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Simple fluid with broken time-reversal invariance
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We characterize a system of hard spheres with a simple collision rule that breaks time-reversal symmetry
but conserves energy. The collisions lead to an achiral, isotropic, and homogeneous stationary state whose
properties are determined in simulations and compared to an approximate theory originally developed for elastic
hard spheres. In the nonequilibrium fluid state, velocities are correlated, a phenomenon known from other
nonequilibrium stationary states. The correlations are long-ranged decaying like 1/rD in D dimensions. Such
correlations are expected on general grounds far from equilibrium and had previously been observed in driven
or nonstationary systems.
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I. INTRODUCTION

Fluids far from equilibrium are receiving increasing in-
terest, driven mainly by research on active matter [1,2] and
granular materials [3,4]. Nonequilibrium stationary states due
to imposed shear or gradients of the temperature have been
studied extensively in the past [5,6]. In contrast, active mat-
ter and granular systems are not only recent topics but also
inherently different: In both systems energy is exchanged
locally with the environment. Active particles extract energy
from their environment to perform certain functions, such
as propulsion. In granular media energy is lost in collisions,
possibly to internal degrees of freedom. Both systems are not
symmetric under time reversal and do not conserve energy.

As Onsager showed, detailed balance requires the dynam-
ics to be symmetric under time reversal [7]. The breaking
of detailed balance,. on the other hand, is crucial for the
rich phenomena in living and active matter [8]. The conse-
quences of the broken time-reversal invariance on correlations
in the nonequilbrium stationary state have thus been a
topic of longstanding interest. Strong long-ranged correla-
tions were observed in systems in external gradients [5].
Anisotropic transport processes [6] and boundary driving [9]
were identified as sources of weaker correlations decaying
asymptotically as 1/rD in D dimensions. They are absent
in equilibrium systems and generically, but not necessarily
expected, in nonequilibrium stationary states [10]. In gran-
ular systems they were predicted in time-dependent (freely
cooling) states [11], and in active fluids they may be con-
nected to interactions among passive particles [12]. Yet, the
necessary prerequisites for observing long-range correlations
in nonequilibrium remain unknown, as the stationary distribu-
tion function generally cannot be determined. It is a nontrivial
function in phase space.

Here we study a simple fluid which respects all conser-
vation laws, including energy conservation, and yet breaks
time-reversal symmetry, allowing us to disentangle the ef-

fects of violation of energy conservation and breaking of
time-reversal invariance. Our model is a coarse-grained ver-
sion of rough spheres [13], previously introduced to model
molecules with internal degrees of freedom [14] and granular
particles [15].

Here we insist on energy conservation: Roughness just
gives rise to a coupling of rotational and translational de-
grees of freedom during collisions. Momentum transfer along
normal and tangential direction is balanced, such that the
sum of translational and rotational kinetic energies is strictly
conserved in collisions. The breaking of time-reversal invari-
ance in our model is paradigmatic for living matter: The
local dynamics precludes the approach to a Gibbs equilibrium
distribution and leads to a nonequilibrium stationary state. Be-
yond that, the model is a closed interacting many-body system
without dissipation or driving. Additionally, homogeneity,
isotropy and achirality are enforced. Perhaps surprisingly, the
freedom to model the collision process still opens the possi-
bility to invent scattering laws which run differently forward
and backwards in time. Considering a general planar collision
process leaves us with one free parameter, χ , which controls
how strongly the forward-running and backward-running scat-
tering processes differ.

We have analyzed the stationary state of the model with
MD simulations and analytical theory, based on the pseudo-
Liouville operator. We show that equipartition does not hold
and velocities are correlated as for active matter [16–19]. The
correlations are nontrivial, oscillating in space with roughly
the nearest neighbor distance. Depending on the free parame-
ter χ particles in proximity are positively correlated for large
χ (motion in parallel) and negatively correlated for small
χ (rapid motion apart). This local correlation survives into
the far field, where longitudinal velocity fluctuations decorre-
late algebraically. The decay follows 1/rD asymptotically for
r → ∞, with state-dependent amplitude.

The paper is organized as follows. In Sec. II the scattering
law is presented, Sec. III gives details on the simulations,
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FIG. 1. Illustration of the collision rule. The constant parameter
χ governs the direction of the momentum transfer �p. χ = 0 recov-
ers smooth spheres with �p always along the axis of n̂.

and Sec. IV describes the theory with details relegated to an
Appendix. Section V discusses the violation of the classical
equipartition theorem, and Sec. VII presents the stationary
velocity correlations, first on distances comparable to the av-
erage particle separation, then in the far field.

II. MODEL SYSTEM

The new collision law couples rotation and translation,
while conserving energy, momentum and angular momentum.
In general, collisions are not invariant under time reversal. The
simulations are run for monodisperse two-dimensional (2D)
disks, while the generalization for 3D multdisperse systems
is straightforward. The model is introduced in 3D and then
transcribed to 2D.

A. Elastic collision law

The collision of two hard spheres is described by an in-
stantaneous collision event that assigns both particles new
velocities v′

i and new angular velocities ω′
i, calculated from

the spheres (angular) velocities vi(ωi) prior to the collision.
The equations of the collision rule for two particles i = 1 and
2 read

v′
1 = v1 + 1

m1
�p, v′

2 = v2 − 1

m2
�p,

ω′
1 = ω1 − R1

I1
(�p × n̂), ω′

2 = ω2 − R2

I2
(�p × n̂), (1)

with the unit vector n̂ = (r2 − r1)/|r2 − r1| pointing along the
collision axis. Rj , I j , and mj denote the radius, moment of
inertia, and mass of sphere j, respectively.

The above structure in Eq. (1) already incorporates the
conservation of linear momentum and angular momentum
L = r × p + Iω, consisting of orbital momentum and spin.
To simplify, the change in the internal angular momentum
has been taken to arise solely from the momentum transfer;
a possible instantaneous torque is neglected.

An exemplary collision event is shown in Fig. 1, where
also ξ j , the vector pointing from the center of sphere j to the
contact point, is marked. The angle of collision γ denotes the
angle enclosed by the relative velocity at the contact point vc

and the collision axis n̂. The relative velocity at the contact

point is given by

vc = (v1 + ω1 × ξ1) − (v2 + ω2 × ξ2)

= v1 − v2 + (R1ω1 + R2ω2) × n̂. (2)

Also the tangential vector pointing in the direction of the
tangential component of vc in the collision plane is marked
in Fig. 1; it is defined as

t̂ = (n̂ × vc) × n̂
|(n̂ × vc) × n̂| . (3)

The relative velocity after the collision reads from Eq. (1)

v′
c = vc + 1

μ
�p + q

μ
(�p − �pn) (4)

with 1/μ = 1/m1 + 1/m2 and q = μ(R2
1/I1 + R2

2/I2).
The component of �p along the normal direction is de-

noted as �pn = (�p · n̂)n̂.
We require the kinetic energy,

Ekin =
N∑

i=1

(
mi

2
v2

i + Ii

2
ω2

i

)
, (5)

to be conserved in collisions. The difference of the energies
before and after the collision can be calculated to

2�Ekin = �p · [v′
1 + v1 − v′

2 − v2

+ (R1ω1 + R1ω
′
1 + R2ω2 + R2ω

′
2) × n̂]

= �p · [v′
c + vc]. (6)

For elastic collisions we demand �Ekin = 0, implying for the
momentum transfer [with Eq. (4)]

2μ�p · vc + �p2 + q|�p × n̂|2 = 0. (7)

We assume a planar scattering geometry, which means �p
is in the plane spanned by n̂ and vc [20,21]. In two dimensions
this is necessarily true. The planar scattering geometry implies
that the momentum transfer can be decomposed into a normal
and a tangential component (see Fig. 1). We make the ansatz
that �p is a regular vector with δ denoting the polar angle in
the frame of n̂ and t̂ ,

�p = −|�p|[cos(δ)n̂ + sin(δ)t̂]. (8)

The magnitude of the vector is determined by energy con-
servation, i.e., by substituting the expression of Eq. (8) into
Eq. (7), and solving for |�p| one obtains

|�p| = 2μ cos(δ − γ )

1 + q sin2 (δ)
|vc|. (9)

To this point, the direction of the momentum transfer δ is
undetermined. Two already-well-studied collision laws are (i)
smooth spheres, where collisions do not affect the rotations,
�p = �pn, and (ii) rough spheres, where the contact velocity
gets reflected, v′

c = −vc [22]. Case (i) is included in the ansatz
by choosing δ = 0. Case (ii) is included by choosing

tan δ = tan γ

1 + q
. (10)
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In contrast to both, we make the simple ansatz that δ depends
on γ only and is linear

δ = χγ , (11)

with a new constant χ . The smooth-sphere law (i) is included
in the new collision law for the case of χ = 0, while rough
spheres (ii) cannot be recovered for any choice of χ .

The above representation of the momentum transfer re-
veals that the free parameter χ controls the coupling of the
translational and rotational degrees of freedom. We may thus
consider our model as a coarse-grained version of rough
spheres. In contrast to most other work on rough spheres,
our model conserves energy by properly adjusting normal and
tangential momentum transfer. This is seen in the limit of
small χ , where Eqs. (8) and (9) reduce to

−�p = n̂m|vc| cos (γ ) + χγ m|vc|[n̂ sin (γ ) + t̂ cos (γ )]

+ O(χ2). (12)

The first term on the right-hand side is just the reversal of the
normal component, well known from smooth elastic spheres.
The second term is controlled by χ and represents normal as
well as tangential momentum transfer which, however, is not
independent as for inelastic rough spheres. Instead, the two
components of momentum transfer are connected by energy
conservation. In the limit χ = 1, the momentum transfer �p
is antiparallel to the precollision relative velocity vc, as can be
seen from Fig. 1.

In the following, we specialize to a monodisperse system
with diameter d = 2R, so that the discussion can be simplified
with 2μ ≡ m and q ≡ α = mR2/I , implying α = 1 for rings
and α = 2 for disks [23]. In order to simplify the system
further, we consider a two-dimensional fluid, such that trans-
lation is only allowed in x and y directions, while ω is the
angular velocity component along the z axis. Units of energy
are chosen, such that kB = 1 and the time is measured in units

of t0 =
√

md2

T0
. T0 denotes the temperature of the Maxwell-

Boltzmann distribution with which the system is initialized.
For smooth disks (SD) the only thermodynamic control pa-
rameter is the packing fraction φ = (N/V ) πR2.

B. Symmetries

The scattering law is Galileian invariant since only differ-
ences of the velocities enter. It is also invariant under arbitrary
rotations including mirroring and inversions, denoted by an
orthogonal matrix R, as can be shown as follows: The angle
γ can be calculated from the ratio between the normal com-
ponent vn = vc · n̂ and |vc|,

γ = arccos

(
vn

|vc|
)

, (13)

where the scalar product is invariant by orthogonal transfor-
mations and so is γ . Since n̂ and t̂ are vectors and transform
as such, the momentum transfer transforms as vector under
rotation and reflection �p → R · �p.

The scattering law is not symmetric under time reversal.
Let two particles j = 1, 2 collide with v j and ω j so that
after the collision they move away from each other with v′

j

and ω′
j , as shown in Fig. 2. If the time is reversed, then

�v1

�v2

�v′1

�v′2

FIG. 2. A collision event of two disks and the time-reversed
process are shown; rings, α = 1 and χ = 1.0, are chosen. Gray and
curved black arrows denote the velocities and angular velocities,
respectively, of the collision running forward in time. When time is
reversed, the particles move in parallel after the reversed collision;
the final velocities of the reversed process are marked by blue arrows.
We refer to this parallel motion as sticky behavior. Since initial gray
and reversed blue arrows are not antiparallel, this scattering process
breaks time-reversal symmetry.

the momenta are reversed, i.e., v′
j → vr

j = −v′
j and ω′

j →
ωr

j = −ω′
j , which leads to a precollisonal velocity vr

c of the
time-reversed scattering event. This reversed vr

c is not parallel
to vc and therefore the momentum transfers differ, �pr �= �p,
which is equivalent to breaking time-reversal symmetry. A
detailed calculation is given in the Appendix.

All discussed symmetry properties of the scattering law
hold in 2D and 3D. An example of a scattering event of
two rings and its time-reversed complement is shown in
Fig. 2 for χ = 1. Here parameters are chosen such that the
time-reversed scattering process leads to a vanishing normal
component of the postcollision relative velocity which may
be called a “perfectly sticky collison.”

C. Sticky collisions

For all χ > 0, it is helpful to consider the translational
motion of two particles after they have collided. The normal
component of the relative velocity at contact before colli-
son reads vn = n̂ · vc = n̂ · (v1 − v2) and after collision from
Eq. (4) follows:

v′
n = vn + 2

m
�p · n̂ = vn− 2vn cos (χγ ) cos (γχ− γ )

cos (γ )[1+ α sin2 (χγ )]
� 0,

(14)

where the last inequality enforces that the particles do not
overlap. For the particles to collide vn > 0 has to hold before
the collision. The case that v′

n = 0 is possible for some γ

and this implies that the particles move in parallel after the
collision. Equation (14) can be divided by some arbitrary
vc > 0 to generate Fig. 3. There the black curve for SD
shows the linear behavior of simple reflection. The curves
for χ = 1 and χ = 0.9 give small values for v′

n/vc over
a wide range, in which the colliding particles may stay in
proximity after the collision. The purple curve (χ = 0.9)
even shows nonmonotonic behavior, changing slope where
particles have a large vn/vc ≈ 0.5 before the collision and
possibly stay close together after it. On the other hand, small
χ give rise to values of |v′

n| > |vn|, implying that the par-
ticles move apart with larger relative velocity than before
collision.
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0.0 0.2 0.4 0.6 0.8 1.0
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v
′ n
/
v c

ring χ = 1.0

disc χ = 0.9

ring χ = 0.2
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FIG. 3. Ratio of v′
n/vc after collision depending on vn/vc before

collision for a fixed vc > 0. The curve for χ = 0 is familiar from SD,
where vn just gets reflected. For χ close to 1, v′

n is close to 0 even for
vn/vc ≈ 0.5, implying (almost) sticky collisions.

To guarantee hard-sphere interactions the inequality of
Eq. (14) has to hold for all γ , which is not the case for arbitrary
system parameters χ and α. The range of χ values, from
which χ can be chosen, has an upper limit, depending on α.
For the smallest reasonable α = 1, i.e., rings where all mass
is at the particles surface, χ � 1 has to hold. With increasing
α the maximal possible χ decreases.

III. SIMULATION SYSTEM

We perform event driven simulations of disks moving
in two dimensions [24]. The simulation starts with drawing
random velocities from a Maxwell-Boltzmann distribution at
temperature T0 and then lets the system equilibrate into its
stationary state. For two translational and one rotational de-
grees of freedom the energy in the system is E = 3

2 NT0. Since
energy is conserved, we avoid using a thermostat.

Cases with perfectly sticky collisions like in Fig. 2 are a
problem to the algorithm, because the particles would col-
lide continuously during their parallel motion. Therefore, for
simulations at finite φ we choose parameter pairs of χ and
α that do not allow perfect sticky collisions. For example the
orange curve in Fig. 3 would produce continuous collisions
in cases for small vn. We use χ = 0.99 instead of χ = 1 for
the simulations to avoid these. More simulation details can be
found in Appendix C.

IV. LIOUVILLE THEORY

An approach to describe the macroscopic-state variables
in the stationary nonequilibrium state can build on kinetic
theory [25] and the theory of fluids [26]. Following previous
work on hard-sphere dynamics, the scattering law can be
implemented in a Liouville dynamics [15,27–31]. The time
dependence of a general phase space variable is given by

A({vi, ri,ωi}, t ) = eiL+t A({vi, ri,ωi}, 0). (15)

Here L+ = L0 + L′
+ is the pseudo-Liouville operator to go

forward in time. It consists of the free streaming part, where
we require the translation term iL0 = ∑

j v j · (∂/∂r j ) only,

and the collision part L′
+, which reads:

iL′
+ = 1

2

∑
j �=k

T jk, T jk = −(v jk · r̂ jk )�(−v jk · r̂ jk )

× δ(r jk − Rj − Rk )(b+
jk − 1). (16)

Here and in the following, ri j denotes ri j = ri − r j and vi j =
vi − v j . The exchange operator

b+
kl a(ri, vi,ωi ) = a(ri, v

′
i,ω

′
i ) for i ∈ {k, l}, (17)

replaces precollisional velocities by postcollisional ones for
colliding particles while leaving the rest unchanged. Here
a represents a general function depending on positions and
velocities.

It is not possible to compute the N-particle distribu-
tion function, ρ, from first principles. Based on observing
steady-state properties in the simulations, we conjecture
ergodicity, viz. that the pdf approaches a stationary ρ

which satisfies iL+ ρ = 0; see Ref. [31] for the construc-
tion of the pdf-pseudo-Liouvillean iL+. It follows that ρ =
ρ(; E , N,V, χ, α). Determining it further is difficult because
particle velocities and positions become correlated in the scat-
tering events; this is shown, e.g., in Fig. 9 below, see Sec. VII.

In order to compute temperature and pressure, we can
exploit that the averages contain the collision Liouville op-
erator from Eq. (16). Thus, the correlation between velocities
and particle separations is only required at contact, viz. for
ri j = d . Additionally, we have checked (not shown) that
the marginal velocity distribution function ρv,ω({vi,ωi}) =∫ ∏

i driρ() is well described by the product of two Gaus-
sians for the velocities and angular velocities, respectively.
We make an ansatz for the stationary N-particle distribution,
which neglects correlations between positions and velocities
and assumes independent particle velocities. Furthermore, we
assume that rotational and translational velocities are stochas-
tically independent. This arguably most simple ansatz reads:

ρ() := ρ({vi, ri,ωi}) = WN ({ri})
∏

i

ρω(ωi )ρv (vi ). (18)

The functions ρω and ρv are familiar Maxwell-Bolzmann
distributions but with different temperatures for translational
and rotational degrees of freedom. The function WN ({ri})
gives zero weight to overlapping configurations and is 1 oth-
erwise. Below we will show that velocities and positions are
indeed correlated, even over long distances. But the simula-
tion data also suggest that the magnitude of these long-ranged
correlations is smaller than the steric constraints encoded
in WN . Here we assume that it is possible to ignore these
contributions to the state variables we want to calculate with
our theory. This approximation immediately leads to the ex-
pectation that structural quantities remain identical to the SD
case at the same packing fraction; however, see Sec. VI. The
velocity correlations, also neglected in the theory, are studied
in Sec. VII.
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FIG. 4. Ratio of rotational, Tr , to translational energy, Tt , as a
function of χ for packing fraction φ = 0.6; results of the simula-
tion are shown in orange (disks, α = 2) and blue (rings, α = 1) in
comparison to the analytical theory (dashed line). The dotted line
corresponds to quasiequipartition.

V. STATE VARIABLES, EQUIPARTITION,
AND EQUATION OF STATE

The equilibrium state of a simple fluid is fully character-
ized by its temperature, T , pressure, p, and packing fraction,
φ. Furthermore equipartition of energy holds and an equa-
tion of state relates the three state variables. We show here that
the stationary state of our system, which respects all conserva-
tion laws of a simple fluid but breaks time inversion symmetry,
violates equipartition and no unique relation connects T , p,
and φ.

A. Violation of equipartition

Since the scattering law breaks time-reversal symmetry, de-
tailed balance is violated. Therefore the expected probability
distribution of velocities in the stationary state will deviate
from the Maxwell-Bolzmann distribution of thermodynamic
equilibrium. To investigate these deviations, we measure the
velocity variances, i.e., the rotational and translational ener-
gies of the system. In the case of thermodynamic equilibrium
the equipartition theorem holds and gives 1

2 T0 as energy per
degree of freedom. In contrast to that, the energies in the
time-reversal symmetry violating system depend on the den-
sity as well as on kinetic parameters, especially the moment
of inertia and χ . The χ dependence is shown in Fig. 4; it
is different for rings (α = 1) and disks (α = 2). The effec-
tive temperature for the translational degrees of freedom is
denoted by Tt = 1

N

∑N
i=1 m〈v2

i /2〉, the one for the rational
degrees by Tr = 1

N

∑N
i=1 I〈ω2

i 〉. Since energy is conserved,
including throughout the transients to the stationary state, Tr

is determined by Tt and the initial temperature T0 via

Tr = 3T0 − 2Tt . (19)

For values of χ close to zero, Fig. 3 showed that particles
depart faster after the collision as compared to the smooth
case. Rotational energy is transferred to translational motion
leading to a lowering of the rotational energy for small values
of χ . During relaxation into the stationary state, the transfer of

energy from rotation to translation slows down with reducing
χ because of the smaller momentum transfer in Eq. (12).
This causes the relaxation process to become arbitrarily slow
for χ → 0 (not shown). Consequently, the stationary state
depends nonanalytically on χ in the limit of χ → 0. The
equilibrium case of smooth disks, valid for χ = 0, is not at-
tained in the limit of χ → 0; rather rotations stop completely.
For large χ , viz. for χ close to 1, sticky collisions dominate,
and the postcollisional velocities v′

n are smaller than in the
smooth case, see Fig. 3. Translational energy is transferred
to rotational modes, and the translational energy decreases,
while the rotational energy increases. Between these two
cases, there is a value for χ with equal rotational and trans-
lational temperatures. We refer to this specific choice of χ as
quasiequipartition.

To compare the results of our simulations with the predic-
tions of the analytical theory [Eqs. (16) and (18)], we compute
the change of the translational energy per particle:

∂t Et = 0 = 1

2

∑
i �= j

∫
dρ()iTi j

1

N

N∑
k=1

m

2
v2

k . (20)

Setting this time derivative to zero determines the station-
ary state [15]. Because of our ansatz for the stationary pdf and
Eq. (19), a single equation for the translational temperature
arises, which is solved by a unique result depending on the
kinetic parameters, Tt = T0 T̂t (χ, α). The result is determined
by the balance between energy transfer from rotational to
translational kintetic energy and vice versa. In theory, Tt is
not a function of the packing fraction, while the simulations
show that it varies by less than 2% for φ � 0.6. Details of the
calculation of T̂t (χ, α) are given in the Appendix. Here we
just show the results for the stationary translational and rota-
tional temperature of rings and disks in Fig. 4. The agreement
with the simulations is good for both moments of inertia but
worsens for χ approaching its maximal value. Furthermore
the sensitive dependence on χ , as discussed above is well
captured by the simple ansatz (18). Reassuringly, the theo-
retical calculation requires no parameter to be taken from the
simulations.

B. Pressure

In the MD simulations the pressure can be calculated by
keeping track of all collisions and their momentum transfers
in a given time window. We start from the microscopic formu-
lation of the symmetrized stress tensor [26],

σαβV =
∑

i

(
mvα

i v
β
i

) + 1

2

∑
i j

[( fi j )α (ri j )β + ( fi j )β (ri j )α],

(21)

where the first summand, the kinetic part, will be neglected
because it is trivially connected to the translational energy and
can be added if needed. For hard spheres the time averaged
potential part is replaced by the mean momentum transfer in
a given time interval �t

f i j (t ) = 1

�t

∑
τ

�pτ
i j, (22)
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FIG. 5. Pressure in the stationary state from simulations as
compared to analytical theory for packing fraction φ = 0.6. For
intermediate χ , where the system is close to quasiequipartition, the
approximate theory is good. For small and large values, deviations
occur due to underestimating correlated velocities. The red cross
denotes the Baus-Colot value of smooth disks at T = 1.5 T0.

where τ indexes all collisions in the time interval τ ∈ [t, t +
�t]. In the simulation �t = 0.5 t0 was used.

In Fig. 5, we display the pressure for rings and disks as
a function of χ , as obtained from simulation. The pressure
is seen to decrease with χ , because of two reasons. The first
is that the sticky behavior of collisions is more pronounced
for larger χ and can be seen as an effective attractive interac-
tion. The second is the decrease in translational energy with
increasing χ , leading to a lowered collision frequency.

In the analytical theory, we follow Martin et al. [32], who
define the momentum density in a system with rotational
degrees of freedom as

ϑ(q) =
N∑

j=1

(
mv j + i

I

2
q × ω j

)
e−iq·r j , (23)

and compute

∂tϑα = iL+ϑα = −iqβσαβ (24)

with help of the pseudo-Liouville operator and the approxi-
mate ρ(). This also verifies the symmetric stress tensor given
in Eqs. (21) and (22).

The pseudo-Liouville-approach results in the equation for
the pressure (see the Appendix)

Ppot = 2 d2 n2 g(d ) Tt

√
Tt

Tt + Trα

∫ π
2

0
dγ cos (γ ) cos (χγ )

×
[

cos (γ )2 + Tt

Tt + Trα
sin (γ )2

]−2 cos (γ − χγ )

1 + α sin (χγ )2 .

(25)

The particle number density is defined as n = N
V . Besides the

fixed system parameters α and χ , the value of the station-
ary translational temperature Tt enters the equation, which
has been computed and discussed in the previous section.
Tr can be calculated from Eq. (19). The rdf value at contact
g(d ) is calculated with the theory of Baus-Colot for smooth
disks [33]. The comparison between theory and simulation is

0.0 0.1 0.2 0.3 0.4 0.5 0.6

φ

0

2

4

6

P
p
o
t
d
2
/
T

0

Baus-Colot

theory

sim. χ = 0.2

sim. χ = 0.99

FIG. 6. Equation of state of rings (α = 1) for two values of χ in
comparison to the analytical theory. Also shown (black line) is the
Baus-Colot theory for smooth hard disks. Dashed black lines give
the theory of Sec. IV for the two χ values.

included in Fig. 5. The red cross in Fig. 5 marks the Baus-
Colot result for a SD liquid at a temperature of T = 1.5 T0.
This indicates that in the χ → 0 limit the macroscopic ther-
modynamic properties of the T-violating disks are similar to
smooth (nonrotating) disks.

C. Equation of state

The equation of state for the T-violating system is shown
in Fig. 6. Simulation results are compared to results from the
approximate analytical theory Eq. (25). While in equilibrium
the pressure is a function of thermodynamic parameters only,
viz. T and packing fraction φ for SD, in the stationary state,
kinetic parameters affect P, which becomes a function P =
nT0 P̂(φ, χ, α). Figure 6 shows its dependence on φ and χ ,
Fig. 5 its dependence on χ and α, the rescaled inverse moment
of inertia. The increasing importance of sticky collisions for
increasing φ and χ ≈ 1 explains the lowering of the pressure
akin to an effective attraction. The theory captures these trends
well.

For high packing fractions the difference between theory
and simulation increases. That can be traced back to the fact,
that all the correlations are introduced by instantaneous col-
lisions. The rate of collision increases with increased density,
so the effect of the T-violating collision rule gets bigger.

In the case of quasiequipartition at χ = 0.654, the equa-
tion of state of smooth hard disks (SD) is approached (curve
not included in Fig. 6).

VI. STATIC CORRELATIONS

The scattering parameter χ affects the likelihood of parti-
cles to remain close after collisions; see Fig. 3. This influences
the local structure in a similar way as a short-ranged attrac-
tion. Sticky collisions are known to give rise to an increased
probability for particles to be in contact. We thus expect a
similar phenomenon here, even though χ is a kinetic param-
eter. Figure 7 shows the radial distribution function [26] for
different values of χ at a fixed packing fraction, φ = 0.6.
We indeed observe a strong increase in the radial distribution
at contact as χ increases toward 1. The high contact value
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FIG. 7. Radial distribution function for several values of χ ,
where α = 1, compared to smooth disks (SD). For χ = 0.654 pseu-
doequipartition holds (see Fig. 4).

can be traced back directly to the high probability of sticky
collisions for χ → 1, as depicted in Fig. 3. For small values
of χ , the contact value is reduced as compared to smooth
disks, because the particles move more rapidly apart after
colliding—as compared to the smooth case.

In Fig. 8 we show the static structure factor [26]. The first
peak, that is connected to the average particle distance, is
shifted to higher q values for the nonequilibrium system due
to the sticky behavior at large χ .

Figures 7 and 8, which are typical for other system param-
eters which we explored, show that the structure of the system
remains that of a simple fluid even in the case of χ → 0 and
χ ≈ 1, where equipartition is violated clearly.

VII. VELOCITY CORRELATIONS

In the context of active self-propelled particles the
emergence of velocity correlations in space is a known phe-
nomenon [18,19]. The T-violating liquid is not consuming
energy but breaks T symmetry on a microscopic level and also
shows velocity correlations in space.

The collective velocity correlations in real space are de-
fined as (note the prefactor which renders g dimensionless and

0.0 2.5 5.0 7.5 10.0 12.5 15.0

q d

0

1

2

3

S
(q

)

SD

χ = 0.05

χ = 0.2

χ = 0.654

χ = 0.99

FIG. 8. Static structure factor for rings (α = 1) with varying χ

compared to smooth disks (SD). The χ = 0.654 curve hides the SD
one.
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−0.4

−0.2

0.0

0.2

0.4
gT (r) χ = 0.99

gL(r) χ = 0.99

gT (r) χ = 0.2

gL(r) χ = 0.2

FIG. 9. Velocity correlations of ringlike disks (α = 1) in real
space at packing fraction φ = 0.6. For (smooth or rough) disks in
equilibrium, the collective velocity-correlations vanish. The finite
values at contact are outside of the visible range.

finite for n → 0)

gαβ (r) = m

T0 N n

∑
i �= j

〈
vα

i v
β
j δ(r − ri j )

〉
. (26)

They arise from correlations among different particles, i �= j,
only. Because of isotropy and achirality, velocity fluctuations
can be decomposed into longitudinal and transverse compo-
nents relative to the distance vector between particle pairs,
which leads to

gαβ (r) = gL(r) r̂α r̂β + gT (r) (δαβ − r̂α r̂β ), (27)

with distance dependent isotropic functions gL(r) and gT (r).
In reciprocal space, the velocity autocorrelation of an

isotropic achiral fluid can also be decomposed into longi-
tudinal (CL) and transverse (CT ) parts, which both are real
functions of the wave number q = |q|. Here the direction is set
by the wave vector with q̂ = q/q. The decomposition reads:

Cαβ (q) = m

NT0

N∑
i, j=1

〈
vα

i v
β
j e−iq·ri j

〉
, (28)

= q̂α q̂β CL(q) + (δαβ − q̂α q̂β ) CT (q). (29)

The connection between velocity correlations in real and
reciprocal space is given by Fourier transformation:

Cαβ (q) = Tt

T0
δαβ + n

∫
dr e−iq·r gαβ (r). (30)

Here the first term arises from the single-particle contribution.

A. Local velocity correlations

The correlation functions of longitudinal and of transverse
collective velocity fluctuations are functions of distance. Sim-
ulation results of gL(r) and gT (r) are shown in Fig. 9 for
two characteristic values of χ . Frequently occurring sticky
collisions at χ = 0.99 give rise to strong positive longitudinal
correlation at r ∼ d , while gT show less strong and negative
correlations at contact. For χ = 0.2 both functions change
sign, compared to the corresponding functions for χ = 0.99.
From the function values at r ∼ d it can be concluded, that in
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FIG. 10. Longitudinal velocity correlations for rings (α = 1) at
φ = 0.6. The right column denotes the χ values. The dashed lines
give the values if no correlations were present in the system for χ =
0.2 and 0.99. For q values around the structure peak (see Fig. 8) the
correlations are the strongest.

systems with χ = 0.99 particles tend to move in parallel after
a collision, while for systems with χ = 0.2 particles tend to
move away from each other quickly. The spatial dependencies
indicate the fluid structure of neighbor shells surrounding
individual particles [26].

Simulation results for CL(q) and CT (q) are shown in
Figs. 10 and 11. Both functions are seen to oscillate as a
function of q for both, small χ = 0.2 and large χ = 0.99.
The wavelength of the oscillation is comparable to the peak
position of the static structure function, see Fig. 8. This re-
flects the fluidlike local structure consisting in neighbor shells;
see Fig. 9. If the velocities were uncorrelated, then CL(q) =
Tt/T0 = CT (q) would hold, which is shown as dotted lines for
comparison.

Even though we cannot compute these correlations analyt-
ically, the discussion of sticky collisions again helps to get
a qualitative understanding of the observed correlations. For
large values of χ = 0.99, particles in proximity tend to move
parallel, giving rise to large positive correlations in CL around
the peak in the structure factor. As χ decreases, the oscilla-
tions weaken and disappear around the χ value, (χ = 0.654),
for which quasiequipartition was observed in Fig. 4. For still
smaller values of χ , e.g., χ = 0.2, the normal component after

0 2 4 6 8 10 12

q d
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1.2

1.4

C
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0.2
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0.99

FIG. 11. Transverse velocity correlations for rings at φ = 0.6.
They show almost the inverted behavior of the longitudinal ones, but
it is less strong. Again the strongest correlations occur around the
peak of the static structure factor.
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0 2 4 6 8 10

q d

1.0

1.2

χ = 0.2

χ = 0.99

C
ω

FIG. 12. Correlations of angular velocities for rings at φ = 0.6.
They change sign relative to the uncorrelated value set by Tr like
the translational correlations with comparable magnitude, yet the
characteristic length scales are much larger.

collision, |v′
n|, is even larger than for the SD limit (Fig. 3)

and the sign of the oscillations is reversed. Finally, as χ → 0,
approaching the SD limit, the local correlations disappear. The
oscillations of CT are out of phase to CL with comparatively
large correlations for particles in proximity and small χ , when
the normal component after collision, |v′

n|, is even larger than
for the SD limit.

The magnitude of the velocity correlations in Figs. 10
and 11 can be compared to the magnitude of density corre-
lations as measured by the static structure factor Sq in Fig. 8.
While the collective structural correlations Sq − 1 are of order
unity, the collective velocity correlations, CL,T − (Tt/T0), are
around a factor of five smaller. This may be the reason why the
neglect of the correlations between velocities and positions in
Eq. (18) adequately describes the macroscopic-state variables.

Correlations of the rotational velocity, Cω(q) =
md2

NT0

∑N
i, j=1〈ωiω je−iq·ri j 〉 also show oscillations as displayed

in Fig. 12. The wavelength of oscillation is larger than for
the translational velocities. It exceeds twice the mean particle
distance which characterizes the correlations in CL and CT .
Again, the oscillations at high and low values of χ are
approximately out of phase by 180◦.

The hydrodynamic momentum field defined in Eq. (23)
also exhibits stationary correlations. The longitudinal momen-
tum correlation function agrees with the longitudinal velocity
function. The transversal momentum correlation is a linear
combination of the transversal velocity correlation and the
correlations of the angular velocities. The latter enters with
a prefactor (I2/4) q2 and thus dominates for not too small q.

B. Long-range velocity correlations

The stationary state shows long-range correlations of the
particle velocities. These correlations can be observed in re-
ciprocal or real space but manifest themselves differently.

The simulation data shows, see Figs. 10 and 11, that lon-
gitudinal CL(q) and transverse CT (q) velocity correlations in
q-space approach different values for q → 0. If we denote the
limits CT (q → 0) = CT and CL analogously, the simulation
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FIG. 13. The velocity correlations gL (r) and gT (r) exhibit a
power-law tail in the far field (at N = 250k, χ = 0.99, φ = 0.6).
The black line shows a fit of the asymptotic form f (r) = a/r2 on
the data of gT , based on Eq. (33). Deviations for large r are due
to finite-size effects discussed in Appendix C 2. In the inset, the
amplitude of the power law (red bars) is compared to the gap in the
velocity correlation functions for q → 0.

data suggests the nonanalytic form

Cαβ (q → 0) = (CL − CT )
qαqβ

q2
+ CT δαβ. (31)

A gap, CL − CT , thus arises in the longitudinal, viz. compres-
sional, velocity fluctuations. The inverse Fourier transform of
Eq. (31) for large distances has the form

lim
r→∞

∫
dq

4π2
eiq·r qαqβ

q2
e−εq

∣∣∣∣
ε=0

= 1

2π

1

r2

(
δαβ − 2

rαrβ

r2

)
.

(32)

Comparing the structure of Eq. (32) with Eq. (27), one sees
that for large distances

lim
r→∞ gT (r) = − lim

r→∞ gL(r) = 1

2 π n

CL − CT

r2
(33)

holds. In real space, a power law of the form ∼r−D with D = 2
is connected to different q → 0 limits of CL(q) and CT (q). The
real-space correlation (1 − 2r̂r̂)/r2 has vanishing rotation.

Figure 13 shows the simulation results for the velocity
correlations in real space in a system where χ = 0.99. The
power-law tails have a very small magnitude in real space
as can be seen in comparison to Fig. 9, showing the much
stronger velocity correlations for the first shells. The black
curve shows a fit of the form a/r2 on the simulation data
of gT (r), where the parameter a is connected to CL − CT

via Eq. (33). A fit on gL is a second independent way of
determining this gap. The inset in Fig. 13 focuses on the small

0.2 0.4 0.6 0.8 1.0

χ

−5.0

−2.5

0.0

2.5

5.0

C
L
−

C
T

×10−2

FIG. 14. The amplitude of the long-ranged velocity correlations.
A change of sign is observable around the value of quasiequiparti-
tion. The top and bottom of the error bars denote the coefficients
from a fit to gT and gL; for details of the analysis see Appendix C 2.
The largest error bar at χ = 0.05 is included.

wave-vector limits of CL(q) and CT (q). The distance between
the red bars in the inset was calculated from the mean of the
two power-law amplitudes fitted in real space. It matches well
the gap from the directly measured data in q space.

For the value of χ = 0.99 the consistency between simu-
lation data in real and reciprocal space is quite convincing.
Smaller values of χ are harder to evaluate because of finite-
size effects in the simulations. Appendix C 2 gives details on
the analysis. The algebraic decay of the velocity correlations
characterizes the stationary states for all couplings between
rotations and translations. Figure 14 shows the amplitude
CL − CT determined consistently in real and reciprocal space
as function of the parameter χ . As discussed above, positive
and negative amplitudes result from the tendency of particles
to move in parallel or oppositely depending on χ . A sign
changes happens around the χ value for quasiequipartition.
Similarly to the observations of the energies in Fig. 4 and
the pressure in Fig. 5, the measurements in Fig. 14 suggest
a limit of the gap CL − CT for χ → 0 which is unequal to
CL − CT = 0, which holds in the case of smooth spheres
χ = 0.

The magnitude of the long-range velocity correlations can
be compared with their local counterparts for the parameters
of our simulations (inter alia packing fraction φ = 0.60). As
function of wave vector, the collective velocity correlations
CL(q) or CT (q) vary around ±0.2 relative to the single particle
term Tt/T0 (Fig. 4 shows that Tt/T0 can differ from unity by
100%). The gap CL − CT shown in Fig. 14 which measures
the long-range contribution roughly corresponds to ±0.05,
which is a quarter of the total collective correlations. Clearly,
the long-range part of the velocity correlations cannot be
considered negligible.

VIII. CONCLUSIONS AND OUTLOOK

Scattering laws for hard bodies allow for the possibility
to break time-reversal symmetry during the collision event,
while all classical symmetries are obeyed. We showed that
this leads to a stationary nonequilibrium state whose state
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variables and equation of state can semiquantitatively be de-
scribed using concepts familiar from the theory of liquids and
granular gases. While structural correlations remain the ones
of a simple fluid, a coupling of positions and momenta exists
in the stationary state. Collective velocity correlations emerge
as familiar in more complex systems like self-propelled parti-
cles or granular systems. Intriguingly, the collective velocity
correlations become long-ranged and asymptotically decay
like a power law, ∝ 1/r2 in 2D. As a further consequence, the
coupling of positions and momenta invalidates the classical
equipartition theorem.

The introduced system offers many possibilities for future
studies. Its transport processes and dynamical correlations
would be of interest [34]. Kinetic theory could calculate
the low-φ properties quantitatively [11,21]. The long-ranged
velocity correlations are of interest in more complex nonequi-
librium fluids [5,6,35] and could be discussed in more detail in
the present model. Phase transitions will lead to ordered states
and, possibly, to a nonequilibrium critical point for purely
repulsive interactions. The latter may be speculated on the
basis of the sticky collisions causing an effective attraction.

As pointed out by Avron [36], a 2D isotropic system with
broken time-reversal symmetry can display a so-called odd
viscosity [34,37]. The 2D system under consideration breaks
time-reversal symmetry and is isotropic but achiral. A possible
generalization of the scattering law can be explored breaking
additional symmetries, e.g., parity, in a controlled fashion.
This would lead to an odd fluid, viz. a chiral fluid breaking
time-reversal symmetry, yet conserving energy.
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APPENDIX A: BREAKING OF TIME
REVERSAL INVARIANCE

It is shown that the collision rule given by Eq. (11) breaks
time-reversal symmetry for every χ �= 0. Hereto, �pr �= �p
needs to be shown. Most easily this is done by proving the
inequality of the scattering angles γ �= γ r that are given by
Eq. (13), where it is enough to only evaluate the argument.
With Eq. (4) this yields

vr
c · n̂
|vr

c|
= −vn − 2

m �p · n̂∣∣ − vc − 2
m �p − 2R2

I (�p − �pn)
∣∣ . (A1)

This expression can be shown to be equal to vn/|vc| of the
forward collision for smooth and perfectly rough spheres, so
γ = γ r holds in these cases. For the T-violating collision rule,
this expression is equal to vn/|vc| only if the particles collide
centrally and without angular velocities, i.e., γ = 0 in that
special case.

It is enough to show that time-reversal invariance is broken
for one fixed angle, where we use for convenience γ = π/4.
Insertion of the collision rule, i.e., Eqs. (8), (9), and (11) into
Eq. (A1) gives the first term of the equation

− 1√
2

+ 2
m

|�p|
vc

cos
(
χ π

4

)
√

1 − 4
m

√
2

|�p|
vc

[
cos

(
χ π

4

) + (1 + α) sin
(
χ π

4

)] + 4
m2

|�p|2
v2

c

[
(1 + α)2 sin

(
χ π

4

)2 + cos
(
χ π

4

)2] − 1√
2

�= 0, (A2)

where the second term results from vn/vc = cos(π/4). A
nonzero value corresponds to broken time-reversal symmetry
following from γ �= γ r . All vc cancel with one in |�p|, so this
equation depends on α, χ , and m only. The left-hand side of
Eq. (A2) is shown in Fig. 15. The figure shows that a collision
with γ = π

4 is only time-reversal symmetric if χ = 0 and is
nonsymmetric otherwise.

APPENDIX B: DETAILS OF THE ANALYTICAL THEORY

1. Stationary-state temperatures

Following Ref. [31], the rate of change of the translational
energy reads based on the ansatz (18),

∂t Et = g(d )
N

V 2

(
m

2πTt

)2 I

2πTr

∫
dω1dω2dr1dr2dv1dv2

× exp

[
− m

2Tt

(
v2

1 + v2
2

) − I

2Tr

(
ω2

1 + ω2
2

)]

× |v12 · n̂| �(v12 · n̂) δ(|r12| − d ) �Et . (B1)

The crucial assumption of uncorrelated velocities enters
as the choice of independent Gaussian distributions of the

velocities but with two temperatures Tt and Tr for translational
and rotational degrees of freedom. �Et describes the differ-
ence in translational energy before and after the collision.

0.0 0.2 0.4 0.6 0.8 1.0

χ

−0.6

−0.4

−0.2

0.0
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FIG. 15. The left-hand side of Eq. (A2), which is required to van-
ish for time-reversal symmetry to hold. The only case time-reversal
invariance holds at γ = π

4 is when χ = 0. For all other values of χ

the system breaks time-reversal symmetry.
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Transformation into relative coordinates

ω = ω1 + ω2√
2

, � = ω1 − ω2√
2

, v = v1 − v2√
2

,

V = v1 + v2√
2

, r = r1 − r2, r1 = r1, (B2)

simplifies the problem. The resulting integral from Eq. (B1)
can be solved trivially for r1 (box volume), �, and V (Gaus-
sians). The integral over r cancels the Dirac δ. In these
coordinates �Et reads,

�Et = m

2

(
v′2

1 + v′2
2 − v2

1 − v2
2

) = 1

m
�p2 +

√
2v · �p.

(B3)

The momentum transfer �p is given by the collision rule
Eq. (8).

In polar coordinates as shown in Fig. 1, where we chose
the x axis in direction of −n̂, �Et reads,

�Et = m
cos(γ − γχ )

1 + α sin(χγ )2

(
cos(γ − γχ )v2

c

1 + α sin(χγ )2

−
√

2vc[cos (γχ )vx + sin (γχ )vy]

)
. (B4)

The variable ω is substituted by z = vy − Rω. In this coordi-
nate frame,

vx = vc cos (γ )√
2

, z = vc sin (γ )√
2

, (B5)

hold. What is left are the integrals for vc, vy, and γ , where the
former two can be solved as Gaussian integrals.

With that the integral of Eq. (B1) finally results in

∂t Et = −κ

√
1

Tt (Tt + Trα)

∫ π
2

0
dγ cos(γ )

[
sin(γ )2

Trα

(
1 − Tt

Tt + Trα

)
+ cos(γ )2

Tt

]− 5
2

× cos(γ − γχ )

1 + α sin(χγ )2

[
cos(γ − γχ )

1 + α sin(χγ )2
−

(
cos (γχ ) cos (γ ) + sin (γχ ) sin(γ )

Tt

Tt + Trα

)]
. (B6)

The variable κ gathers constants that are of no concern, because the stationary-state energies are given by the root of Eq. (B6).
Inspection of the integrand gives the dependence of Tt .

2. Pressure

The time evolution of the momentum density defined in Eq. (23) due to the collision part in Eq. (16) reads [31]

〈iL′
+ϑα〉 = 1

2

〈∑
j

e−iq·r j
∑
k �=l

T (kl )
+

[
mvα

j + i
I

2
(q × ω j )

α
]〉

= 1

2

∑
k �=l

∫
d ρ() (−r̂kl · vkl ) �(−r̂kl · vkl ) δ(rkl − d )

×
[
�pα

(
e−iq·rk − e−iq·rl

) − (
e−iq·rk + e−iq·rl

) i

2
R[r̂kl (q · �p) − �p(q · r̂kl )]α

]
. (B7)

Expanding this equation up to linear order in q around
0 gives a factor −i�pαq · rkl and the second bracket gives
a factor 2. From the continuity equation (24) we obtain an
expression for the stress tensor,

σαβ = −n2 d

4

∫
dv1dv2dr1dr2dω1dω2

× g(r)δ(r − d )ρv,ω(v1, v2, ω1, ω2)(r̂ · v12)

× �(−r̂ · v12)(�pα r̂β + �pβ r̂α ). (B8)

The diagonal entries give the normal pressure, where xx and
yy contributions are equivalent. The ansatz for the probability
distribution ρv,ω is again a product of independent Gaussians.
With the substitutions Eq. (B2), the Eq. (B8) becomes

2Ppot = −d n2

4

∫
drdvdω(

√
2v · r̂) g(r) �(−v · r̂)δ(r − d )

×
(

m

2πTt

)(
I

2πTr

) 1
2

exp

(
−mv2

2Tt
− Iω2

2Tr

)
2�p · r̂.

(B9)

Again collisions along the x axis are considered, and z is
introduced as above. With an integration over r it follows,

Ppot = dn2g(d )

2

∫ ∞

−∞
dvy

∫ 0

−∞
dvx

∫ ∞

−∞
dz vx

(m

Tt

)( I

πTr

) 1
2

× exp

[
−mv2

x

2Tt
− mz2

2Trα
− v2

y

( m

2Tt
+ m

2Trα

)

+vy
m z

Trα

]
�px. (B10)

The vy integral can be solved straightforwardly, again choos-
ing the polar coordinates defined in Eq. (B5), plugging in the
explicit form of �px, and integrating over vc, yields Eq. (25).

APPENDIX C: SIMULATION DETAILS

Except for the results in Fig. 6, we consider a fluid state
at packing fraction φ = 0.6. For the χ -dependent Figs. 4
and 5 we simulated one system with N = 19 600 particles for
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FIG. 16. Transient equal time correlation of the transverse and
longitudinal velocity field where α = 1, φ = 0.6, and N = 4900. At
t = 0 the particles start from an amorphous structure and energies are
drawn from the equilibrium pdf. Transverse correlations build up in
a diffusive way, while longitudinal correlations show sound waves.

each value of χ and for a timespan of 2000 t0 and measured
the energy every 0.2 t0 after equilibrating for t = 40 t0. Here
one has to be careful, because the equilibration time of the
energies increases for decreasing χ . For the equation of state
in Fig. 6 we simulated one system for each packing fraction
with N = 4900 for 4000 t0. The structural quantities shown in
Figs. 7 and 8 are averages over 200 independent systems with
N = 90 000, after equilibration of t = 300 t0.

To generate the q data points in Figs. 10–12 we used
more than 400 independent systems of N = 250 000 particles;
the same holds for the real-space correlations in Fig. 9. To
improve statistics we also averaged over time. To generate
Figs. 13 and 14 we used also the 400 systems of N = 250 000
particles, but for these figures even more time averaging was
needed.

1. Equilibration of slow hydrodynamic modes

The equilibration process of the long-wavelength velocity
correlations turns out to be nontrivial. Figure 16 shows equal
time velocity correlations calculated at different timesteps
during the equilibration process. At t = 0 the structure of the
system is in an amorphous state, equilibrated with the smooth
disk collision rule. To reach the amorphous structure we used
an inflation protocol [38]. The dynamics is initialized with
velocities drawn from an equilibrium Maxwell-Boltzmann
distribution at t = 0 and the collision rule is switched to the
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FIG. 17. Finite-size effects of long-ranged velocity correlations
at χ = 0.99. For increasing system sizes, the range where simulation
data shows a power-law behavior increases.

T-violating rule. The lower panel of Fig. 16 shows longitudi-
nal velocity correlations. For small wave vectors the velocity
correlations show clear oscillations with a q-dependent fre-
quency. This resembles sound waves traveling trough the
system repeatedly due to the periodic boundary conditions.
The damping decreases with decreasing q, which makes
equilibrating harder for small q correlations. Transverse cor-
relations build up diffusively in the equilibration process.
The upper panel in Fig. 16 shows the transient equal time
correlations for transverse velocity fields. Here again, the
equilibration time increases drastically with decreasing q. For
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FIG. 18. For small values of χ , here χ = 0.2, the magnitude of
the finite-size effects can no longer be ignored. Fits are performed
with a/r2 + c at N = 250 000. The inset compares the averaged
amplitude a (distance of the red lines) to the q-space data.
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q = 0 this will not happen, since the center of mass motion is
set to zero explicitly at the beginning of the simulation.

Figure 16 shows an averages over 11 000 systems with
N = 4900, which were necessary to sample the slow noise
fluctuations in the hydrodynamic regime.

2. Finite-size effects of the velocity correlations

Since the decay of the velocity correlation is slow and
follows a power law, the finite size of the simulation system
affects this quantity. Figure 17 shows the slope of r2 gT (r)
for χ = 0.99 and different system sizes all at packing fraction
φ = 0.6; at N = 40 000, the box size is roughly L/d ≈ 228.
From this figure the agreement of the simulation data with
a r−2 power law can be read off. The larger the system is,
the longer the data follow a horizontal line, i.e., showing the
expected r−2 behavior. For long distances, r2gT (r) follows a

parabola, indicating that the correlations gT (r) do not decay to
zero within the limits of the box size but approach a constant
value. The magnitude of this plateau value decreases with
increasing system sizes.

For decreasing χ the amplitude of the power law gets
smaller and the plateau arising from the finite size is not
negligible anymore; see Fig. 18 for systems with χ = 0.2.
Moreover, the region where the power law is observed starts
only from larger distances. Therefore a model of a/r2 + c is
used, where c should account for the distortion of the power
law due to finite-size effects. The fit to the two curves gT

and gL gives the two fit parameters aT and aL. The mean
of aT and aL is multiplied by 2 π n to generate a real-
space measurement of CL − CT . In this way it was possible
to extract the coefficients for smaller χ , shown in Fig. 14.
The error bars there show the difference between 2πnaL

and 2πnaT .
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