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We introduce a model for a fluid of polydisperse rounded hard rectangles where the length and width of the
rectangular core are fixed, while the roundness is taken into account by the convex envelope of a disk displaced
along the perimeter of the core. The diameter of the disk has a continuous polydispersity described by a Schulz
distribution function. We implemented the scaled particle theory for this model with the aim of studying: (i) the
effect of roundness on the phase behavior of the one-component hard-rectangle fluid and (ii) how polydispersity
affects phase transitions between isotropic, nematic, and tetratic phases. We found that roundness greatly affects
the tetratic phase, whose region of stability in the phase diagram strongly decreases as the roundness parameter
is increased. Also, the interval of aspect ratios where the tetratic-nematic and isotropic-nematic phase transitions
are of first order considerably reduces with roundness, both transitions becoming weaker. Polydispersity induces
strong fractionation between the coexisting phases, with the nematic phase enriched in particles of lower
roundness. Finally, for high enough polydispersity and certain mean aspect ratios, the isotropic-to-nematic
transition can change from second (for the one-component fluid) to first order. We also found a packing-fraction
inversion phenomenon for large polydispersities: the coexisting isotropic phase has a higher packing fraction

than the nematic.
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I. INTRODUCTION

The study of entropic phase transitions in two-dimensional
liquid crystals is nowadays an active line of research. This
is not only because the study of orientational transitions in
monolayers of anisotropic colloids or molecules (adsorbed
at surfaces, interfaces, or forming membranes) continues to
be an interesting research topic [1-3]. In addition, tech-
niques to synthesize hard-core interacting microprisms of
any cross-sectional geometry, subsequently adsorbed to form
monolayers, have been applied to create a plethora of ef-
fectively two-dimensional fluids of Brownian particles with
several shapes [4-10]. Examples are squares [4], rectan-
gles [5], rhombuses [6], triangles [7], hexagons [8], and
kites [9]. These two-dimensional fluids have been a source
of fascinating phenomena, including the appearance of ex-
otic symmetries and chirality in the orientational and spatial
ordering of particles. Other exotic shapes such as circular
arcs [11,12] have also been studied via Monte Carlo (MC)
simulations, showing interesting self-assembling properties
directly related to the presence of entropic bonding, a concept
recently introduced in Ref. [13]. The presence of liquid-
crystal and crystalline ordering was also investigated in MC
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simulations of two-dimensional hard regular polygons, where
the number of edge lengths play a crucial role in the symme-
tries of the stable liquid crystal and crystal phases [14].

A paradigmatic example of a two-dimensional liquid-
crystal which exhibits isotropic (I), nematic (N), and tetratic
(T) orientational ordering is the fluid of hard rectangles (HRs)
and its hard square limit. This fluid was extensively studied
using the density functional theory (DFT) [15-17] via MC
simulations [18-20], and even by experiments consisting of
vertically shaken monolayers of granular particles of rectan-
gular or square cross sections [21-24]. While particles in the I
phase are not orientationally ordered, in the N or T phases,
the main particle axes (parallel to the major edge-length)
orient along one or two equivalent directors, respectively. The
orientational distribution function A(¢), i.e., the probability
density of particles axes to align at an angle ¢ with respect
to the director, has twofold h(¢) = h(¢ + m) (N phase) or
fourfold h(¢) = h(¢ + m/2) (T phase) symmetries. The T
phase in the HR fluid has been shown to be stable only for
aspect ratios varying from 1 (the hard-square limit, with the T
phase as the only possible liquid-crystal phase) to a particular
value «*. The value of «* predicted by scaled particle theory
(SPT) [16], a version of DFT, and a more sophisticated DFT
based on the second and third virial coefficients [17], are 2.21
and 3.23, respectively. An important difference between these
theories is the packing fraction values at which the T phase
begins to be stable, with the third-virial theory giving lower
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values, compatible with simulation results in Refs. [17,20].
Therefore, we expect that the SPT theory gives qualitatively
correct results. In fact, recent simulations have shown that
k* 5 [20] while experiments on monolayers of quasi-two-
dimensional granular cylinders indicate the presence of T
correlations for aspect ratios as large as «* ~ 7 [22,23]. How-
ever, some care should be taken to compare the results from
experiments on nonequilibrium dissipative granular rods to
those obtained by theoretical models based on equilibrium
statistical mechanics. As we have shown recently [23], energy
dissipation in vertically shaken granular monolayers strongly
promotes particle clusterization, resulting in a high proportion
of squarelike clusters made of rectangles joined side by side,
which in turn induces the formation of T textures as stationary
states.

On the other hand, confined monolayers of cylinders re-
spond to geometrical frustration much in the same way as
equilibrium liquid crystals, i.e., by creating topological de-
fects that restore the global symmetry of the system. The
number and topological charge of these defects seem to fol-
low the rules of topology. Also, when particles are confined
in annular geometries, a complicated pattern arises in the
orientational-ordering field, with domain walls that separate
regions of smectic and T ordering and additional topological
defects [25]. While topology predicts that no defects should
be excited in this case, the small size of the system compared
with the particle length probably explains the formation of
this complex pattern, although nonequilibrium effects cannot
be discarded as an origin. Colloidal monolayers also exhibit
the presence of T-like disclination defects in the smectic tex-
tures when confined inside cavities of different shapes [26,27].
These similarities between dissipative and equilibrium mono-
layers point to the preponderant role of entropic interactions as
the main mechanism dictating the symmetries of both systems
when frustrated by confinement.

The T phase can be stabilized by other geometrical shapes
such as rhombuses [20] and kites [9,28] of particular shapes
and ratios between their characteristic lengths. Indeed its sta-
bility region in the phase diagram seems to be very sensitive to
these ratios and, what can be more important, to the roundness
of the particle corners. It was recently shown by MC simu-
lations that a fluid of hard rounded squares does not exhibit
a T phase for high enough roundness of the corners, with
the I phase directly undergoing a transition to a crystalline
phase [29]. This result explained why the T phase was not
found in recent experiments on rounded squares [4]: It is cer-
tainly difficult to design an experimental procedure to obtain
microparticles with perfect right corners. There are two ways
to implement the presence of nonzero curvature in the particle
boundaries: (i) to take into account the change of curvature
by defining the particle as a superellipse [20,30,31] with an
exponential parameter ranging from 1 (the rhomboidal shape),
2 (the elliptical shape), and, finally, the infinite limit (for the
case of rectangles) or (ii) to consider a fixed core defined by
straight lines, adding the convex envelope that results when a
disk of some particular diameter slides along the boundary of
this core [29].

Here we will use the second recipe, with a fixed core of
rectangular shape, defining in such a way a fluid of hard
rounded rectangles (HRRs). Two main studies have been

carried out. In the first, we study the effect of roundness (mea-
sured through a roundness parameter) on the stability of the T
phase as compared with the HR fluid. Using SPT [32-34],
several phase diagrams for different values of the roundness
parameters have been calculated, which allowed us to trace
out the stability boundaries of the different phases and their
changes as a function of the roundness parameter. The second
study deals with the effect of polydispersity in the phase
behavior of HRRs. This point is motivated by the fact that
some polydispersity in sizes and/or shapes is always present
in the experimental systems. As will be shown later, the main
effects of particle roundness on the one-component fluid of
HRR are (i) the strong destabilization of the T phase; the sta-
bility region of the T phase in the packing fraction-aspect ratio
plane is considerably shrinked as roundness increases, (ii) the
interval of aspect ratios where the I-N and T-N transitions
are of first order is strongly reduced and, as a consequence,
both transitions become weaker. With regard to the effect of
polydispersity we find that, for certain aspect ratios and high
enough mean roundness and polydispersity coefficients, the
I-N transition for certain mean aspect ratios becomes of first
order despite being of second order in the one-component
fluid. Also when the fluid exhibits a first-order I-N or T-N
transition, and for high enough polydispersity, the coexisting
phases exhibit a packing fraction inversion due to the frac-
tionation effect: the coexisting I or T phases are enriched in
particles of higher roundness (or lower aspect ratios), while
the N phase is more populated by species of higher aspect
ratios. As a consequence, the coexisting I or T phases can have
a higher packing fraction as compared to that of the coexisting
N. We should mention that previous MC simulation studies
on monodisperse hard rods in 2D showed that a quasi-long-
range ordered N phase exhibits a transition to the I phase via
a Kosterlitz-Thouless disclination unbinding-type mechanism
rather than being of first order [35,36]. However recent studies
have shown that, for particular types of particle interactions,
the I-N transition becomes of first order in 2D [37,38]. Finally,
recent experiments found that quasimonolayers of magnetic
nanorods confined between adjacent layers of a lamellar phase
exhibit a first order I-N transition [39].

The theoretical DFT study of continuous polydisperse flu-
ids of anisotropic particles represents a challenge because the
density profile depends not only on the particle orientational
degrees of freedom, it also incorporates the distribution of
the polydisperse variable, which complicates the numerical
procedure necessary to calculate phase coexistence. To deal
with this problem, some simplifications were made in the past
to study the effect of polydipersity on the phase behavior of
freely rotating hard polydisperse rods. One of these simplifica-
tions involves using the Onsager-DFT of hard spherocylinders
in the hard-needle limit, and implementing the spherical har-
monics expansion of the excluded volume up to second order,
together with the use of the moment theory [40,41] to ren-
der the calculations feasible [42]. An alternative approach is
to discretize the orientational degrees of freedom, as in the
Zwanzig approximation, and use the fundamental measure
DFT for hard boardlike particles which correctly describes
not only two-body but also three-body correlations [43]. As
we show here, the present model has the advantage that the
orientational degrees of freedom and the polydisperse variable
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FIG. 1. Sketches of rounded rectangles where the fixed core
lengths L and o and the polydisperse disk length [ of particle are
indicated. Two circles of diameters / have been superimposed on
the rectangular core of one of the rounded rectangles. Note that the
limiting case [ = 0 corresponds to a rectangular particle, while for
| # 0 and o = 0 one obtains a discorectangle.

(the diameter of the disk causing particle roundness) are de-
coupled, making the theoretical treatment of the polydisperse
fluid as easy as its one-component counterpart. This property
can be used in future developments to study the combined
effect of confinement and polydispersity on the structural
properties of a two-dimensional liquid-crystal fluid.

The article is organized as follows. Section II is devoted
to the definition of the model and the presentation of the
theoretical tools used for the calculation of phase diagrams.
Special attention is paid to the coexistence calculation formal-
ism (Sec. IT A), the definition of the polydisperse distribution
function used in the study (Sec. II B), and the implementation
of the bifurcation analysis to calculate the second-order phase
transition curves (Sec. IIC). The results are divided in two
parts: In Sec. III, we present the results for the one-component
fluid (zeroth polydispersity), while in Sec. IV we describe
the results regarding the effect of polydispersity on the phase
behavior of HRR. In Sec. V, we describe an approximate
procedure to account for the effect of roundness on the in-
stability of the T phase with respect to crystallization. Finally,
some conclusions and discussions are summarized in Sec. VI.
We relegate to the Appendix the details for the numerical
calculations of shadow and cloud coexistence curves in the
polydisperse HRR fluid.

II. MODEL AND THEORY

Our model consists of a polydisperse mixture of HRRs.
A particle is defined by a fixed rectangular core of length L
and width o (L > o) plus a polydisperse coating obtained
by making the center of a disk of diameter / slide over the
perimeter of the rectangular core (see Fig. 1 for a sketch of
the particle geometry). While the core sizes L and o are fixed,
the diameter [ is a polydisperse variable with a value ranging
from O to co. Note that the cases [ = 0 and o = 0 constitute
the limiting cases of hard rectangular and discorectangular
particles, respectively. In the following, we define the main
axis of a particle to be parallel to its length L.

Let us consider two such particles with different values (/
and [') of the disk diameters. The excluded area between these
particles, as a function of their relative angle A¢ = ¢ — ¢/,

can be computed as

Aexct(AB, 1, 1) = (L* + o%)| sin Ag| + 2Lo| cos Ag
+@+ﬁxu40+gw+mn+am,
(1)

where the particle area, a(l), is
a(l) = Lo + (L + o)l + %12. )

From the excluded area, we define the geometric function
from which the SPT is constructed:

Api(A¢, 1, 1) = 5[Acxa (A, 1, 1)) — a(l) —a(l)].  (3)

The polydisperse mixture of HRRs is characterized by its
number density distribution function, p(l, ¢), a probability
density in the variables [ and ¢. This function describes the
probability to find a particle with disk size / oriented with an
angle ¢ with respect to a fixed reference frame. Thus we have
Joodl f(f” dpp(l, ¢) =", with N and A the total number of
particles and the area of the system. From p(/, ¢) we can
define its ith moment m;(¢) with respect to / and the integral
of this moment with respect to ¢ as

00 2w
mi((ﬁ)E[O dll'p(l, ¢), miE/O do mi(¢). (4)

Note that my = N/A, the total number density. To facilitate
numerical calculations, we will use the Fourier expansion of
the function my(¢),

1
mw=ghwzw%mm} %)
k=1
with {m(()k)} the Fourier amplitudes. From my(¢), the orienta-

tional distribution function is simply h(¢) = mo(¢)/mgp, while
the order parameters describing the orientational ordering are

2 m(”)
Qo = / dph(¢)cos(2ng) = ——, n=1,2. (6)
0 2myg

For uniaxial N orientational symmetry, we have Q, # 0, while
T symmetry is characterized by Q> = 0 and Q4 # 0.

The double average of the function Ag, (¢ — @', [, ") with
respect to p(l, ¢) and p(I’, ¢') gives

(Aot (AP, 1, 1)) p1.9)
o) [ee) 2
E/ dl/ dl’/ do
0 0 0
2
x [ a0t 8100 M0~ 1.1
0

L* +o?
— w<(| SIN(A@)]) ) mo(g)

+ Lo ({| cos(AP)|) ) me(g) + (L + 0 )mom; + %m% @)
where we have used the shorthand notation
2w 2w
({(8(AG) ) o) = /) deo ) do'mo(P)mo(d)g(ed — ¢').
C C
3
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Inserting the Fourier expansion (5) into Eq. (7), we obtain

k 2
gomg - % Zk>1 gk(m(() ))
b4

T
+ (L + o)mom; + me, 9)

<<Aspl(A¢v L l/)>>p(/,¢) =

with

_ L+ (=1fo)

8= ", (10)

Another important quantity of the polydisperse mixture is the
total packing fraction:

00 2w
n= / dlf dop(l, ¢p)a(l) = myLo +m (L + o)
0 0

+ T, (11)
In this expression, we used (2) for the particle area and (4) for
the integrated moments of p(l, o). Note that n depends not
only on the the zeroth and first moments mg and m,, as does
the double average of the scaled-particle area (9) but also on
the second moment m,.
With these definitions, the excess part of the free-energy
density, according to the SPT [17], can be calculated (in
thermal units), as

]:exc ls
@ulpl, ) = PP CDN v~ )
+ ({(Aspt (A, L l/)))p(l@) ’

l—n

(12)

while the ideal part is, as usual,

BFialp(l, ¢)]
A

00 2w
=/O dlfo p,Plnp(, ¢)—1]. (13)

Pia[p(l, ¢)]

In the above expressions, 8Fid.exc[p(/, ¢)] are the ideal and
the excess parts of the free-energy density functional, scaled
with the factor 8 = (kgT)~! (note that thermal area inside the
logarithm of the ideal part has been dropped).

A. Coexistence calculations

Now we calculate the two-phase coexistence between a
phase that occupies a fraction 1 — € of the total area (the cloud
phase), and another phase that occupies a vanishingly small
fraction of the area, € < 1 (the shadow phase), with coexist-
ing density distributions p.(/, ¢) and ps(I, ¢), respectively.

Let us obtain the equations that govern this coexistence.
Mass conservation, expressed by the lever rule, states that the
sum of the two density distributions, integrated over the angle
¢ and each multiplied by its respective area occupancy, 1 — €
or €, is a conserved quantity. This is equal to the distribution
function of the parent phase, py(/) = pof(l), where py is the
total number density of the system, py = N/A, while f(I) is
a fixed probability disk-diameter distribution function. The

lever rule is then

2 2T
pof () = (1 —e)/o d¢pc<l,¢>+e/0 oy, $). (14)

Minimizing the total free-energy density ®[p(l, ¢)] =
Diglo, )] + Pex[p(l, ¢)] with respect to p. (I, ¢), and us-
ing the lever rule (14) and the integral expression (7) for the
averaged scaled particle area, we obtain

pes(l, §) = eProe=e"9) 15)

where the Lagrange multiplier Bu(/), necessary to satisfy
the constraint (14), is just the scaled chemical potential of the
species with disk-diameter value /. In the above, we have used
the notation c(la)(l , ¢) for the first functional derivative of the
excess free energy:

o 3Dex[pu(l, P)]
A9, p) = ool d)
=—In (1 - fla) +
1 —ny
S{Ag(AD, 1,1
% (( pt(8p¢(l ¢))>>Pu(lq¢) +,8paa(l), (16)
where

B, = my?  (Ap(Ap, L)) 0.
R (1= 1)
is the pressure of the coexisting o phase. Using the defini-
tion (7) and the Fourier expansion (5), we explicitly find the
first functional derivative of the scaled particle area:
8({(Aspi(AD, 1, 1)) pot.00)
8pa(l, ¢)

2 a o
=2 [gomg Y=Y aum )cos(2k¢>):|

T
k>1

,a=c,s (17)

T
+ L+ o + L+ o+ Zm]1 a8)

The Lagrange multiplier 11o(/) can be found by inserting (15)
into the lever rule (14), and taking the limit € — 0, which
allows us to obtain expressions for the coexisting cloud and
shadow densities:

V9

w9 = o0 O
Pu(l, §) = pof( )fozn dgye— (1.9 “

=cs. (19

Finally, multiplying Eqgs. (19) by I/ cos(2k¢) and integrating
over ¢ and /, we find

2 _
ko = 20 [ gy e S o
' 1+ 680 Jo fo27T dgle—’te)
a=cys5,1=0,1,2, (20)
where m*® is defined as the kth-order Fourier coefficient of

the momlent ).

For the cloud-coexisting phase and k = (0, we obtain
m® =m® = po [ dlf(DI' = po(l') 1), which coincides
with the ith moment of the parent distribution function. More-
over, if the cloud-phase is I, we have m* =0V k > 1. We

i
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have solved a subset of Egs. (20), together with the pressure
equality, p© = p®, between cloud and shadow phases, to
find the set of moments {mgk‘“)} in both coexisting phases
and at the parent number density py. As will be shown in the
Appendix, we need to solve a total number of equations less
than that in (20), which is a direct consequence of the peculiar
form of the SPT area (3).

B. The polydisperse probability parent distribution function

In the present article, we use a Schulz distribution to de-
scribe the polydispersity in / in the parent phase:

o v+ 1)v+1 1" —(+Dl/ly
o=in(e) e

where ly = (I) sy is the mean value. I'(x) is the Gamma func-
tion. The above expression fulfills the normalization condition
fooo dlf(l) = 1. The parameter v € [0, oo] is related to the
mean square deviation by

(1) ray 1- 1

3, IRNCES

The parameter s € [0, 1] is used as a measure of polydisper-
sity. Note that the second moment is given in terms of s by
(lz)f(l) = lg(l + Sz).

To measure the fractionation between the coexisting
phases, we will use the mean disk size with respect to the
distribution function of the shadow phase

(22)

S =

2T
FOU) = /0 d$p (1, $), 23)

(s)
my

scaled with the mean size [ of the cloud phase. The result is

<l>f(s)([) _ mﬁs)
lO m(()s)l()

Obviously, this magnitude is unity for the cloud phase.

C. I-N and I-T bifurcations

The packing fraction at bifurcation between the I phase and
the orientationally ordered N or T phases can be obtained
from a bifurcation analysis (see the Appendix). This value
gives the exact location of the second-order transition and
corresponds to the spinodal instability of the I phase in the
case of a first-order transition. Here we express the result
given by Eq. (A15) for the packing fractions at bifurcation as
a function of parameters characterizing particle geometry. We
define the mean roundness parameter 6 and the mean aspect
ratio « of the particle as

lo L+
, K= —.
o+l o+l

(24)

We can see that & = 0 for the perfect rectangular particle (ly =
0) and & — 1 for a very large roundness, [y > o. In terms of
these variables, the I-N (k = 1) and I-T (k = 2) bifurcation

point takes place at packing fractions given by

= {1 + 20— 1) }1 (25)
n= 3k —602(1—n(1 +52)/8)]|

B 2 +1—20) -
"= {1 Y snk — 02 —zQ1 +s2)/4)]} - (@0

The crossover aspect ratio x, when the I-N and I-T bifurcation
curves coincide, i.e., for (k) = n,(x), is a linear function of
95
. 3+45
=5
where k* &~ 2.618 is the crossover aspect ratio corresponding
to HRs (8 = 0). For « < «. (k > k.), the stable phase above
the bifurcation curve is T (N). We can see that «. decreases
with 6, indicating that the roundness destabilizes the T phase.
The packing fraction value at « is

ne = nilke) = na(ke)

{ 26c5(1 — 9)? }1
. .
3k + 0)(1 — 0) + 102(1 + s2)/4]

Ke=k*—(k* =10, « 27

(28)

Also, for polydisperse rectangles close to the hard-square
shape (k = 1), the I phase bifurcates to the T phase at the
packing fraction:

8(1 — 6)?
157[1 — 02(1 — (1 + 52)/4)]

We first analyze the case s = 0, the one-component fluid.
In Fig. 2, we plot the functions 7,(x) (dashed lines) and
N2 (k) (solid lines) for values of 6 belonging to the set
{0, 0.15, 0.3, 0.5, 0.8, 1}. We can see that the N phase
stabilizes at lower densities as k > k. increases, while for
k < k. the I phase bifurcates to the T phase. Note that the
function 71, (x) for a fixed value of « is a decreasing function
of 6 although the variation is rather small. This, in turn,
means that the roundness keeps approximately the same I-N
bifurcation value. From the figure, we confirm that the region
of T phase stability strongly decreases with 6 and disappears
altogether for 6 = 1 (hard discorectangles): Not only the value
of k. decreases with 6 but also the packing fraction 7,(k)
dramatically increases with 6. In the inset the functions n;(k.),
i = 1,2 (dashed) and 1,(1) (solid) are plotted as a function
of 6, both being monotonically increasing functions, a direct
consequence of the destabilizing effect of roundness on the T
phase.

For a fixed roundness 6, the polydispersity has the effect of
increasing the packing fractions at I-N and I-T bifurcations,
which can be seen in Fig. 3 where the difference, An(x) =
ni(k;s) — ni(k;0) (i = 1, 2), between the bifurcation packing
fractions of polydisperse and one-component fluids for the se-
lected set of polydisperse coefficients s = {0.3, 0.5, 0.7, 1}
are plotted. From the figure, we conclude that this effect is
rather small.

As we will show in Sec. III, the I-N transition is of first
order for k. < k < k;, with «; the aspect ratio value of the
I-N tricritical point, its value strongly depending on 6. For
this range of x, we should bear in mind that the packing

-1
nz(1)={1+ } - (29
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FIG. 2. I-N (n;(x) with dashed lines) and I-T (,(x) with solid
lines) bifurcation curves in the one-component fluid of rounded hard
rectangles. The solid circles indicate the location of the (I-N)—(I-
T) crossover points at «., while solid squares correspond to the
I-T bifurcation packing fractions for hard squares. The inset show
the crossover packing fraction value 1. = n;(k.), i = 1,2 (dashed
line) and the packing fraction at the I-T bifurcation, n,(1), for hard
squares, both as a function of the roundness 6.

fractions at which the N phase begins to be stable do not
coincide with the bifurcation values calculated here. Also,
when polydispersity is large enough, the shadow and cloud
curves have a large coexisting gap, strongly deviating from
the bifurcation curves.

5e-03

4e-03

3e-03

An

2¢-03

le-03

0e+00 L=

FIG. 3. The difference, An(x) = n;i(k;s)—n:;0) (G =1:
dashed, and i = 2: solid), between the bifurcation packing fractions
of polydisperse and one-component fluid for a fixed value of
the roundness 6 = 0.3 and different values of the polydisperse
coefficient as they are shown.

III. THE ONE-COMPONENT FLUID

In this section, we present results for the phase behavior of
the one-component fluid of HRR. The polydisperse coefficient
is set as s = 0 in the system of Egs. (A1)-(A3), which are
solved numerically, together with the pressure equality con-
dition, to calculate the coexistence between the I or T phases
and the N phase. In the case of a second-order transition, the
expressions (25) and (26) are used to compute the packing
fraction at the I-N and I-T bifurcations, respectively, or else
Eq. (A17) to find the T-N bifurcation numerically. Figure 4(a)
shows the phase diagram of the HR fluid (8 = 0) already
obtained in Ref. [16], which is plotted here for the sake of
comparison. In Fig. 4(b), the phase diagram of HRR with
roundness 6 = 0.3 is shown. The main differences between
the phase diagrams are: (i) The region of stability of the T
phase of HRR shrinks considerably (the second-order I-T bi-
furcation moves to higher packing fraction substantially, while
the end critical point (the point at which the I-T second-order
line and the I binodal of the I-N coexistence meet) moves
to smaller aspect ratios. This result is in agreement with the
evolution of the bifurcation curves as 6 increases, a point
already discussed in Sec. II C. (ii) The range of particle aspect
ratios located between the T-N and I-N tricritical points (the
left and right ends of the continuous lines) is considerably
smaller as compared to the HR fluid, i.e., the interval in «
for which the I-N transition is of first order strongly reduces.
Note that the aspect ratio at the I-N tricritical point is smaller
than its HR counterpart. Not only that also the coexistence
gap (compare the grey shaded regions inside the coexisting
binodals in both panels) is much smaller, indicating a weaker
first-order transition. We can conclude that particle roundness
strongly destabilizes the T phase, making the fluid prone to ex-
hibiting continuous phase transitions. These features become
more pronounced as the roundness parameter 6 increases.
In the limit & — 1, we obtain the phase diagram of hard
discorectangles, with a simple second-order I-N transition for
any aspect ratio.

We now proceed to describe the orientational ordering
along the coexisting and second-order curves of the phase
diagram plotted in Fig. 4(b). In Fig. 5, the order parameters
0, and Q4 along these curves are shown. Q is different from
zero between the T-N (at x = 1.68) and I-N (at x = 3.91)
tricritical points, shown with solid circles in the figure, and
exhibits a maximum around x & 2.17 where the I-N transition
is strongly of first order. At the left of ¥ ~ 1.86 (the location
of the critical end-point where the second order I-T transition
and the first-order I-N transition meet, indicated by a solid
square), the I-N transition continues as a T-N transition with
the order parameter Q4 of the T phase increasing as k de-
creases up, to the intersection with Q4 of the N phase at the
T-N tricritical point. For still lower values of «, the T-N transi-
tion is always of second order and the T order parameter Qy in-
creases along the T-N bifurcation curve up to a value of unity
atk = 1.

It is important to quantify the topological changes in the
phase diagrams of HRR when the roundness 6 is changed.
A possible way to achieve this is to calculate how the as-
pect ratios at the tricritical and critical end points change
as a function of 6. With this information, we can trace out
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FIG. 4. Phase diagrams packing fraction, n, versus aspect ratio, «, of the one-component HR (a) and HRR (b) fluids. The roundness
parameter for the later is 6 = 0.3. With solid and dashed lines, we show second- and first-order phase transitions. For the latter, the coexistence
gaps are shaded in grey. The regions of stability of the I, N, and T phases are labeled.

the boundaries where first- and second-order transitions take
place. To find these multicritical points, we implemented the
following procedure: (i) we fixed the core length L and the
total width of the particle to unity: o 4+ = 1, implying a
roundness 6 =/ and an aspect ratio k = L + 6. Next, we
changed 6 from an initial value where a stable I-N or T-N
coexistence exists, and moved along the coexistence curves in
the direction where the transition weakens, eventually ending

FIG. 5. N (Q2) and T (Q4) order parameters along the I-N, I-T
coexisting binodals, and also along the T-N second order transition
corresponding to a fluid of HRR with roundness 8 = 0.3. Solid cir-
cles indicate the positions of the T-N (left) and I-N (right) tricritical
points while the solid square is at the critical end point where the I-T
second-order line meets the T binodal of the T-N coexistence (at the
left of the point) and the I binodal of the I-N transition (at the right).
See phase diagram of Fig. 4(b).

in the tricritical and critical end points. By computing the or-
der parameters O, and Q4 as a function of 6, and extrapolating
their values to zero, we approximately obtain the locations
of these points. In Fig. 6, two examples of this procedure
are shown. In panel (a), the evolution of Q> and Q4 along
the I-N transition is plotted for particles with L = 2.5, from
the initial value & = 0 up to 6 ~ 0.5. Beyond this point, the
transition becomes of second order, and the I-N tricritical
point can be identified. In Fig. 6(b), we selected L = 1.7 and
the initial value & = 0.17. Moving to the right along the T-N
coexistence and extrapolating Q4 of the T phase to zero, we
obtain the value of 6 corresponding to the critical end point,
beyond which the T-N transition turns into the I-N transition.
Now going to the left and extrapolating O, of the N phase to
zero, we obtain the T-N tricritical point beyond which the T-N
transition becomes of second order. Repeating this procedure
for different values of the core length L, one can trace out the
location of three lines in the 8-« plane: two lines correspond
to the I-N and T-N tricritical points and the third is identified
with critical end-points. These lines are the boundaries of the
regions where first- and second-order I-N and T-N transitions
can be found. The result is shown in Fig. 7(a). As 6 increases,
the range of aspect ratios where first-order transitions occur
considerably shrinks, disappearing in the limit of hard dis-
corectangles, 6 — 1. In Fig. 7(b), the packing fractions along
the multicritical curves are represented. Clearly, their packing
fraction values increase dramatically with 6, implying that, for
high enough values of 6, the regions of first-order transitions
become unstable with respect to crystallization of the liquid-
crystal fluid.

These figures also show the loss of stability of the T phase
with 6: Note that in Fig. 7(a) this phase is present in the
regions labeled as 2TN and 1TN, both of which considerably
shrink with 6. Also in Fig. 7(b) it is apparent that the packing
fraction values beyond which the T phase is stable (the lo-
cation of the critical end-points in dotted line) increases with
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FIG. 6. (a) Order parameters Q, and Q, of the coexisting N phase
along the I-N coexistence of HRR with fixed core length L = 2.5
and total width o + 1 = 1 (implying 6 =) as a function of 6. Inset:
Packing fraction difference between the I and N phases along coex-
istence. (b) The same order parameters but this time along the T-N
coexistence of HRR with L = 1.7 and same total width o 4/ = 1.

0, confirming the destabilizing effect of roundness on the T
phase.

IV. POLYDISPERSE HRR

In this section, we study the effect of roundness polydis-
persity on the phase transitions of HRR. It is first shown that,
when the mean roundness 6 and the polydispersity s are high,
the I-N transition can be of first order. Note that this transition
is of second order in the one-component fluid. First we solved
the set of Eqs. (A1)—(A3), together with the pressure equality
of the coexisting phases, to find the shadow and cloud I and N
coexisting curves for those values of s where the I-N transition
is of first order. Also, we used Eq. (28) which provides an
analytical expression for the packing fraction at the second-
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FIG. 7. (a) Regions spanned by the roundness, 6, and aspect ratio
« of RHR where the I-N transition is of first (1IN) or second (2IN)
order and where the T-N transition is of first (ITN) and second
(2TN) order. (b) Packing fraction, 1, at I-N (solid) and T-N (dashed)
tricritical points as a function of 6. With dotted line, we show the
value of 1 corresponding to the end-critical point.

order I-N transition. We selected a particular case of core
length and width with L = 3 and 0 = 0.6, while the mean disk
diameter is fixed to [y = 1. The resulting mean aspect ratio
and roundness [see Eqgs. (24)] are ¥ = 2.5 and 6 = 0.625,
respectively. The polydisperse coefficient s was varied from
zero to unity, and the packing fraction at the I-N bifurcation
or two-phase coexistence was calculated.

The results are plotted in Fig. 8(a). The transition is of
second order up to a polydispersity of s ~ 0.55, which is a
tricritical point. Beyond this point, the I-N transition is of first
order, with the cloud-I and cloud-N curves inside their shadow
counterparts. Note also how the shadow-N (shadow-I) curve
has a lower (higher) value of 5 than the cloud-I (cloud-N)
curve. This means that the I phase is always enriched in
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FIG. 8. (a) Packing fractions 7 versus polydispersity coefficient
s for HRR with core length and width equal to L = 3 and o = 0.6,
respectively, and with mean disk diameter /[y = 1. The resulting mean
aspect ratio and roundness are ¥k = 2.5 and 6 = 0.625, respectively.
The shadow and cloud coexistence curves (for both I and N) are
correspondingly labeled. The inset shows the fractionation at the
I and N shadow coexisting phases measured through the quantity
() fo@y/lo (see text for definition) as a function of s. (b) Order
parameters O, and O, as a function of polydispersity along the cloud
and shadow coexistence curves.

particles with larger roundness than in the N phase, i.e., there
is fractionation in the two-phase coexistence. Since the pack-
ing fraction depends on the mean values of / and /2 through the
moments m; and m;, [see Eq. (11)], the phase with the largest
roundness will have a higher packing fraction. As a result, the
orientationally ordered N phase is populated by particles with
a higher mean aspect ratio «. This effect can be better visual-
ized in the inset of Fig. 8(a), where the mean disk diameter,
scaled with [y, is plotted. The average is taken with respect
to the shadow-I or shadow-N length distribution functions
F@(). The inset confirms the enhancement of fractionation
with s: the mean disk diameter is an increasing (decreasing)
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FIG. 9. (a) Packing fraction n versus polydispersity s for HRR
with core length and width equal to L = 3 and o = 0.8, respectively,
and with a mean disk diameter /[, = 1 (giving mean aspect ratio and
roundness k = 2.2 and # = 0.5, respectively. The shadow and cloud
(for both I and N) coexistence curves are correspondingly labeled.
The inset show the fractionation at the I and N shadow coexisting
phases measured through the quantity (/) y;/lo as a function of s.
(b) Order parameters O, and O, as a function of polydispersity along
the cloud and shadow coexisting curves. Inset: Coexistence scaled
densities p* = p(a) as a function of polydispersity s corresponding
to the cloud-shadow equilibrium for both I and N phases; the labeling
is the same as that of panel (a).

function of s along the shadow-I (shadow-N) coexisting curve.
We should bear in mind that the scaled mean diameter along
the cloud coexisting curves is always equal to unity. The
orientational ordering along coexistence is shown in Fig. 8(b).
The order parameter Q, departs from zero at the tricritical
point and follows the usual square-root law, Oy ~ a./s — s,
in the neighborhood of s.. By contrast, Q4 follows a linear
trend. It is interesting to note how both cloud-N and shadow-N
coexisting phases have similar orientational orderings, with
the cloud phase having a slightly higher values of Q,, than
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FIG. 10. Phase diagrams of HRR with 6 = 0.3 in the plane An-x, where An =n — n*(k). n*(k) = ak + b (a, b are constants) is the
straight line joining the T-N and I-N tricritical points. The polydispersity coefficients are (a) s =0, (b) s = 0.5, and (c) s = 1. Different
coexistence curves and regions of stability of different phases are labeled. Dotted lines correspond to second-order phase transitions.

the shadow phase, in particular, for s ~ 1. This property of
invariance in the orientational ordering is related to the fixed
aspect ratio of the core, L/o, even though the roundness
polydispersity is varied: note that the sine and cosine terms
in the excluded area given by Eq. (1), are weighted only by L
and 0.

Next we describe the changes in the phase behavior of a
fluid, whose one-component counterpart exhibits a first-order
I-N phase transition, when polydispersity is switched on. The
particle geometry was chosen such that length and width are
L =3 and o = 0.8, respectively, while the mean disk diam-
eter is Iy = 1. The mean aspect ratio and roundness result
in k =2.2 and 6 = 0.5, respectively. Coexistence packing
fractions are plotted as a function of s in Fig. 9(a). In the
limit of zero polydispersity, the shadow and cloud (I or N)
phases coincide, as they should. Note how the shadow-I and
shadow-N curves cross each other at s ~ 0.4, and also they
cross the cloud-N and cloud-I curves, respectively, at s ~ 0.6.
As pointed out before, this behavior is a direct consequence
of the strong fractionation effect whereby the shadow-I phase
is enriched in particles with larger roundness. It is also clear
from the figure that the coexistence gap is enlarged so the first-
order transition becomes stronger. In the inset of Fig. 9(a), the
scaled mean disk diameter, averaged with respect to both I and
N shadow coexisting phases, is again plotted as a function of s.
Clearly, fractionation is strongly enhanced by polydispersity.
The inversion in packing fraction of the coexisting I and N
phases described above is not visible in the number density, as
shown in the inset of Fig. 9(b), where the properly scaled co-
existence densities are plotted as a function of polydispersity.
Densities display the usual behavior: the shadow-I (shadow-
N) coexistence phase has a lower (higher) density than the
cloud-N (cloud-I) phase. Therefore, the inversion in packing
fraction is not related with a concentration effect but, as ex-
plained above, with the strong fractionation. Finally, Fig. 9(b)
shows the coexistence values of the order parameters Q», as a
function of polydispersity. They both increase monotonically
with s. Cloud and shadow values are very similar, once more
a consequence of the invariant orientational ordering of parti-
cles with a fixed core.

All of the above results pertain to the effect of polydisper-
sity on the phase behavior of HRR when the core dimensions

L and ¢ are both fixed. Now we describe how the whole phase
diagram in the plane n — « evolves with polydispersity. Since
k is varied, L and/or o will change. We fixed a moderate mean
roundness parameter 6§ = 0.3 and calculated three different
phase diagrams: (i) that corresponding to the one-component
fluid with no polydispersity (already described in Sec. III), (ii)
that with polydispersity coefficient s = 0.5 and (iii) that with
s=1.

The results are shown in Fig. 10. Instead of the packing
fraction n, the difference between the packing fraction and
the straight line n* = ax + b connecting the T-N and the I-N
tricritical points is used for better visualizing the cloud and
shadow curves and the coexisting gap. A first result is that, for
high enough polydispersity, the coexistence gap is enlarged
with respect to the one-component case. Also, for s = 0.5,
both shadow I and N curves are inside the cloud curves, with
the packing fraction of the coexisting I phase (shadow or
cloud) being below that of the coexisting N for any aspect
ratio. This is the usual trend. However, for the maximum
polydispersity (s = 1), the shadow-I and shadow-N curves
intersect at k &~ 3, and they also cross their respective cloud
curves at k ~ 2 and 2.2, a consequence of the fractionation
effect. It is interesting to note that the T-N coexistence also
exhibits strong fractionation, with the T phase enriched in par-
ticles with higher roundness and lower aspect ratio, while the
opposite occurs with the N phase. Note how the I (shadow or
cloud) coexistence curves are always above their N (cloud or
shadow) counterparts in the region of T-N coexistence. When
the mean roundness is moderate, as in the case 6 = 0.3, the
positions of the I-N and T-N tricritical and critical end points
do not change appreciably with polydispersity, see Table I.
Although the general trend is that polydispersity enlarges the
distance between the tricritical points (the I-N point moving to
the right and the T-N point moving to the left), the difference
is visible only in the second decimal (see table). Plotting phase
diagrams in the scaled density-aspect ratio plane, it is apparent
that the shadow and cloud curves follow the usual trend, with
the I or T phases having lower densities compared with the
density of N phase (see Fig. 11). Also, the coexistence gap
becomes considerably larger with polydispersity.

To end this section, Fig. 12 quantifies the fractionation
between the coexisting phases by showing the averaged disk
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TABLE I. Tabulated values of the mean aspect ratios at the I-N
™) and T-N (™) tricritical points, and also at the critical end
point (x..) for different values of polydispersity s and fixed value of
roundness, 6 = 0.3. The corresponding values for HR (6 = 0) are
included.

0 0 0.3 0.3 0.3
s 0 0 0.5 1

K™ 1.940 1.676 1.669 1.644
Kee 2.210 1.861 1.857 1.844
k™ 5.440 3.915 3.932 3.976

diameter (with respect to the shadow distribution functions),
scaled with [y, as a function of « and along the coexis-
tence binodals. As expected, the shadow-I phase has a large
proportion of particles with high roundness as compared to the
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FIG. 11. Phase diagrams of HRR with 6 = 0.3 in the plane p* —
k, where p* = mg(a) is the scaled number density. The polydisper-
sity coefficients are (a) s = 0.5, and (b) s = 1. Different coexistence
curves and regions of stability of different phases are labeled. Dotted
lines correspond to second-order phase transitions.
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FIG. 12. Fractionation versus x measured through the quantity
(1) f»ay/lo along the shadow coexistence curves of HRR (see key
box), with 6 = 0.3 and polydispersity coefficients (a) s = 0.5 and
(b)s=1.

cloud-N phase (both cloud phases has this magnitude fixed to
1). The opposite trend is exhibited by the shadow-N, which is
enriched in less rounded particles. This general trend holds for
both polydispersities, s = 0.5 and s = 1, except at a relatively
small interval of aspect ratios, 3 < k < 4, corresponding to
the case s = 0.5, see Fig. 12(a), for which the I-N phase
transition is relatively weak

V. CRYSTALLINE ORDERING

In the present article, we have not taken into account the
stability of nonuniform phases, but they certainly should be
present at high enough densities, at least in the one-component
fluid. In Ref. [29], the authors studied the effect of roundness
of hard squares on the stability of the T phase and found
that, if the roundness is larger than 0.3 (a value used here
to predict some phase diagrams), the one-component fluid
will exhibit a direct transition from I to a crystalline phase.
We can use a simple argument to extend this result to HRR
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FIG. 13. The function Oy, (k) (see text) and the straight line
ke = k* — (k* — 1) for 0 < 0 < Ohax. Both curves approximately
enclose the region where the T phase of HRR is stable. Inset: Packing
fraction n at the I-T bifurcation, evaluated at & = 0 and 6 = 6,
(continuous curves), and packing fraction at the intersection between
the I-T and I-N spinodals (dotted line), both as a function of aspect
ratio «.

and estimate the critical roundness parameter beyond which a
crystal phase is expected for rounded rectangles (note that an
added polydispersity, not contemplated in this section, would
tend to destabilize the crystal phase regardless of the value of
roundness).

To estimate this maximum roundness, 6.y, at which the
one-component HRR-fluid with particles of a given aspect
ratio, ¥ > 1, destabilizes with respect to the appearance of
the crystalline ordering, we use the following procedure.
For Omax ~ 0.3, the destabilization value corresponding to
rounded hard squares [29], the difference between the ex-
cluded area (scaled with particle area) of hard rounded squares
in parallel (A¢ = 0) or perpendicular (A¢ = 7 /2) configura-
tions (note that they are identical) and its maximum value at
A@max 1s equal to one-half of the scaled difference but at zero
roundness. For rectangles, we use the same criterion, extended
to any aspect ratio, and write

Aexcl(A¢maXv K, emax) - Aexcl(n/zv K, emax)
a(k, Omax)
Aexcl (APmax, k£, 0) — Aexa1 (77 /2, &, 0)

- 2a(x, 0) - G0

This equality allows us to find the maximum roundness,
Omax (), as a function of k for 1 < k < k:(Omax). We define
Ke(Omax) = K — (k* — 1)0max as the aspect ratio correspond-
ing to the intersection between the I-N and T-N spinodals
(beyond which the T phase is no longer stable). Note that in
Eq. (30) we are using the excluded area evaluated at the T-like
configuration, i.e., for A¢p = 7 /2.

The function 6y, (k) is plotted in Fig. 13. The dotted line
is the straight line k., = k* — (k* — 1)6 for 0 < 6 < Opax. We
can see that the maximum roundness, although slightly higher,

has approximately the same value, for any aspect ratio, as
for hard squares. The curves shown in the inset of Fig. 13
correspond to the packing fractions of the I-T bifurcation,
evaluated at 6 = 0 and 6 = Ox. Also plotted (dotted line)
is the packing fraction at the intersection between I-T and
I-N spinodals. The region between these curves enclose the
region of T phase stability as 6 varies from 0 to its maximum
value when the crystal phase preempts the T phase. Of course,
this result would be the one resulting from any DFT whose
uniform-density limit gives the SPT. As is well-known, this
theory overestimates the packing fraction at which liquid-
crystal and nonuniform phases begin to be stable, especially
for small aspect ratios. More sophisticated theories, with the
inclusion of three-body of higher correlations [17], are nec-
essary to describe quantitatively the phase behavior at these
aspect ratios. However, we are confident that the qualitative
description (except for the precise packing fraction location)
of the phase behavior of HRR described in the present article
is the correct one.

VI. CONCLUSIONS

In this article, we have defined a particle model, HRRs, to
study the effect of roundness on the stability of the T phase
and the character (first versus second order) of the phase
transitions involved in the phase behavior of the fluid. The
first part of the article is devoted to characterizing the changes
in the phase diagram of the one-component fluid, while in
the second part a continuous polydispersity in the roundness
parameter at fixed core lengths is introduced to identify unique
trends in the phase behavior of the polydisperse fluid.

For the one-component fluid, we have found that the main
effect of roundness is the destabilization of the T phase:
the stability region considerably shrinks in aspect ratio and
moves to higher densities. Also the I-N and T-N transitions,
which are of first order in the HR fluid, transform into second
order, or become weaker, the latter scenario occurring if the
aspect ratio lies inside the interval defined by the T-N and
I-N tricritical points. This interval dramatically shrinks with
roundness parameter, disappearing altogether in the limit of
discorectangles. In addition, we believe that the crystal phase
should not interfere with the above scenario as our estimations
lead to a wide range of values for the roundness parameter
where the T phase should be stable against the crystal.

When polydispersity is added, and if its magnitude and
the mean roundness are large enough, the I-N transition for
certain mean aspect ratios changes from second to first order,
with the presence of fractionation in roundness between the
coexisting phases. We quantified this fractionation by measur-
ing the mean disk diameter at both coexisting phases, resulting
in a N phase enriched in particles with low roundness. Another
important effect when polydispersity is large enough is a
packing-fraction inversion: when the I-N or T-N transitions
are of first order, the I and T phases have higher packing
fraction than the N phase. This phenomenon is related to
fractionation: Due to the enrichment of the I or T phases in
species with high roundness when they coexist with the N
phase, the packing fraction, being a function of the first and
second moments of the disk-diameter distribution function,
will have a larger value.
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The present model could be used to study the effect of
polydisperse charges distributed on the surface of cylindrical
colloidal particles, diluted in an ionic solvent and extremely
confined so as to form a monolayer; this could be viewed as a
two-dimensional fluid of rectangular-shaped particles. As the
number of charges on the surface is a polydisperse variable,
the effective screening length will be also polydisperse which,
in turn, can be modeled by a fixed rectangular core of variable
width, resulting in an approximate HRR shape.

Finally, with regard to how the crystalline phase could
modify the results presented in this article, we expect that the
inclusion of a large enough polydispersity will destabilize the
crystal phase with the effect of increasing the threshold value
in mean roundness beyond which the crystal phase becomes
stable.
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APPENDIX: EXPLICIT EQUATIONS FOR COEXISTENCE
AND BIFURCATION CALCULATIONS

The set of coexistence Eqgs. (20) can be simplified using
the following properties of the function A, (A¢,1,1") [see
Egs. (1) and (3)]: (i) Sine and cosine functions in the relative
angle A¢ are decoupled from the terms that contain / and
I’. This, in turn, implies that the double average of Agpe With
respect to p(l, ¢) is equivalent to the average of the sine
and cosine functions with respect to my(¢) [see Eq. (7)].
Using the Fourier expansion (5), this, in turn, gives a result
which only depends on the Fourier coefficients {m(()k)} of the
zeroth moment, while the first moment enters only through
its integrated value m;. (ii) Moreover, the first functional
derivative of ((Agp (A, 1, 1)) pu,4) With respect to p(l, ¢),
which is needed to calculate the function c¢(/, ¢), will also
depend on {mg‘)} [see Eq. (18)], which are decoupled from
the polydisperse variable /. (iii) Finally, the dependence of
ci1(l, ¢) onl is a linear polynomial except for the term B pa(l)
which also depends on 12. However, this term cancels out in
the numerator and denominator of the expressions giving the
coexisting values of all the moments, Eq. (20). This is very
important because taking into account the expression for f(/)
from Eq. (21), the integral over [/ in the coexistence set of
equations (20) can be computed analytically. Defining the new
variables y("’) = ;"‘)/(1 —ne) withi=0,1,2 and @ =c, s
we obtain from (20) and all the above properties, the result

s d¢ 7~(‘)( (/)} ¢) .
yz( ) y Al(b’/ Xi ({y]}) ST i=0.1.2.
fO d¢€_l (-o a¢)
(A1)
W= 2y(‘> =D oy,
~(s) )
™ d¢ cos(2kgp)ea" (0 1:¢)
d) ( (fn)) 0y ) (A2)
7 dpea” (017):4)
~(c) (/)
c c d¢cos(2k¢)e*” (tvg"10)
y(()k )_2 ()fO ’ (A3)

d¢ _L(t)( () ¢)

—‘” In the

while, for the cloud phase, we have y(c) s

preceding equations, we have defined

Ao({yi) = (L + 0)( © _ (C)) 4+ = 5 (ygs) y(IC))v

(A4)
Ay} = %(L+U>Ao<{yi}>, )
Kl = (1+AO§§;>;<;0S2W (46)
& =-= ngy“‘ ¥ cos(2kp), (A7)

k>1

and the packing fractions of the cloud and shadow phases can
be calculated from {yfa)} as

1
() () (&) 1q°
1+ Loyy +(L+o)y” +my, /4

Na =1— (A8)

Note that, in the definition of c(lo‘)({y(’ ’}), a term proportional
to the pressure p® does not appear [as in Eq. (16)] because
it should be in the numerator and denominator of Eqgs. (Al)—
(A3). As both pressures should be equal at coexistence, they
cancel. The pressure within the new variables is

o o T o 2
Bpa =y + ((L+0)y( '+ Eyﬁ ))
_ Z g (%) (A9)
T
Lookin at Egs. (Al), we can see that the variables

{y((;), y] , yg)} are not independent. Dividing equations for

(S) (i = 1, 2) by that for y(s) we obtain

(s) s 2
yl _ 14+G@—1Ds — (A10)
'Y s2’( () + i /2)
T({y6") = — + L+ o)y
‘T[ C
—(L+a+510)yg>. (A11)

Equation (A10) can be solved for yfs) (i =1, 2) as a function
of y(v) and y((f) to find

o _ A+
=

5 = - (A12)
0
@ _ 1 @ y((;) @
n=— T(H)) + e T({yy"}) |- (A13)
Finally, the function xo({y;}) can be computed as
(s)
Y1
xO({yi})z( <‘>1> , (Al14)
0

which ta)lkmg into account (Al3) is also a function of
o’ v )
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Taking into account the preceding discussion, we have
a total number of 2(Np.,x + 1) independent variables
{yé)”), y(()s), y(()k“'), yg('s)}, where Npax is the total number
of Fourier amplitudes used in the truncated Fourier expan-
sion (5). Thus, we need to solve the single Eqgs. (Al) for

y$) (i =0) and Egs. (A2) and (A3) for the total number

of 2Npax Fourier amplitudes y(()k’“) of the cloud (o = ¢) and

shadow (¢ = s) phases. Finally, the unknown y((f) can be
computed from the equality of pressures, p. = p;, which
guarantees mechanical equilibrium between the coexisting
phases. From this equality and Eq. (A9), we can see that the
variable y{ can be written as a function of y§” and y{**’
by solving a quadratic equation. Note that the 2(Npax + 1)
variables correspond to the case where both the cloud and
shadow phases have orientational ordering, for example, when
the N and T phases coexist. When one of the coexisting
phases, say the cloud phase, is I, we need to solve only
Nmax + 2 equations because y(()k’f) =0 for 1 <k < Npax. We
have solved Egs. (A1)—(A3) through a mixed Piccard itera-
tion method, stopped when a prescribed tolerance criterion
is achieved, Y ,_. Y [y0o) — 3| < 1077, where n
labels the number of iteration.

When a second order I-(N,T) transition takes place, we
can calculate the corresponding packing fraction as follows:
In the close neighborhood of the instability of the I phase
with respect to the N or T phases, we can expand Eq. (A3)
with respect to the small quantity y(()k’c) (with k = 1 and 2 for
N and T symmetries, respectively) up to first order. Taking
into account the expression (A8) for the packing fraction as
a function of y'”, and the fact that y = yéc)(li) fy> with
(1) ray = lo and (I?) rqy = 12(1 + 5%), we finally obtain

2¢c \!
mw=1+—] , k=12, (A15)
7{a) sy

where the mean particle area is defined as

(@)= Lo+ L+ +7h 1+, (Al6)
The packing fraction at bifurcation from T to N phase
can be obtained by expanding the exponentials of Eq. (A3)
with respect to y} "=1.9) " the small odd-Fourier amplitudes,
up to first order and evaluating the resulting integrals at the
equilibrium even-Fourier amplitudes y(()2”’c) (which may be
quite large because the T phase can have a high orientational
order). We thus obtain the following set of linear equations,
written in matrix form B - ¢ = 0 with matrix elements:

bkn = Skn - %anfl (y(()z(k+n71),6) + y(()z‘kinlqd(l + akn))»
(A17)
with &, the Kronecker-delta, t = (y(()l’c), e, y(()zm_l’c))T and
m = Npax/2. This system has a nontrivial solution only if
BGY) = det(B) = 0, which allows us to find y{” (we should
bear in mind the notation y"’ = y{) at bifurcation, and from
this, and Eq. (A8), the value of packing fraction.

The numerical procedure to calculate the two-phase coex-
istence in the one-component limit can be obtained from the
same Eqs. (A1)—(A3) by setting i = 0 and taking into account
the limit

lim xi({y;}) = Ihe= 20D, (A18)
§—

T , ¢
AollyD = (L+0+Th) 68 =), (A19)

while the packing fraction at the I-(N,T) bifurcation is given
by (A15) setting s = 0.
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