo-
tion [1–18]. Such systems display a variety of collective
properties as a result of the interplay between the activity
and the nature of interactions between the constituent enti-
ties [18–35]. Minimal theoretical models used to study the
collective behavior of active matter belongs to two major
categories. The first one involves purely alignment inter-
action between the active polar entities and leads to an
emergence of global polar order [2,36–41]. The second class
of models study the effect purely excluded volume inter-
actions between the entities leading to a phase-separated
state [21,22,35,42,43], known as motility-induced phase sepa-
ration (MIPS). Unlike the systems with alignment interaction,
the structural properties of the phase-separating systems have
been so far known to be relatively simpler.

MIPS has received much attention during the last decade
and have been studied extensively using particle-based sim-
ulations [22,42,43] and continuum descriptions [21,35,44].
The generic phase behavior for nearly hard particles with
short-range repulsive interactions has been explored in
some detail [22,42,43]. However, many of the dynamical
properties, especially in the dense phase, are still being
revealed [23,28,33]. Also, subtle modifications in the sur-
rounding environment and the interparticle interactions lead
to a range of intriguing collective properties [29,45–50], thus
making such phase-separating systems still an interesting
topic of research.

Numerical studies on MIPS have focused on systems
where overlap distance between the particles are small but
nonzero [22,45]. In such systems, an increase in motility
causes a more compact hexatic packing of particles within
the clusters, stabilizing the dense phase. On the other hand,
it has also been shown that a higher degree of particle over-
lap leads to a destruction of MIPS as the particles can pass
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through each other [51]. But there lies an interesting regime
where the overlap is significant while the particles still do not
pass through. Such systems have been studied earlier in the
equilibrium limit and were observed that a change in particle
softness affects the high-density crystalline order [52,53]. Re-
cent experiments with two-dimensional (2D) passive colloids
have revealed that an increase in the particle softness causes
complex self-assembled structures [54]. A natural question
thus arises, whether such emergent complex structures are
also possible for systems with soft active particles. This soft
limit is particularly relevant since many active systems occur-
ring in nature consist of deformable entities, for example, cells
in tissues. Furthermore, since the numerical studies on phase
separation have used soft particle models, it would be interest-
ing to study the high-motility soft limit where the interparticle
distances are small, to explore the possibilities of new phases
beyond MIPS, and to obtain a complete understanding of their
phase behavior.

Here we show that for a given particle softness, there exists
a critical value of motility for soft active particles, beyond
which the structurally ordered high-density cluster in MIPS
becomes unstable, leading to the formation of porous, con-
nected clusters which spans the system size. Our detailed
analysis reveals that the transition to this connected state is
caused by an interplay between motility and particle softness
and shows all the characteristics of a standard percolation
transition.

II. MODEL

Our numerical model consists of N active Brownian
particles (ABPs), at position ri with the direction of self-
propulsion n̂i = (cos θi, sin θi ) respectively, confined in 2D
periodic boundary system of box length L. The dynamical
equations of motion are given by the overdamped Langevin
equation as [42]

ṙi = μ
∑

j

F(ri j ) + vpn̂i, (1)

θ̇i = ξR
i . (2)
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Here vp is the self-propulsion speed and μ is the mobility.
The Gaussian white noise ξR

i with mean zero and variance
2Dr satisfies the relation 〈ξR

i (t ) ξR
j (t ′)〉 = 2 Drδi j δ(t − t ′),

where Dr is the rotational diffusion coefficient. The repul-
sive force between a pair of particles is given as F(ri j ) =
k(σ − ri j )r̂i j ; ri j < σ and zero otherwise. Here σ is the in-
teraction diameter of the particle, k is the elastic constant that
controls the stiffness of the particles, and ri j = |ri − r j |. We
use the nondimensional number Pe = vp

σDr
(Péclet number) as

a parameter to vary particle motility. We also define k̃ = μk
Dr

as the nondimensional effective stiffness parameter. We keep
Dr = 0.005, μ = 1, σ = 1, while varying k from 5 to 40. We
also vary Pe from 0 to 3000 and N from 3649 to 233 546.
The integration time step �t = 10−3. The packing fraction
φ = Nπ σ 2

4L2 varies from 0.1 to 0.8.

III. RESULTS

To quantify the phase behavior systematically, we calcu-
late two quantities which characterize macroscopic order as
a function of Pe and φ and for a fixed particle stiffness k̃.
First we compute the global hexatic order parameter ψ6 =
〈| 1

N

∑N
i=1 φ6i|〉. Here φ6i = 1

Nb

∑
j∈Nb

e6iθi j , quantifies the local
hexatic order in the system. Here θi j is the angle between
the distance vector ri j and the reference axis, and Nb is the
total number of neighbors for a particle i obtained by Voronoi
tessellation. Next, we also calculate the largest cluster fraction
fL = 〈Cm〉/N , where Cm is the number of particles in the
largest cluster. Here a pair of particles i and j forms a cluster
if ri j < σ .

A. Phase behavior

The results are shown in Fig. 1 for k̃ = 2000. In the phase
diagram [Fig. 1(a)], the color map indicate the global hex-
atic order (ψ6). The dotted lines represent the contours for
fL = 0.2, 0.4, and 0.6 which demarcate the parameter range
where large clusters are formed. In the case of MIPS, ψ6 ≈ 1
and fL > 0.6 as evident in Fig. 1(a) (for example, point B). In-
terestingly, there also exists a well-defined region in the phase
diagram with large fL and small ψ6—for example points A
and C in Fig. 1(a). The structural properties in these regions
are quite different from MIPS as evident from Figs. 1(b)–1(d),
where the typical configurations of the largest cluster at the
steady states are plotted. While both regions A and C show a
porous structure similar to a percolated state, region B shows a
single dense state as usually seen in MIPS. To further confirm
the structural difference between these regions, we overlay the
local hexatic order φ6i on the steady-state full configuration
as shown in Figs. 1(e)–1(g). While region B shows large φ6i

within the dense phase [Fig. 1(f)] which is a signature of
MIPS, both regions A and C lack this property. However,
unlike region C, region A shows small patches of large φ6i

values due to the formation of local clusters. Note that the
origins of these two states are different. The porous cluster
seen in region A is due to an increase in the contact probability
caused by low but nonzero motility and occurs with minimal
particle overlap. On the other hand, the high-motility porous
clusters in region C appears after the breakdown of MIPS
with enhanced particle overlap (see Fig. 5). This difference

FIG. 1. (a) Contour map of the hexatic order parameter ψ6 in
the (Pe-φ) plane. The dotted lines indicate the parameters for which
mean largest cluster fraction fL has values 0.2 (black), 0.4 (gray),
and 0.6 (white). A ≡ (5, 0.6), B ≡ (50, 0.7), and C ≡ (300, 0.7) are
three representative points in the (Pe-φ) plane whose phase prop-
erties are further compared. [(b)–(d)] Steady-state configuration of
the largest cluster at the locations A, B, and C respectively. [(e)
and (f)] The corresponding steady-state snapshots for the complete
system. Color code of the particles represents the local hexatic order
φ6i. [(h)–(j)] Corresponding distribution of the local density φloc. For
our simulations we used N = 104 particles. The stiffness parameter
k̃ = 2000 for all the figures.

between A and C is further evident in Figs. 1(h) and 1(j) where
we plot local density distribution P(φloc). While P(φloc) for
both regions A and C are unimodal, the distribution in region
A [see Fig. 1(h)] is clearly assymmetric. This asymmetry in
the distribution is a reflection of limitation of the system to
form dense local regions, due to low motility. Thus, it is
evident that these two porous regions are distinct at the level of
local structure. We later show that the porous structure at low
Pe [Fig. 1(b)] is an exceptional feature and disappears in the
presence of translational thermal noise. The local density dis-
tribution for region B displays a bimodal behavior [Fig. 1(i)]
as expected from a MIPS state [43].

B. Analysis of transitions

It is evident from Fig. 1 that the system goes through mul-
tiple transitions at large φ with increase in Pe. Furthermore
the porous structures formed at both high and low Pe are
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FIG. 2. (a) Semilog plot of the mean largest cluster fraction fL

and the average linear extension of the largest cluster dL , and sus-
ceptibility χL (inset) as a function of the Pe at a constant φ = 0.7.
Regions I, II, and III indicate different transition regions. Panels (b)–
(d) showed the finite-size scaling of order parameter (b) fL , (c) dL ,
(d) χL , and (e) the spanning probabilities Sx and Sy with system size
L = 128, 256, 512, 1024. The collapse occurs for exponent values
ν ≈ 1.33, β ≈ 0.14, and γ ≈ 2.5. Pec ≈ 550 as estimated from the
fourth-order Binder cumulant.

reminiscent of a percolated state. For a closer analysis, we fix
the density at φ = 0.7 and study the system properties with
Pe. In addition to fL, we also calculate the normalized average
linear extension of the largest cluster dL [see Fig. 2(a)] [55].
For low Pe [region I in Fig. 2(a)], both fL and dL increases
from zero around Pe ≈0.5, indicating the formation of a large
space-filling cluster. This initial increase in both fL (and dL)
at small Pe is mainly due to an increase in probability of the
particles to make contact with its neighbors as the particle
becomes motile. However, in the presence of a translational
noise, this cluster formation shifts to a higher Pe (see Fig. 10).
On further increasing Pe, we obtain a MIPS state around
Pe ≈ 20. Note that fL does not capture this transition since its
value is already large; however dL shows a decrease from its
maximum value 1, since the cluster is no longer space-filling.
Interestingly, at even larger Pe (Pe �100), both fL and dL start
to decrease until they reach a minimum around Pe ≈ 200,
indicating a reduction in cluster size. Both fL and dL again
reaches a broad maximum around Pe ≈400 beyond which
it starts to decrease again. These changes in fL, marked as
regions II and III in Fig. 2(a), indicate structural transitions
in the system. To further investigate these possible transitions,
we also calculate the susceptibility χL = L2σL as a function

of Pe [see inset of Fig. 2(a)], where σL =
√

〈( fL − 〈 fL〉2)〉
is second cumulant. We see clear peaks in χL in regions I
and III, whereas in region II the peak amplitude is relatively
small.

The peaks in χL is an indication of phase transitions at
these regions and each of these transitions corresponds to a
structural change (see Fig. 6). The first transition (region I)
corresponds to a change from a state with fL ≈ 0 to another
state with fL ≈ 1 where the system forms a porous, space-
filling cluster [see Figs. 1(b) and 1(e)]. Around Pe ≈ 20, the
system goes through a structural transition to a MIPS state
[see Fig. 9(a)]. After the MIPS transition, there is a gradual
increase in the local density within the dense cluster with Pe
[see Fig. 9(a)], indicating an overall decrease in the cluster
area. There is also a systematic increase in the number of
defects and an overall decrease in the global hexatic order [see
Fig. 9(b)–8(d)]. Around Pe ≈300, the MIPS state dissolves
into a porous, space-filling cluster [Fig. 9(a)]. The observed
dip in fL and peak in χL in region II is associated with this
structural change. Further increase in Pe leads to yet another
structural transition at Pe > 1000, where the space-filling
cluster breaks up into a large number of smaller clusters. A
peak in χL at region III captures this transition. To test the
robustness of the transitions, we have also studied the system
in the presence of translational noise of thermal origin. This is
characterized an additional noise term ξi(t ) in Eq. (C1), such
that 〈ξi(t )ξ j (t ′)〉 = 2 Dδi j δ(t − t ′), where D = σ 2Dr

3 . We note
that the transition captured by fL and χL at low Pe disappears
completely, while the transition to MIPS state is now clearly
identified (see Fig. 10). The transitions at high Pe beyond
MIPS (II and III), however, remain unaffected (see Fig. 10).
This clearly indicates that while the transition at low Pe is also
a function of temperature, the transitions seen beyond MIPS
are purely dependent on the interplay of the strength of the
nonequilibrium forces and the interaction softness.

The transition in region III is particularly interesting as
it shows the traits of a conventional percolation transition
over a wide range of Pe and is robust to thermal fluctuations.
To verify the existence of a percolation transition, we also
calculate the spanning probability of the largest cluster, Sx

and Sy in both x and y directions respectively. We further
perform a finite-size scaling for L = 128, 256, 512, and 1024.
For a standard percolation transition, the order parameter
fL and the susceptibility χL should satisfy the scaling rela-
tions fL = L−β/ν f ((Pe − Pec)L1/ν ) and χL = L−γ /νg((Pe −
Pec)L1/ν ), respectively [56]. Here Pec is the critical parameter
value at the transition point, and β, ν, and γ are the universal
exponents. To determine the Pec we calculate the fourth-order

Binder cumulant UL = 1
2 (3 − 〈d4

L 〉
〈d2

L 〉2 ) for different L and find
that the crossing point is at Pec ≈ 550 (see Fig. 8). Using
this Pec we scale fL, dL, and χL, and Sx/y values and find a
good collapse with L, for the exponents ν ≈ 1.33, β ≈ 0.14,
and γ ≈ 2.5 [see Figs. 2(b)–2(d)]. These critical exponents
are in good agreement with the known universal exponents
for standard 2D percolation [57]. We also quantified the error
in the estimation of Pec value which was � 5%. Thus, the
scaling of the measured quantities and the values of the critical
exponents confirms that the transition in region III is indeed a
percolation transition.
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FIG. 3. (a) Cluster size distribution C(n) at Pe = 550 showing
a power-law decay with exponent τ ≈ −2.05. (b) Correlation di-
mension (dC), measured inside the largest cluster for systems with
fL > 0.4, as a function of Pe.

Percolation transitions are also associated with a scale-
free size distribution of the clusters. We therefore calculate
the cluster-size distribution C(n) near the transition point in
region III. As shown in Fig. 3(a), we see a clear power-law be-
havior, extending over several decades of length scale. We find
that C(n) ∼ n−τ , where τ ≈ 2.05. This value is also consistent
with the predictions for percolation transitions in 2D [56,57].
Note that the peak seen at large n is due to finite system size
which scales as N (see Fig. 11).

We also quantify the porosity of the clusters at high-Pe
regions (Pe � 100) by calculating the correlation dimension
(dC) of the largest cluster [58–60]. The correlation dimension
(dC), being closely related to the fractal dimension [60], pro-
vides the information of the change in porosity of the largest
cluster with change in particle motility. At Pe ≈ 100, the
system has already formed a dense cluster due to MIPS where
we obtain dC ≈ 1.95. On increasing the Pe, the MIPS cluster
in the MIPS state becomes porous near its surface, leading to
a sharp decrease in dC , as shown in Fig. 3(b). With further
increase in Pe its internal structure becomes porous, which
leads to a monotonic decrease in dC .

C. Effect of interaction softness

Finally, we study the effect of interaction softness on the
phase properties by varying the stiffness constant k̃ keeping
Pe constant. In Fig. 4 we plot fL and χL (inset) as a function
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FIG. 4. The largest cluster fraction fL as a function of stiffness
parameter k̃ for different Pe values. Scaling the k̃ axis with Pe−1

causes the data to collapse into a single curve. The corresponding
scaling for susceptibility (χL) is shown in the inset.

of k̃ for different values of Pe. Interestingly, the transitions
observed earlier in region II and III, with variation of Pe, are
seen here as well but in the reverse order, when k̃ is increased.
For each Pe we also see the formation of MIPS when k̃ is
sufficiently large. Interestingly, when we scale the k̃ axis with
Pe−1, the fL plots for different Pe collapse to a single curve
(see Fig. 4). The same scaling applies for χL as shown in
the inset of Fig. 4. A similar scaling also applies for the fL

vs Pe curve for different k̃ values, as expected (see Fig. 12).
Thus it is evident that an increase in Pe effectively makes the
interparticle interactions softer and an increase in motility is
equivalent to decreasing the interaction stiffness. This scaling
behavior can be further understood in terms of the effective
distance r0 between the particles [61]. When k̃ is decreased,
the softening of interaction will lead to a linear decrease in
r0. We numerically estimate r0 for different Pe from the dis-
tribution of interparticle distances ri j for pairs of interacting
particles. The computed values of r0 shows that in the limit
of both high and low Pe, an increase in Pe will also cause a
similar linear decrease in r0 [see Fig. 13(c)]. Within the MIPS
phase (Pek̃−1 	 1), an approximate estimate shows that this
linear dependence is of the form r0 ≈ [1 − (Ck̃)

−1
Pe], (C is

a constant, see Appendix F) [61]. We also calculate the cutoff
distance rc below which p(ri j ) is negligible (see Appendix F).
We find that rc also follows a similar linear decrease with Pe,
similarly to r0, in both high- and low-Pe limits [Fig. 13(c)]. We
also note that even for Pe ≈ 2Pec there is a significant nonzero
excluded distance for a pair of interacting particles as verified
directly from the simulations, indicating that the particles do
not pass through each other in region III.

IV. SUMMARY AND OUTLOOK

In summary, we show that the softness plays a crucial
role in determining the phase behavior of active particles,
which appears to be much richer than what was conceived so
far. It was believed that the ordered state of active Brownian
particles with short-ranged repulsive interactions is relatively
simple, where an increase in particle motility leads to a density
ordering in the system and the destruction of this ordered
state was attributed to particle crossing [51]. However, other
active matter systems with orientational ordering have shown
more complex density effects, such as coarsening [62] and
percolation transitions [55]. Here we have shown that complex
structural effects can also be observed in systems without
orientational ordering, purely driven by high particle motility
and softness.

We have characterized the transition at high motility, by
combining multiple quantities, namely the mean largest clus-
ter fraction fL, the linear extension of the largest cluster dL,
the susceptibility χL, and spanning probabilities Sx/y. We per-
formed finite-size scaling of these quantities to confirm that
the transition is a standard percolation transition.

We have shown that during this particular transition, motil-
ity acts as an effective softness parameter and the structural
properties can be scaled with Pe−1. Therefore, the structural
transitions that we observe is a softness induced one. When Pe
is small, there exists another porous state, which disappears
in the presence of translational noise. This porous network,

034605-4



PERCOLATION TRANSITION IN PHASE-SEPARATING … PHYSICAL REVIEW E 106, 034605 (2022)

FIG. 5. Plots of steady-state configurations for the entire system at different Pe values of 2.5, 50.0, 500.0, and 1000.0, as well as plots
zoomed in on small sections; the color of each particle shows the value of the local hexatic order |φ6i|

unlike the percolated structure at large Pe, has small domains
of high local hexatic order.

We note that the specific scaling form, Pe−1k̃, is a conse-
quence of the harmonic interaction potential, causing a linear
decrease in minimum interparticle distance within the clus-
ters, with increase in motility. Deviations from this scaling
form are expected if a different form of interaction potential
is used, e.g., in many earlier studies, the potential diverges
as r → 0 [22,43,61]. Although we use a nondiverging poten-
tial, we observe that finite excluded region for interparticle
distances vanishes only at very high motility (Pe > Pec).
Thus, we believe that the percolation transition observed at
high motility is possibly a generic feature of active particles
with soft interaction. However, these results are relevant for
systems with rare particle crossings such as cells in tissues.
Thus, we show that when we go beyond the idealized hard-
particle interactions, new collective properties can arise in
active Brownian systems. These findings are particularly im-
portant, since most of the natural systems does not consist
of hard particles. Our study is also relevant in the context
of recent interests in self-assembly of soft colloidal particles
[54].
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APPENDIX A: COMPARISON OF DIFFERENT
STRUCTURE

In Fig. 1 in the manuscript, we have compared the differ-
ent phase space behavior, particularly the differences of the

porous networks at high and low motility, as their difference
with MIPS. Here we zoom into small scales to compare the
structural differences. This is shown in Fig. 5.

APPENDIX B: DETAILED ANALYSIS OF TRANSITIONS

We analyze the phase behavior of active Brownian par-
ticles by calculating various order parameters, averaged at
the steady state. The fraction of largest cluster fL is one
of the order parameters that can be used to detect the transi-
tions. In Fig. 6, we show the configuration plots for various Pe
for fixed φ = 0.7, where the particles included in the largest
clusters are marked separately. The corresponding susceptibil-
ity, which is defined for a system with size L, as χL = L2σL,
where σL is the second cumulant of fL diverges at the transi-
tion [see inset of Fig. 2(a) in main text]. Different transitional
regions are plotted separately in Fig. 7. A reliable quantity that
can be used to estimate transitions is the fourth-order Binder
cumulant for different system sizes L. The fourth-order Binder

cumulant UL = 1
2 (3 − 〈d4

L 〉
〈d2

L 〉2 ) is calculated for the order pa-
rameter dL which is the normalized maximum linear extension
of the largest cluster. The crossing point of UL for different L
provides Pec ≈ 550 (Fig. 8).

However, these order parameters are not helpful in iden-
tifying the phase-separated region, which has been visually
identified for 20 � Pe � 200. To identify this state more
quantitatively, we measure the local density φloc which shows
a bimodal distribution when the system phase separates. In
Fig. 9 we plot the location of peak values φmax

loc of the dis-
tribution. This quantity is multivalued in the phase-separated
region, hence an indicator for MIPS.

APPENDIX C: THE EFFECT OF TRANSLATIONAL NOISE

In the original dynamical equation for the particle po-
sitions [Eq. (1) in the main text] the translational noise is
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FIG. 6. Cluster distribution for Pe = 0.1, 0.5, 50, 200, 240, 300,
600, 1000, 2500. Color code blue indicates the largest cluster, and
other colors represent the rest of the connected clusters. Due to
a large number of various clusters, each color is used for several
separate clusters.
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FIG. 7. Three transitions captured by the order parameter cluster
fraction fL at fixed φ = 0.7. Here we show three regions in Pe, I
(0.05–0.5), II (200–300), and III (550–1200) as shown in Fig. 2(a) in
main text separately. (a) The fL of the region I show the transition
from a homogeneous region with small clusters to the largest con-
nected cluster that spans the whole system as shown in its second
cumulant plot (b). Panels (c) and (d) show the transition from MIPS
to a percolated cluster of region II for box size L = 210. Similarly,
[(f) and (g)] region III shows the percolation transition for box size
L = 1024.
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FIG. 8. The fourth-order Binder cumulant UL is plotted as a
function of Pe for four different systems sizes. The curves crosses
at Pe � 550.

FIG. 9. MIPS: (a) The density corresponding to peak value of
the local density distribution is plotted as a function of Pe at fixed
φ = 0.7. Panels (b)–(e) are system configuration plots for the four
distinct points Pe = 20, 50, 100, 200 here color shows the value of
local hexatic order |φ6i| superimposed on particle configurations.
(f) Phase diagram of the density difference �φ = φ

peak
loc (max) −

φ
peak
loc (min) between the dense and dilute regions [as shown in (a)]

in the Pe-φ plane. A large �φ indicates MIPS.
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FIG. 10. Comparing system with and without translational dif-
fusion: (a) Mean largest cluster fraction fL as a function of the Pe
at a constant φ = 0.7 (b) normalized average linear extension dL

as a function of Pe. In these plots blue curve represents the system
without translational noise Dt and red curve for system with Dt and
these are divided into three separate regions in Pe, I (0.05 − 0.5), II
(200 − 300), and III (550 − 1100) corresponding to different transi-
tion regions as shown in Fig. 2(a) of main text and Fig. 6 of SI.

not included. Although the effect of noise is expected to be
negligible in the limit of large motility, it might influence the
overall structural properties at low Pe. To study this effect, we
run the simulations with an additional noise term to Eq. (1),

ṙi = μ
∑

j

F(ri j ) + vpn̂i + ξi, (C1)

where ξi is the noise term which follows the relation
〈ξi(t ) ξ j (t ′)〉 = 2 Dδi j δ(t − t ′) and 〈ξi〉 = 0. Here we choose

D = σ 2Dr
3 . The structural properties of this system is analyzed

by calculating fL and dL as a function of Pe, for φ = 0.7.
In Fig. 10, we compare these quantities with and without
translational noise. Both fL and dL are almost same in both
cases at large Pe (Pe � 20) beyond the MIPS region. However,
at low Pe both fL and dL are qualitatively different compared
to the athermal case. In the presence of noise, we no longer
observe the formation of porous clusters at low Pe.

APPENDIX D: FINITE-SIZED EFFECT
IN THE CLUSTER SIZE DISTRIBUTION

In Fig. 3(a) of the maintext, we see a peak at large n. This
peak is a manifestation of finite system size. To verify this,
we have now plotted together the cluster size distribution for
three different system sizes, namely L = 256, 512, and 1024
[see Fig. 11(a)]. As can be seen clearly, the peak gets shifted
to larger n values as L is increased, while the power-law
exponent remains unchanged. We also show in Fig. 11(b) that
if the x axis is scaled by L2 ∝ N , the large cluster-size peaks
collapses.

APPENDIX E: EFFECT OF INTERACTION SOFTNESS

The results in Fig. 2 in the main text shows the system
behavior for a fixed value of the stiffness parameter, k̃ = 2000.

FIG. 11. (a) Cluster size distribution plot for our study shown for
three different system sizes, namely L = 256, 512, and 1024. (b) The
x axis scaled by L−2 to show the system size dependence.

Here we systematically study the effect of k̃ in fL as a function
of Pe [Fig. 12(a)]. It is clear that at low Pe (Pe � 20) the
change in k̃ does not have a significant influence in fL. How-
ever, where Pe � 20, the interparticle interaction becomes
crucial and we observe a systematic shift in the values of fL

to higher Pe, when k̃ is increased. As expected, we these data
points collapse by scaling the x axis with k̃−1 [Fig. 12(b)].

APPENDIX F: CALCULATION OF PEAK
AND CUTOFF INTERPARTICLE DISTANCES

An increase in interaction softness is manifested as a de-
crease in interparticle distance between a pair of interacting
particles. To quantify this, we calculate the distribution of
interparticle distances p(ri j ) between a pair of particles within
the largest cluster. As shown in Fig. 13(a), the distribution has
a maximum at ri j � σ . For a given stiffness (k̃ = 2000), we
find that the width of the distribution increases while the peak
value (rpeak) shifts only marginally [Figs. 13(a) and 13(b)],
especially for Pe > 300 where the MIPS state is destroyed.
This increase in width indicates a deviation from the hexatic
crystalline order and a higher degree of disorder within the
cluster. We define the cutoff distance rc as the separation at
which p(ri j ) decays into one percent of its maximum value at
ri j = rpeak. We plot rc as a function of Pe [see Fig. 13(c)] and
observe a linear decrease with Pe in the limit of both high and
low values of Pe. The cutoff rc has a significant nonzero value
even for very high motility as evident in Figs. 13(a) and 13(c).
Further, we did not observe a single event with ri j � 0.2

101 102 103

Pe

0.0

0.2

0.4

0.6

0.8

1.0

f L

(a)

10−2 100

Pe k̃−1

0.0

0.2

0.4

0.6

0.8

1.0
(b)

k̃ : 1000

k̃ : 2000

k̃ : 3000

k̃ : 4000

k̃ : 6000

k̃ : 8000

FIG. 12. (a) fL plotted as a function of Pe for different values of
k̃. For Pe < 20 the fL values are overlapping for all k̃. However, there
is a shift toward higher Pe with increase in k̃, for Pe > 20. (b) The
scaling of Pe with k̃−1 collapses fL .
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FIG. 13. (a) Interparticle distance distribution for Pe = 50, 200,
and 800, where rc/σ is cut off distance for which p(ri j/σ ) is 1%
of the peak value. (b) Semilog plot of rpeak/σ as a function of Pe.
(c) rc/σ and r0/σ plotted as a function of Pe. Black lines shows the
corresponding linear fits.

for k̃ = 2000 even for Pe = 2Pec. These observations verify
that despite the interaction softness, the particles do not pass
through each other in the high-motility percolated state and
there exists a lower cutoff for ri j below which the particles do
not approach (Fig. 5).

We also plot the average interparticle distance r0, calcu-
lated from the numerical data. Similar to rc, r0 also shows a

linear decrease in both low- and high-Pe limits [Fig. 13(c)].
An approximate theoretical estimation of the average
interparticle distance r0 can be made within the MIPS
state [61], which is given as

r0 ≈ 1

2

[
1 +

√
1 − 4

C

(
Pe

k̃

)]
.

We note that within the MIPS region, since (Pe/k̃) 	 1, r0

also follows a linear relation, r0 ≈ 1 − 1
C ( Pe

k̃
). Taking C ≈

0.39, our estimate for r0 within the MIPS state is in qualitative
agreement with the data [see Fig. 13(c)].

Interestingly, after the percolation transition, both rc

and r0 within the largest cluster still scales linearly [rc ∼
−0.65k̃−1 Pe and r0 ∼ −0.19k̃−1 Pe, see Fig. 13(c)]. The be-
haviors of both rc and r0 are consistent with the scaling used
to collapse the data in Fig. 4 in the maintext. This behavior
explains the overall linear scaling of fL and χL with k̃Pe−1 in
Fig. 12 and Fig. 4 in the main text. We note that this linear
decrease in rc is likely to be consequence of the particular
form of the interaction. Many of the previous studies on ABPs
have used interaction potentials which diverge as 1

rα
i j

, where

α > 1. In such cases the scaling of rc with Pe is expected to
be different. However, since the overall physical properties
are determined by the overlap distance, we believe that the
percolation transition at high Pe (or high softness) will be
observed for sufficiently large motilities, irrespective of the
form of interparticle interactions.
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