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of helical Magnetospirillum magneticum cells
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Helical-shaped magnetotactic bacteria provide a rare opportunity to precisely measure both the translational
and rotational friction coefficients of micron-sized chiral particles. The possibility to align these cells with a
uniform magnetic field allows clearly separating diffusion along and perpendicular to their longitudinal axis.
Meanwhile, their corkscrew shape allows detecting rotations around their longitudinal axis, after which orienta-
tion correlation analysis can be used to retrieve rotational diffusion coefficients in the two principal directions.
Using light microscopy, we measured the four principal friction coefficients of deflagellated Magnetospirillum
magneticum cells, and compared our results to that expected for cylinders of comparable size. We show that
for rotational motions, the overall dimensions of the cell body are what matters most, while the exact body
shape has a larger influence on translational motions. To obtain a full characterization of the friction matrix
of these elongated chiral particles, we also quantified the coupling between the rotation around and translation
along the longitudinal axis of the cell. Our results suggest that for this bacterial species cell body rotation could
significantly contribute to cellular propulsion.
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I. INTRODUCTION

The swimming of microorganisms takes place at low
Reynolds number, where viscous forces play a dominant
role [1–4]. As such, modeling the motion of these organisms
requires a precise knowledge of their friction coefficients. In
the case of flagellated bacteria, swimming involves opposite
rotations of the cell body and flagella, resulting in an overall
translation along the propulsion axis [5–7]. The tumbling
motion used by many bacteria (notably Escherichia coli) to
change direction and achieve chemotaxis involves a rotational
diffusion of the propulsion axis [8,9]. Both translation along
the propulsion axis and rotations are involved in the “U-
turn” motion of magnetotactic bacteria (MTB) submitted to
a magnetic field reversal [10,11]. These examples show the
importance of determining all the friction coefficients of a
particular microorganism (translational and rotational, along
and perpendicular to the cell longitudinal axis) in order to
fully understand its motility.

Although friction coefficients can in principle be calcu-
lated for bacteria with a cylindrical shape such as E. coli,
things become more complicated for cells with more asym-
metrical shapes. Here we are interested in the magnetotactic
species Magnetospirillum magneticum, with the characteris-
tic “corkscrew” shape representative of spirilla. The friction
coefficients of spiral bacteria have been approximated by
treating the cells as spheres [10], linear chains of spheres [12],
cylinders [13,14], and prolate spheroids [15]. A more accurate
model was recently obtained by taking the actual helical shape
of the cells into account using finite element analysis [16]. An
experimental approach, involving the construction of macro-
scopic models of spiral cells, was also used to estimate their
friction coefficients [17]. None of these strategies, however,

accounts for the exact cellular shape, including irregularities
and eventual appendages. In addition, none of the above stud-
ies delved into the coupling between rotation and translation
expected for chiral objects.

Here we propose to experimentally measure the friction co-
efficients of deflagellated cells of the spirillum M. magneticum
by recording their translational and rotational diffusion as
observed with light microscopy. We take advantage of the
asymmetric shape of spirilla, which allows a full determi-
nation of a cell’s orientation from its projection in the focal
plane [18,19]. We also take advantage of the magnetic prop-
erties of M. magneticum, which allows aligning the average
direction of the longitudinal axis of the cells with that of an
external magnetic field, and separately measuring transversal
and longitudinal friction coefficients. We first show the results
of simulations used to determine the best experimental strat-
egy for extraction of the different friction coefficients of cells
from their trajectories. We then present measurements of the
friction coefficients as a function of cell length and compare
them with different available theoretical models. Finally we
experimentally quantify the coupling between rotation around
and translation along the cell longitudinal axis.

II. METHODS

A. Simulations of rotational diffusion

Simulations of the rotational diffusion of a magnetotac-
tic cell placed in a uniform magnetic field were performed
using MATHEMATICA (Wolfram Research, code available on-
line [20]). The cell was assimilated to an elongated rigid
body with rotational symmetry around its longitudinal axis
(�L), and rotational friction coefficients fr⊥ and fr‖ , associated
respectively with rotations perpendicular to and around �L.
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FIG. 1. Orientation of the cell with respect to the focal plane and
external magnetic field ( �B). The position of the cell longitudinal axis
(defined by �L) is characterized by its inclination φ from the optical
axis and by the angle θ between its projection in the focal plane and
the magnetic field (aligned with �x). The direction of the cell magnetic
moment (�μ) is characterized by the angle β it makes with �L and by
the rotation ψ of the cell around its longitudinal axis.

The cell’s magnetic moment, �μ, was placed at a constant
inclination (β) from �L, as illustrated in Fig. 1. The orientation
of the cell was updated every δt = 1 ms, by performing a
series of four small rotations. The cell was first allowed to
diffuse around its three principal axes of rotation, �L, �L × �z
and �L × (�L × �z), with an angular displacement drawn from a
Gaussian distribution with variance 2Drδt , where Dr = Dr‖ =
kT/ fr‖ (axial rotational diffusion coefficient) for the rotation
around �L, and Dr = Dr⊥ = kT/ fr⊥ (transversal rotational dif-
fusion coefficient) for the other two rotations. In the presence
of an external magnetic field ( �B), aligned with �x, an additional
rotation was added to account for the magnetic torque. The
cell as a whole (i.e., both �L and �μ) was rotated around �μ × �B,
by an angle | �μ × �B|δt/ fr⊥ (using fr⊥ as the friction coefficient,
a very good approximation as long as β is small). At each step,
the apparent orientation of the cell in the focal plane (θ ) and
around its longitudinal axis (ψ) were calculated from �L and �μ.
θ was obtained by projecting �L onto the (�x, �y) plane. ψ was
calculated as the angle between the (�L, �z) plane (red plane
in Fig. 1) and the vector �μ − (�μ · �L/L2)�L. Additional details
about the simulations can be found in Appendix B. Simula-
tions were typically run for 2000 steps (2 s) at T = 300 K,
using physical parameters representative of those expected for
M. magneticum cells: Dr⊥ = 0.1 s−1, Dr‖ = 0.01–0.5 s−1, and
μ = 0.5 × 10−15 A m2 [19].

B. Cell culture

Cells of M. magneticum strain Aerobic species of Mag-
netotactic Bacterium (AMB-1) [21], obtained from ATCC
(American Type Culture Collection, 700264), were grown

according to the protocol detailed in Ref. [22]. Briefly, cells
were grown at 30 ◦C in 60 mL of growth medium, containing
trace mineral supplements, KH2PO4, MgSO4·7H2O, HEPES,
NaNO3, yeast extract, soy bean peptone (BD Bacto Soytone),
potassium lactate, and Fe(III) citrate (pH 7.0), inside 125-mL
sealed glass bottles. Any O2 in the headspace of the bottle
and dissolved in the medium was removed by bubbling N2

in the headspace and in the solution. The medium was then
autoclaved to ensure sterility. Right before inoculation, 1 mL
of O2 was added to the headspace (65 mL) to reach a 1.5%
O2 mircoaerobic environment ideal for the growth of AMB-1
cells with strong magnetic properties. When needed in or-
der to obtain data for longer cells, 10 µg/mL of cephalexin
(Sigma-Aldrich), an antibiotic which can block cell divi-
sion [23,24], was added to the growth medium two days after
inoculation.

C. Cell imaging

Cells were harvested 3 to 5 days after inoculation, then
killed and deflagellated by heating at 60 ◦C for 15 min. After
cooling down to room temperature, the bacteria suspension
was diluted 50-fold in fresh medium to achieve an ideal con-
centration for single cell observation (3 000–12 000 cells/µL).
The diluted solution was then injected into a home-built sam-
ple chamber consisting of a glass slide and a microscope
coverslip separated by two melted parafilm strips, creating a
channel approximately 18 mm long, 5 mm wide, and 100–200
µm high. The chamber was sealed with vacuum grease or
transparent nail polish to avoid evaporation and flow. Movies
of cells undergoing translational and rotational diffusion were
then immediately captured at 100 frames per second with a
fast CCD camera (AVT Prosilica GE) mounted on a phase-
contrast microscope (Nikon Eclipse E200-LED), with either
a 40× (0.65 NA, pixel size 0.18 µm) or a 100× (1.25 NA,
pixel size 0.07 µm) objective. The effective viscosity of the
medium is larger than in the bulk when bacteria are close to a
surface [25]. To avoid this issue, when studying cell diffusion
we only imaged cells that were at least 20 µm away from the
coverslip or glass slide. The stage of the microscope was mod-
ified with a pair of custom-made electromagnetic coils [19],
so that constant uniform magnetic fields up to 1.7 mT could
be applied parallel to the focal plane by circulating a current
through the coils. The average movie duration was 17 s, with
no movie shorter than 4 s. To determine cell body handed-
ness, cells were immobilized in a hydrogel prepared from
17 mg/mL agar in deionized water [26]. The mixture was
microwaved for several seconds until the agar was completely
dissolved and injected into a warm sample chamber (≈350 µm
thick). The chamber was then immediately submerged into a
fresh MTB culture, and a magnetic bar was used to impart a
vertical orientation to the cells as the gel solidified.

D. Cell tracking

Cells were tracked using the algorithm illustrated in Fig. 2,
and their shape and orientation determined assuming that the
cells mostly laid in the focal plane, i.e., that φ � π/2 (a
reasonable assumption since equipartition of energy leads to
〈(φ − π/2)2〉 � kT/(μB) < 0.1 for μ = 0.5 × 10−15 A m2

034407-2



EXPERIMENTAL DETERMINATION OF THE PROPULSION … PHYSICAL REVIEW E 106, 034407 (2022)

FIG. 2. Illustration of the image analysis process for a short cell
(left panels) and a long cell (right panels) in a horizontal magnetic
field B = 0.1 mT. (a) Phase microscopy images of the cells, (b) bina-
rized images, (c) results of the ellipse fit, and (d) results of the sine
fit after rotation of the cells to an horizontal position.

and B > 0.1 mT). Images of individual cells were first bi-
narized using ImageJ [27], resulting in a connected cloud
of points representing the cell in each frame of the movie
[Fig. 2(b)]. The position of the cell was tracked by finding the
center of mass of this cloud of points. The apparent orientation
of the cell (θ ) was determined in two different ways using a
code written in MATHEMATICA (available online [28]). First,
the cell was fit with an ellipse to obtain an estimate of the
cell apparent orientation, θ , its length, L, and diameter, R
[Fig. 2(c)]. While this method is fast and robust, it may not
always capture the exact orientation of helical AMB-1 cells
properly, and thus a more refined fit was then performed
to take into account the sinusoidal shape of the cell body
projected in the focal plane, as first described in Ref. [19]
and as illustrated in Fig. 2(d). The approximate orientation of
the cell, θ , was first quickly determined using a linear fit, and
then the cell was rotated so as to lay approximately horizontal.
Points were binned vertically to obtain a new series of points
[green points in Fig. 2(d)] considered as the cell backbone,
which was then fit with a sine function, A sin(2πx/λ + ψ ),
returning the amplitude (A) and wavelength (λ) of the cell
helical backbone, as well as a phase (ψ) giving a direct repre-
sentation of the rotation of the cell around its long axis (as
long as the cell lays in the focal plane, or close to it, i.e.,
as long as φ � π/2). To further refine the determination of
the cell apparent orientation (θ ), the horizontal binarized cell
image was rotated from −8.5◦ to +8.5◦ in 0.5◦ increments
and the backbone determination and sine fit repeated at each
step. The results of the fit with the least χ2 were saved. To
speed up the image analysis process, this full procedure was
only performed for the first 100 frames. For the rest of the
movie, the values of A and λ were fixed to the average values

FIG. 3. Three-dimensional model of a M. magneticum cell. The
helical backbone, longitudinal axis (which is also the propulsion
axis), and magnetic axis (assumed to be exactly aligned with the
magnetosome chain) are represented by a sinusoidal yellow line, a
straight red line, and a straight slanted brown lines, respectively.

obtained from the first 100 fits, and only the parameters θ ,
ψ , and L were determined. The cell radius r (Fig. 3) was
measured manually using ImageJ from images obtained at
100× magnification. When comparing the results of the mea-
surement of the apparent orientation of the cells in the focal
plane (θ ) with either the sine fit or the elliptical fit for the same
images, we found that there was on average a 3.2◦ difference
in the value of θ . The error on θ was estimated from the τ = 0
interpolated intercept of the orientation correlation function,
as explained in Appendix C 1, Fig. 13, and in Ref. [19]. It was
found to be ε = 1.0◦ for the elliptical fit and ε = 2.5◦ for the
sine fit (B = 0.1–0.2 mT). The error on ψ was estimated by
the same method and found to be significantly larger, ε = 5.6◦
on average (B = 1 mT) (Appendix C 2 and Fig. 14). The cell
lengths obtained using both methods were strongly correlated,
with the length measured using the elliptical fit (length of the
major axis) on average 28% larger than that measured with
the sine fit (end-to-end distance). We used the median length
obtained from the sine fits as the measurement of the cell
length (such that the small fraction of measurements for which
the cells were at a significant angle from the focal plane were
not taken into account).

E. Orientation correlation functions

The orientation correlation function (OCF) relative to the
apparent orientation of the cell in the focal plane, θ (t ), is
defined as

C⊥(τ ) = 〈cos[θ (t + τ ) − θ (t )]〉. (1)

It can be calculated for each cell by averaging over all pairs of
angles separated by a given lag time τ . If the cell is confined
to the focal plane (φ = π/2) and in the absence of a magnetic
field, the exponential form C⊥(τ ) = e−Dr⊥ τ is expected, with
a characteristic decay time inversely related to the transversal
rotational diffusion coefficient Dr⊥ [14,29]. The OCF relative
to the orientation of the cell around its longitudinal axis, ψ (t ),
is defined as

C‖(τ ) = 〈cos[ψ (t + τ ) − ψ (t )]〉. (2)

In this case, it can be expected that C‖(τ ) = e−Dr‖ τ .
In the presence of a magnetic field, C⊥(τ ) is not longer

expected to decay to 0, as shown in Appendix D and discussed
in Sec. III B 2. In addition, in the presence of experimental
noise, the intercept of the OCF at τ = 0 shifts from 1 to
1 − σ 2 where σ 2 is the variance of the measurements of the

034407-3



LIU YU et al. PHYSICAL REVIEW E 106, 034407 (2022)

TABLE I. Physical parameters characterizing the geometry of the body of M. magneticum AMB-1 cells (L, cell length; λ, wavelength of
the cell helical backbone; A, amplitude of the cell helical backbone; r, cell body radius; R, overall cell radius; β, angle between cell axis and
cell magnetic moment). All reported values were experimentally measured in this study (L is the 1st to 99th percentile of the lengths obtained
from an ellipsoidal fit of all the cells in two separate 30-s movies acquired at 20× magnification, λ and A were obtained from the sine fits
of n = 63 cells with L longer than the average λ, R from ellipsoidal fit of n = 23 cells with L longer than the average λ imaged at 100×
magnification, r from n = 31 cells imaged at 100× magnification) except for β whose value was taken from Ref. [19]. Average values are
reported as mean ± SD deviation, except for r where the error corresponds to the size of a single pixel in the image used to measure this
parameter. Distributions for the values of these parameters can be found in Fig. 15.

L (µm) λ (µm) A (µm) r (µm) R (µm) β (◦) Handedness

1.8–4.2 (no cephalexin)
2.5 ± 0.3 0.21 ± 0.03 0.26 ± 0.07 0.61 ± 0.06 6.5 ± 3.2 Left-handed1.8–5.9 (with cephalexin)

angle used to calculate the OCF (θ or ψ), as discussed in
Appendix C.

III. RESULTS

A. M. magneticum structural parameters

1. Cell body dimensions

The structural parameters of M. magneticum AMB-1 cells
(length L, wavelength λ, and amplitude A of the cell back-
bone, cell body radius r, and overall cell radius R = A + r, as
illustrated in Fig. 3) were determined from phase microscopy
images as explained in Sec. II D, and are summarized in
Table I. The length of the cells varied from 1.8 to 4.2 µm
in normal growth conditions, but increased noticeably upon
addition of cephalexin (Table I, Appendix E, and Fig. 15).
Other cell body characteristics did not vary noticeably across
the population or with growth conditions (Fig. 15). Values of
r and R might be slightly overestimated, the first because it is
obtained by direct measurement of a thickness close to the
diffraction limit, and the second because it comes from an
elliptical fit of a helical structure. The cell helical backbone
wavelength and amplitude, on the other hand, are obtained
with great accuracy, despite the fact that the backbone am-
plitude is just below the resolution limit of the microscope
(A = 0.21 µm on average for cells whose length is larger than
the backbone wavelength and for which structural parameters
can be determined reliably), because its value is obtained
from the fit of the position of a cloud of points. This is
demonstrated by the fact that the same value is obtained for
A regardless of the image resolution: At 40× magnification,
we measured λ = 2.54 ± 0.23 µm (n = 40) and A = 0.20 ±
0.04 µm (n = 40), mean ± standard deviation (SD), while
at 100× magnification, we obtained λ = 2.21 ± 0.22 µm and
A = 0.23 ± 0.02 µm (n = 5). These values are not affected by
cephalexin (see Fig. 15): We measured λ = 2.37 ± 0.30 µm
and A = 0.22 ± 0.02 µm for cephalexin-treated cells (n = 18,
observed at 100× magnification).

2. Cell body handedness

Species from the genus Aquaspirillum all have helical cell
bodies, which can be right- or left-handed [30]. As there
had been contradictory reports concerning the handedness
of M. magneticum AMB-1 [31,32], we set out to determine
the handedness of AMB-1 cells by taking z-stack images of

immobilized cells. Imaging the body of 12 different cells at-
tached to the microscope coverslip from top to bottom always
revealed a pattern characteristic of a left-handed helix, as illus-
trated in Fig. 4(a). The same was true of two cells fixed in a gel
and orientated perpendicular to the focal plane (φ = 0) which,
when the cross section of the cell body along the cell long

2 μm

top slice bottom slice

top 

slice

bottom 

slice
overlay

side view top view

1 μm

(a)

(b)

(c)

FIG. 4. (a): z-stack images (contrast adjusted) of a cell attached
to a glass slide with the slices shown from top to bottom (vertical
steps: 1 µm). Since the images were acquired in an upright micro-
scope, the top slice shows the part of the cell closest to the observer.
The blue arrow in panel 2 and red arrows in panel 5 indicate the
middle and outer parts of the cell, respectively. (b) z-stack images of
a vertical cell fixed in a gel (vertical steps: 0.8 µm), from the top slice
(showing the part of the cell closest to the observer) to the bottom
slice (showing the part of the cell furthest from the observer). The
original (contrast-adjusted) images are shown in the top row, and
binarized colorized versions of these images are shown below. On
the right-hand side, an overlay of the colorized images demonstrates
that the helical backbone of the cell follows a counterclockwise path
when going from the nearest end to farthest end of the cell (curved
black arrow), as expected for a left-handed helix. (c) Schematic side
and top views of a left-handed helix.
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axis was imaged, both displayed a counterclockwise pattern
characteristic of left-handed helices [Figs. 4(b) and 4(c)].

The trajectories of flagellated bacteria swimming close
to a solid surface also give indications about cell handed-
ness. Hydrodynamic forces opposite in direction are exerted
by the surface on a cell’s rotating body and flagella, and
this creates a torque on the cell resulting in a circular tra-
jectory [25,33]. We observed that six cells close to a glass
coverslip all had counterclockwise trajectories when observed
from the water side of the water-glass interface (see the
Supplemental Material [34]). This corresponds to the mo-
tion of cells whose flagellum is rotating clockwise (when
looking from the back of the cell) and is therefore right-
handed [33]. The rotation of the cell body must then be
in the counterclockwise direction, presumably making it left
handed. Thus all our observations point to a left-handed cell
body.

It is intriguing that we measure a handedness that is differ-
ent from that reported in Ref. [31]. However, we note that in
that work handedness was inferred from images of horizontal
cells taken in a single plane, which can give the impression
that a cell has a different handedness depending on whether it
lays slightly above or below the focal plane [see Fig. 4(a)].

B. Simulations of the rotational diffusion of an elongated
magnetic particle

In order to determine the optimal experimental condi-
tions to measure the diffusion coefficients of M. magneticum
cells, we first performed simulations of the rotational dif-
fusion of a cell (elongated rigid particle with longitudinal
axis �L and magnetic moment �μ, separated by a fixed angle
β) placed in an external magnetic field ( �B), as described in
Sec. II A.

1. Orientation distributions

We first considered the simple case where �μ is aligned
with �L (β = 0) and monitored the apparent orientation of the
particle in the focal plane, θ (t ), and around its longitudinal
axis, ψ (t ). The case where β > 0 is discussed in Appendix F
(Figs. 16–18). All simulations were started with the cell in the
equilibrium position (φ = π/2, θ = 0). Examples of angular
trajectories are shown in Fig. 5, illustrating the increased
alignment of the particle with the magnetic field as B increases
[Fig. 5(a)]. In contrast, the motion around the longitudinal axis
is not affected by magnetic field strength [Fig. 5(b)]. The prob-
ability distribution for θ is expected to follow a Boltzmann
distribution, which has a simple form if �L is restricted to the
focal plane (i.e., when φ = π/2) [14]:

p(θ ) = eH cos θ /[2π I0(H )], (3)

where In is the modified Bessel function of the first kind
of order n, and H = μB/kT represents the balance between
magnetic and thermal forces. Fits of the simulated orientation
distributions with Eq. (3) give an estimate of H , from which
μ can be calculated [Figs. 5(c) and 5(d)].

Equation (3) is only strictly valid for particles constrained
to rotations in the focal plane. Thus as B increases and the
particles pass from a free 3D to a quasi-2D motion (with
φ � π/2), we expect the values of μ obtained by fitting

(a)

(b)

(c)

(d)

FIG. 5. Angular trajectories obtained from simulations of elon-
gated magnetic particles (β = 0). [(a), (b)] Examples of angular
trajectories for θ (t ) and ψ (t ) at different magnetic field strengths.
(c) Orientation distributions for θ obtained as a result of 20 s simu-
lations, with a fit to a simple Boltzmann distribution [Eq. (3)]. Same
color scheme as in panels (a) and (b). (d) Values of the magnetic
moment obtained from the fit of θ distributions (mean ± SD for
n = 10 simulations each equivalent to a 2-s experiment).

particle orientation distributions with Eq. (3) to become more
accurate. Indeed, our simulations show that for B � 0.2 mT,
the correct value of μ is recovered [Fig. 5(d)].

2. Orientation correlation functions

We used our simulations to explore in which conditions
the rotational diffusion coefficients of the particle could be
recovered from OCF. In principle, the rotational diffusion
coefficient of elongated particles perpendicular to their long
axis, Dr⊥ , can be extracted from C⊥(τ ), the OCF related to
the particle’s apparent orientation in the focal plane θ (t ) [35].
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When only thermal fluctuations influence the rotational dif-
fusion and when the diffusion is restricted to the focal plane
(φ = π/2), the OCF takes an exponential form, with a charac-
teristic decay time equal to the rotational diffusion persistence
time τP = 1/Dr⊥ . However, in the presence of a magnetic
field, the orientation of a magnetic particle such as a MTB will
become correlated at long time, and the OCF will tend toward
[I1(H )/I0(H )]2 (see Appendix D). We have thus previously
proposed the following phenomenological expression for the
OCF [14]:

C⊥(τ ) =
[

1 −
(

I1(H )

I0(H )

)2]
e−τ/τ ′

P +
(

I1(H )

I0(H )

)2

. (4)

At short lag time, thermal motions are expected to dominate
and the OCF should decay at the rate of dC⊥/dτ = −Dr⊥
regardless of the value of H , which implies that τ ′

P = {1 −
[I1(H )/I0(H )]2} /Dr⊥ (see Appendix D for details). The sim-
ulated OCF are indeed fitted well with Eq. (4) [Fig. 6(a)],
and the fit returns both μ and Dr⊥ , calculated from the values
of H and τ ′

P extracted from the fit, respectively [Figs. 6(b)
and 6(c)]. The values obtained at very small fields are not
accurate, both because the relaxation times are then larger
than the measurement times, and because Eq. (4) was written
assuming a 2D trajectory. However, as soon as H � 5 (i.e.,
B � 0.05 mT for a typical M. magneticum AMB-1 cell with
μ � 0.5 × 10−15 A m2) an accurate measurement of Dr⊥ is
obtained [Fig. 6(c), black symbols]. We also verified that
Dr⊥ could be estimated by simply fitting OCF with a linear
function (with slope −Dr⊥ ) over a short time range (Taylor
expansion of C⊥(τ ) at small τ ), which is useful when dealing
with OCF calculated from short and noisy angular trajectories.
We found that Dr⊥ could indeed be determined this way as
long as the linear fit is done for τ < 50 ms [Fig. 6(c), empty
symbols].

The same analysis was done for the rotational diffusion of
the particle around its long axis, using two different values of
Dr‖ . This rotation is not affected by the presence of a magnetic
field, and thus C‖(τ ) is expected to exponentially decay to
zero with an initial rate −1/Dr‖ , independently of B. This is
what we observed when simulating particles with Dr‖ = 0.5
s−1 [Fig. 7(a)], allowing an accurate measurement of Dr‖ at all
fields from the fit of the OCF [Fig. 7(b)]. However, when using
a lower Dr‖ = 0.01 s−1 value in the simulations, we observed
that the slope of C‖(τ ) changed with B and that the measure-
ments of Dr‖ obtained from the fit of the C‖(τ ) were inaccurate
at low B [Fig. 7(b)]. This is because the OCF is calculated
from values of ψ estimated as the angle between the vertical
plane containing the long axis of the particle (red plane in
Fig. 1) and a vector perpendicular to �L. This is done in order
to exactly reproduce what happens in experiments, where ψ is
experimentally accessible only from the analysis of the shape
of the projection of the cell body in the focal plane. The
estimated ψ is a good approximation of the real ψ only when
�L is close to being aligned with the focal plane (φ � π/2). We
conclude that it is safer to use H > 60 (i.e., for particles with a
magnetic moment similar to that of a typical AMB-1 cell, B >

0.5 mT) in order to accurately measure Dr‖ from the fit of the
OCF.

(a)

(b)

(c)

FIG. 6. Simulation results for the rotation perpendicular to the
particle longitudinal axis. (a) Left panel: OCF for θ (t ), C⊥(τ ), at
different magnetic field strengths, fit with Eq. (4) for the first 1 s.
Right panel: Close up on the first 100 ms of the OCF with linear fit
for the first 50 ms. (b) Values of the magnetic moment μ obtained
from fitting the OCF with Eq. (4) for the first 1 s. (c) Value of the
rotational diffusion coefficient Dr⊥ obtained from the fit of C⊥(τ ).
Magenta (very dark gray), cyan (light gray), and brown (dark gray)
empty symbols are for linear fits on the first 10, 50, and 100 ms of the
OCF, respectively. Filled black symbols are the result of a fit on the
first 100 ms of the OCF with Eq. (4). In panels (b) and (c), all data
points show the mean ± SD for n = 10 simulations, each equivalent
to a 2-s experiment.

C. Experimental observation of M. magneticum diffusion

1. Rotation perpendicular to the cell longitudinal axis

To study the rotational diffusion of cells around an axis per-
pendicular to their longitudinal axis, we recorded the motion
of M. magneticum AMB-1 cells rendered nonmotile by a short
heat treatment. This treatment both kills and deflagellates the
cells [36]. Cells were then placed in uniform magnetic fields
with B = 0.1 to 0.2 mT, as our simulations suggested that at
these low field strengths the cells were already constrained to
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(a)

(b)

FIG. 7. Simulation results for the rotation around the particle
longitudinal axis. (a) Left panel: C‖(τ ), the OCF for the estimated
ψ (t ), at different fields, with exponential fits to the first 1 s of
data. Right panel: Closeup on the first 100 ms of the OCFs with
exponential fits to the first 50 ms of data. (b) Values of the rotational
diffusion coefficient Dr‖ obtained from fitting C‖(τ ). Here, magenta
(dark gray) and cyan (light gray) empty symbols are for exponential
fits to the first 50 ms of the OCFs (mean ± SD for n = 10 simulations
each equivalent to a 2-s experiment) for two different values of Dr‖ .

the focal plane (φ � π/2), allowing accurate measurements
of Dr⊥ [Fig. 6(c)]. Using field values as low as possible en-
sured that the cells still displayed a significant distribution of
orientations in the focal plane, making the measurements of
changes in orientation, and therefore calculation of the OCFs,
more precise. The orientation of the cells in the focal plane (θ )
and body length (L) were obtained by fitting the image of the
cells in each available movie frame, as explained in Sec. II D
and Fig. 2. In normal growth conditions, most cells have a
length between L = 1.8 and 4.2 µm (as observed in previous
studies [14,19]). To explore a broader range of cell lengths, we
also used cells grown in the presence of 10 µg/mL cephalexin,
which increased this range up to 5.9 µm.

Orientation distributions and OCF were generated for each
cell [Figs. 8(a) and 8(b)]. The orientation distributions were
usually not centered around θ = 0 [Fig. 8(a)], a sign that
only the relaxation associated with rotational diffusion was
observed during the finite observation time (about 10 s), and
not the relaxation associated with the rotation of the cell
body around the average direction of the magnetic moment
(expected for cells with a misalignment between �L and �μ, as
discussed in Appendix F). The position of the peak, which
does not depend on cell length, is random depending on the
initial position of the cell at the beginning of the experiment.
Thus, a simple linear analysis of the OCF at short lag times

(a)

(b)

(c)

FIG. 8. Experimental observation of the rotational diffusion of
cells perpendicular to their longitudinal axis. (a) Examples of orien-
tation distributions (angle θ ) recorded for a short cell [L = 1.6 µm,
blue (dark gray) bars] and a long cell [L = 3.8 µm, green (light gray)
bars] over 8.38 s (B = 0.1 mT), and (b) corresponding OCF [same
color scheme as in panel (a), lines are linear fits based on the first
0.05 s of the OCF]. The right panel is a close up on the short time
range of the OCF. (c) Measured rotational diffusion coefficient Dr⊥
as a function of cell length [purple (dark gray) symbols: data obtained
at 40× magnification with B = 0.1 mT; orange (light gray) symbols:
data obtained at 100× magnification with B = 0.2 mT, and including
cephalexin-treated cells]. The error on L was estimated using the first
and third quartiles of the lengths measured for that cell over the entire
movie. The error on Dr⊥ is the SD of values obtained from the fit of
the OCF over different time ranges from 0 to 50 ms.

τ was performed for each cell [Fig. 8(b)] in order to obtain
the value of its rotational diffusion coefficient Dr⊥ . As ex-
pected for elongated particles, Dr⊥ sharply and monotonously
decreases as cell length increases [Fig. 8(c)].

2. Rotation around the cell longitudinal axis

To study the rotation of the cells around their longitudinal
axis, the experimental protocol was modified in two ways.
First, we used a higher magnetic field (B = 1 mT), since our
simulations suggested that Dr‖ could be correctly estimated
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(a)

(b)

(c)

FIG. 9. Experimental observation of the rotational diffusion of
cells around their longitudinal axis. (a) Examples of orientation
distributions (angle ψ) obtained for a short [L = 2.4 µm, blue (dark
gray) bars] and a long cell [L = 5.5 µm, green (light gray) bars]
over 21 s at B = 1 mT. (b) Corresponding OCF [same color scheme
as in panel (a), right panel is a closeup of the first 0.1 s of the
OCF]. Lines are exponential fits of the OCF for the first 0.05 s.
(c) Measured rotational diffusion coefficient Dr‖ as a function of cell
length. Purple (dark gray) and orange (light gray) symbols represent
data obtained at 40× and 100× magnification, respectively. Error
bars were calculated as in Fig. 8(c).

from the fit of the OCF only for B > 0.5 mT. Second, for each
image, the shape of the projection of the cell backbone in the
focal plane was determined and fitted to a sine function to
estimate both the cell orientation in the focal plane, θ , and the
angular position around its longitudinal axis, ψ (see Sec. II D
for details). The relationship between θ and ψ allowed us
to obtain, for each cell, the misalignment angle β between
magnetic moment and longitudinal axis (see Appendix F and
Fig. 16 for details) as done in Ref. [19]. Examples of orien-
tation distributions and OCF associated with ψ are shown
in Figs. 9(a) and 9(b). From the intercept of these OCF at
τ = 0, it is clear that the error made on ψ , measured for
B = 1 mT [Fig. 9(b)] is much larger than the one made on
θ , measured for B = 0.1 or 0.2 mT [Fig. 8(b)]. However, this

(a) (b)

(c)

FIG. 10. Experimental observation of the cells translational dif-
fusion. (a) Examples of distributions of displacements after a time
interval τ = 10 ms along (upper panel, blue bars) and perpendicular
(lower panel, green bars) to the cell longitudinal axis, here for a
cell with length L = 4.4 µm at B = 1 mT. (b) MSD and linear fit
for τ = 0 to 0.05 s for a short cell (light colors, L = 2.4 µm) and
a long cell (dark colors, L = 4.4 µm). (c) Translational diffusion
coefficients along (Dt‖ , black symbols) and perpendicular [Dt⊥ , red
(light gray) symbols] to the cell long axis. Error bars were calculated
as in Fig. 8(c).

error decreases as L increases (see Fig. 14). Exponential fit
of the OCF associated with ψ returned an estimate for the
rotational diffusion coefficient Dr‖ for each cell. Cells with
a misalignment angle β � 10◦ were omitted from the results
altogether, since accurate estimates of Dr‖ then become diffi-
cult (see Fig. 18). Despite the scattering in the data, it is clear
that Dr‖ decreases when the cell length increases, and that in
general Dr‖ is higher than Dr⊥ , as expected for an elongated
particle [Fig. 9(c)].

3. Translational diffusion

Data obtained at high magnetic field give the opportunity
to estimate the two principal translational friction coefficients
of the cells, since constraining their direction along that of
the external magnetic field allows easily separating diffu-
sion along and perpendicular to the cell longitudinal axis.
Distributions of displacements along (x direction) and perpen-
dicular to (y direction) the cell longitudinal axis are Gaussian
[Fig. 10(a)], as expected for a simple diffusion process. The
mean-squared displacement (MSD) as a function of lag time
was calculated for each cell in both directions [examples are
shown in Fig. 10(b)]. Linear fits of these MSD at short lag
times returned the corresponding translational diffusion coef-
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(b)

(c) (d)

(a)

FIG. 11. Experimental observation of the coupling between ro-
tation around and translation along the cell longitudinal axis.
(a) Example of the relationship observed between different types of
displacements (dx, dy) and rotations (dθ , dψ) for one particular cell.
Each point represents the cell’s displacement during a t = 0.01 s
time interval (i.e., between two consecutive frames). The line in
the dx vs dψ plot is a linear fit of the data. (b) dx/dψ in units
of λ/2π for all studied cells. (c) Correlation functions 〈x(τ )ψ (τ )〉
and 〈y(τ )θ (τ )〉 calculated for a particular cell, with linear fit for
τ = 0 to 0.05 s. (d) Coupling diffusion coefficient parallel to the
cell long axis Dc‖ = 〈x(τ )ψ (τ )〉/(2t ) [red (light gray) symbols, 0.05
µm/s average] compared to 〈y(τ )θ (τ )〉/(2t ) (black symbols, 0 µm/s
average). Error bars were calculated as in Fig. 8(c).

ficients. Both Dt‖ and Dt⊥ clearly decrease with cell length
[Fig. 10(c)], with the diffusion coefficient perpendicular to
the cell longitudinal axis (Dt⊥ ) on average smaller than the
diffusion coefficient parallel to that axis (Dt‖).

4. Coupling between rotation and translation

For chiral objects such as helices, a coupling between
the rotation around and translation along the helical axis is
expected. We indeed detected such a coupling for individual
cells, as evidenced by a correlation between the displacement
along the cell longitudinal axis (dx) and rotation around that
axis (dψ) when observed between two consecutive frames
[Fig. 11(a)]. In contrast, no such correlation was observed

for any other pairs of displacements (dx, dy) and rotations
(dθ, dψ). The coupling between dx and dψ was quanti-
fied in two ways. First, we considered the average value of
dx/dψ for each cell, which we found increased linearly with
cell length and approached the maximal value of λ/2π for
long cells [Fig. 11(b)]. Second, we looked at the correlation
function 〈x(τ )ψ (τ )〉, which should be equal to 2Dc‖τ (see
Appendix A). We indeed observe that 〈x(τ )ψ (τ )〉 is linear
at short lag times [Fig. 11(c)], although the correlation is
often lost at larger τ . Using only the very short-term part of
the correlation function, we measured the coupling diffusion
coefficient along the cell long axis to be Dc‖ � 0.05 µm/s on
average, in very clear contrast to what is observed perpendic-
ular to the cell long axis [Fig. 11(d)].

IV. DISCUSSION

The detection of the position and orientation of non-
motile M. magneticum AMB-1 cells allowed us to separately
measure the five diffusion coefficients necessary to fully
characterize their Brownian motion. From these five diffu-
sion coefficients, the five friction coefficients found in their
propulsion matrix can be calculated, fully defining the drag
forces experienced by the elongated chiral cell body. For ro-
tations and translations perpendicular to the cell longitudinal
axis, for which there is no coupling, the friction coefficients
( f ) are simply related to the corresponding diffusion co-
efficients by fi⊥ = kT/Di⊥, where i = t or r. In the axial
direction, however, a clear coupling between rotation and
translation is detected (Fig. 11). Although it remains relatively
weak (D2

c‖/(Dt‖Dr‖ ) � 7% according to our measurements),
it needs to be taken into account when calculating the axial
translational and rotational friction coefficients [Eqs. (A14)
and (A15) in Appendix A]. The last friction coefficient,
the axial coupling friction coefficient, is given by fc‖ =
kT Dc‖/(Dt‖Dr‖ − D2

c‖ ) [Eq. (A16)]. The five friction coeffi-
cients of the body of AMB-1 cells, taking into account the
correction due to coupling in the axial direction, are plotted as
a function of cell body length in Fig. 12.

The friction coefficients of bacteria are often estimated by
assimilating the cell body to a particle with simple geometry,
usually a sphere or a cylinder. The translational and rotational
friction coefficients of cylinders, which have been calculated
with great precisions for a range of aspect ratios (see Ap-
pendix A), can serve as a useful comparison to those of the
helical M. magneticum cells. For each friction coefficient, we
binned the data by cell length, and fit the resulting curves
with the expression expected for a cylinder (see Fig. 19).
We found that both the rotational and the translational co-
efficients of the cells were very close to those expected for
a cylinder. For rotations, cells behave as cylinders of radius
ρ � 0.43 to 0.51 µm, just below the overall radius of the cell,
R = 0.61 µm. For translations, on the other hand, they behave
as cylinders of radius ρ � 0.37 to 0.40 µm, a value closer to
the radius of the cell body, r = 0.26 µm. Thus, for rotations
the overall dimensions of the cell body seems to be what
matters most, whereas for translations the exact radius of the
body is also important. In all cases, the friction coefficients
of M. magneticum cells are on average larger than that of
a cylinder with a radius equal to that of the cell body, a
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FIG. 12. Dependence of AMB-1 friction coefficients on cell
length. (a) Rotational friction coefficients, fr⊥ (upper panel, black
symbols) and fr‖ (lower panel, red symbols). The solid lines show
a fit of the binned data with the expressions expected for a cylin-
der of radius ρ [Eqs. (A7) and (A8)], giving ρ = 0.51 µm ( fr⊥)
and ρ = 0.43 µm ( fr‖), very close to the overall cell radius R (as
illustrated in the right panel). The shaded areas represent the range
of values expected for up to 30% variations of ρ. (b) Translational
friction coefficients, ft ⊥ (upper panel, black symbols) and ft ‖ (lower
panel, red symbols). The solid lines are fit of the binned data with the
expressions expected for a cylinder of radius ρ [Eqs. (A4) and (A5)],
giving ρ = 0.37 µm ( ft ⊥) and ρ = 0.40 µm ( ft ‖). These values are
intermediate between R and the cell body radius, r. The shaded areas
represent the range of values expected for up to 30% variations of
ρ. (c) Axial coupling friction coefficient. The solid line is a fit of
the binned data with the expressions expected for a helix of radius ρ

[Eq. (A11)], yielding ρ = 0.11 µm, very close to the value of the cell
backbone amplitude, A, as illustrated on the right. The shaded areas
the values expected for up to 30% variations of ρ.

result in agreement with theoretical estimates (using Stokesian
dynamics and the boundary integral method) of some of the
friction coefficients of another spirillum, Magnetospirillum
gryphiswaldense MSR-1 [16]. But in contrast to what was
reported for MSR-1, we did not observe any variation of the
cell overall radius with cell length and accordingly we see
that on average AMB-1 friction coefficients vary with cell
length exactly as expected for a cylinder of constant radius.
There is, however, a lot of dispersion in the data, which
cannot entirely be explained by experimental errors. Instead,
invoking a 30% variation in ρ accounts for this dispersion
(Fig. 12), which suggests that cells with the same length might
have slightly different radius or morphology, maybe due to
the presence of different appendages, for example, because of
incomplete deflagellation. For E. coli, the presence of flagella
increases translational friction coefficients by about 30%, and
the rotational friction coefficient fr⊥ by about 70% [37,38].
Although M. magneticum cells are amphitrichous (with only
two flagella, one at each end of the cell), while E. coli cells
are peritrichous (with a number of flagella distributed over
the cell body), we can expect a roughly similar increase for
AMB-1 friction coefficients in the presence of flagella.

For the nonzero axial coupling friction coefficient of AMB-
1 cells, a better theoretical model for comparison with the
data is that of a thin helical filament, for which fc‖ can be
estimated [Eq. (A11) in Appendix A]. We therefore fitted
the experimentally obtained values of fc‖ with Eq. (A11),
and since this equation involves the values of ft‖ and fr‖ , we
fixed these values to the experimentally measured values of
these coefficients, as approximated by their fit in Figs. 12(a)
and 12(b). Despite the dispersion in the data, the trend ob-
served is in agreement with the slow increase with cell length
expected for a helical filament of radius ρ = 0.11 µm ± 30%
[Figs. 12(c) and 19], close to the value of the cell backbone
amplitude. The large dispersion in the data in this case is due
to the relatively large error made on the detection of the axial
rotation (Fig. 9).

For translational motions, we find that ft⊥ > ft‖
[Fig. 12(b)], as expected for elongated particles, but far from
ft⊥ = 2 ft‖ , the expected limit for long and thin filaments [39].
Indeed, the aspect ratio for the M. magneticum cells studied
here was limited to the range p = 1.5 to 6. Their dimensions
are similar to that of other small spirilla such as S. gracile;
however, many other spirilla are longer, with larger aspect
ratios [40]. The thin filament approximation might thus be
appropriate for other spirilla. For rotational motions, we
also have fr⊥ > fr‖ , and this is especially pronounced at
large L [Fig. 12(a)]. Thus, the cell body is optimized for
rotations around its long axis (as happens during flagellar
swimming), but not for rotations perpendicular to the cell’s
long axis (as may happen during changes in cell orientation).
For the natural range of AMB-1 cell lengths (2 to 4 µm), the
characteristic timescale for changes in direction of the cell
axis due to rotational diffusion is τr⊥ = 1/Dr⊥ = 3 to 30 s.
This is too slow for rapid changes in swimming direction, and
indeed AMB-1 cells do not make use of rotational diffusion
when they need to change direction. Instead, since they are
amphitrichous, they reverse their propulsion direction by
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changing the direction of rotation their flagella [31]. Other
bacteria, such as E. coli, solve this problem in a different way,
by using active rotational diffusion during tumbles in order to
speed up changes in direction [29].

The measurement of the axial friction coefficients allows to
calculate the drag force Fbody

drag and torque Lbody
drag applied to the

AMB-1 cell body when swimming (average swimming speed
V � 20 µm/s and average angular velocity � � 200 rad/s).
Since ft‖ = 13 ± 2 fN s/µm and fr‖ = 7 ± 4 fN µm s (mean

± SD for 2.5–3.5 µm long cells) we find that Fbody
drag = ft‖V �

0.26 ± 0.04 pN and Lbody
drag = fr‖� � 1 ± 1 pN·µm. The drag

force on the cell body is likely much larger than that on the
flagella, so the overall drag force on the cell is F cell

drag � Fbody
drag .

Because swimming takes place as low Reynold’s number,
F cell

drag is also equal to the total propulsive force (thrust) of the
cell, which is thus on the order of � 0.26 ± 0.04 pN. This
value is comparable to the thrust estimated for E. coli and
Salmonella typhimurium [41,42], but significantly larger than
that previously estimated for AMB-1 [43].

Further considering that | fc‖ | � 0.7 ± 0.7 fN· s allows
us to calculate the propulsive thrust due to the rotation of
the cell body alone: Fbody

thrust = | fc‖ |� � 0.1 ± 0.1 pN. It is
interesting that the propulsive thrust is comparable to the
drag force Fbody

drag experienced by the cell body, because it
suggests that the chiral shape of the body of AMB-1 cells is
an important contribution to the cell propulsion, significantly
adding to the propulsion contributed by the flagella. A dif-
ferent conclusion was reached for Helicobacter pylori, from
hydrodynamic calculations based on body and flagella shape
and dimensions [18]. However, the cell body diameter of M.
magneticum is thinner than that of H. pylori.

Friction coefficients had never, to our knowledge, been
measured directly for any type of bacterial cell before this
study. Our results illustrate the fact that slight differences
in dimensions can results in large differences in friction
coefficients, especially rotational friction coefficients. This
highlights the importance of single cell characterization for
precise studies of bacterial swimming motions, or for studies
where friction needs to be precisely estimated in order to
measure propulsion and magnetic or optical torques using
torque balance (e.g., measurements of the torque generated by
the flagellar motor [44–46] or measurement of the magnetic
moment of a cell with the U-turn method [10]).

The MATHEMATICA notebook used to perform these simu-
lations is available online [20].
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APPENDIX A: FRICTION COEFFICIENTS
OF AN ELONGATED PARTICLE

1. Propulsion matrix

The drag forces on a rigid body are characterized by the
friction coefficient tensor (also known as resistance matrix or

propulsion matrix):

K =
(

A B
BT D

)
. (A1)

At low Reynold’s numbers, this tensor can be used to express
the external force and torque, �F and �L, applied to the object,
as a function of its velocity and angular velocity, �V and ��:( �F

�L
)

= K
( �V

��
)

. (A2)

2. Translation matrix for a short cylinder

For a particle with revolution symmetry, and the x axis
aligned with the symmetry axis, the translation submatrix is
diagonal:

A =
⎛
⎝ ft‖ 0 0

0 ft⊥ 0
0 0 ft⊥

⎞
⎠, (A3)

where ft‖ and ft⊥ are the translational drag coefficients parallel
and perpendicular to the object long axis.

For a sphere of diameter L, ft‖ = ft⊥ = 3πηL (where η is
the solvent viscosity). But for an elongated particle (length L,
radius ρ), ft‖ < ft⊥ , and both coefficients vary with the aspect
ratio of the particle, p = L/(2ρ). For cylinders with 2 < p <

30, these coefficients were calculated with great precision by
modeling the particle surface with a series of beads and found
to be well approximated by [47–49]

ft‖ � 2πηL

ln p − 0.207 + 0.980/p − 0.133/p2
(A4)

and

ft⊥ � 4πηL

ln p + 0.839 + 0.185/p + 0.233/p2
. (A5)

An expression for the translational drag coefficient of a thin
helix along its axis has also been derived, but without taking
into account the effect of the ends of the particle, in which
case ft‖ ∝ L [50].

3. Rotation matrix for a short cylinder

The rotation submatrix of a particle with revolution sym-
metry is also diagonal:

D =
⎛
⎝ fr‖ 0 0

0 fr⊥ 0
0 0 fr⊥

⎞
⎠. (A6)

For a sphere, fr‖ = fr⊥ = πηL3. For cylinders with 2 <

p < 30 a good approximation is [48,51]

fr‖ � πηLR2 × 3.84[1 + 0.677/p − 0.183/p2] (A7)

for axial rotations and

fr⊥ � πηL3

3[ln p − 0.662 + 0.917/p − 0.050/p2]
(A8)

for rotations about the cylinder short axes. An expression for
the rotational drag coefficient of a thin helix around its axis
has also been derived, but without taking into account the
effect of the ends of the particle, in which case fr‖ ∝ L [50].
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4. Coupling matrix for a thin helix

The coupling matrix is B = 0 for a particle with true rev-
olution symmetry, meaning that rotations are decoupled from
translational motions [52,53]. However, for a chiral particle
such as a helix, there is a coupling between axial translation
and rotation, and therefore

B =
⎛
⎝ fc‖ 0 0

0 0 0
0 0 0

⎞
⎠, (A9)

where fc‖ > 0 for a right-handed helix and fc‖ < 0 for a left-
handed helix.

For a thin left-handed helix with length L, radius ρ, pitch
λ, and and thickness r [50],

fc‖ = − 4π2ρ2λ[
log10 (r/(2λ)) + 1

2

]
(4π2ρ2 + λ2)

ηL. (A10)

When ρ � λ, one can show that [33]:

fc‖ � −( fr‖ − ρ2 ft‖ )
2π

λ
. (A11)

For a more general analysis of the correlation between
rotational and translational diffusion in the case of a particle
of arbitrary shape, see Ref. [54].

5. Relationship between friction coefficients and diffusion
coefficients

For a particle undergoing Brownian motion, writing the
Langevin equations and applying the equipartition theorem
leads to the diffusion tensor D = kT K−1, and to the following
expressions for the mean-squared displacements and rotations
of the object [55]:

〈x2(t )〉 = 2Dt‖t = 2
kT fr‖

ft‖ fr‖ − f 2
c‖

t,

〈y2(t )〉 = 〈z2(t )〉 = 2Dt⊥t = 2
kT

ft⊥
t,

〈
ω2

x (t )
〉 = 2Dr‖t = 2

kT ft‖

ft‖ fr‖ − f 2
c‖

t,

〈
ω2

y (t )
〉 = 〈ω2

z (t )〉 = 2Dr⊥t = 2
kT

fr⊥
t, (A12)

as well as the following correlations:

〈x(t )ωx(t )〉 = −2Dc‖t = −2
kT fc‖

ft‖ fr‖ − f 2
c‖

t,

〈x(t )y(t )〉 = 〈ωx(t )ωy(t )〉 = 0,

〈x(t )ωy(t )〉 = 〈ωx(t )y(t )〉 = 0. (A13)

Thus, the particle friction coefficients are related to its
diffusion coefficients by

ft‖ = kT
Dr‖

Dt‖Dr‖ − D2
c‖

, ft⊥ = kT
1

Dt⊥
, (A14)

fr‖ = kT
Dt‖

Dt‖Dr‖ − D2
c‖

, fr⊥ = kT
1

Dr⊥
, (A15)

and

fc‖ = kT
Dc‖

Dt‖Dr‖ − D2
c‖

. (A16)

APPENDIX B: SIMULATIONS OF THE ROTATIONAL
DIFFUSION OF A CELL IN THE PRESENCE

OF A MAGNETIC FIELD

To simulate the rotational diffusion of a magnetotactic
bacterial cell, we assimilated the cell to a small elongated
particle with rotational symmetry (characterized by the two
drag coefficients fr‖ and fr⊥ ) and a magnetic moment (�μ)
found at an angle β from the particle long axis. The orientation
of this particle was characterized by two unit vectors, �uL

representing the orientation of the cell long axis (with polar
coordinates θ and φ, as defined in Fig. 1), and �uμ representing
the orientation of the cell magnetic moment (initially defined
by the angles θ and φ + β).

To simulate the rotational diffusion of this particle we per-
formed, at each step δt in the simulation, three small rotations
around the three principal axis of rotations, defined by the
vectors �uφ = �uL × �z, �uα = �uL × (�uL × �z) and �uψ = �uL. The
magnitude of these rotations were randomly drawn at each
step from the distributions:

p(δφ) = e−dφ2/(4Dr⊥ δt )√
4πDr⊥δt

, (B1)

p(δα) = e−dα2/(4Dr⊥ δt )√
4πDr⊥δt

, (B2)

p(δψ ) = e−dψ2/(4Dr‖ δt )√
4πDr‖δt

, (B3)

where the rotational diffusion coefficients are calculated from
the corresponding drag coefficients Dr⊥ = kT/ fr⊥ and Dr‖ =
kT/ fr‖ .

The influence of the magnetic field was taken into account
by adding a fourth rotation around the vector �uμ × �x (since the
magnetic field was chosen to be aligned with �x), by an angle
| �μ × �B|δt/ fr‖ .

At the end of each step, after these four rotations were
performed, the orientation of the cell in the focal plane [the
(x, y) plane], which is equal to the azimuthal angle θ of �uL

in polar coordinates, was recorded. The apparent orientation
of the cell around its longitudinal axis, ψ , was calculated as
follows:

sin ψ = cos((�z × �uL ) · �v)/|�z × �uL|, (B4)

where �v is a unit vector in the plane defined by �L and �μ,
perpendicular to �L and pointing toward the same half-plane
as �μ [20].

APPENDIX C: ERROR ON CELL ORIENTATION
MEASUREMENT

1. Effect of measurement error on the OCF

If the error δθ on the measurement of θ is normally dis-
tributed with variance σ 2, then the OCF calculated from such
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FIG. 13. Influence of measurement noise on the OCF. (a) Three
OCFs are shown, calculated from the same trajectory (B = 0), with
either no noise added [blue (very dark gray) curve] or noise added
at each step on the measurement of the value of θ . The noise was
drawn from a normal distribution with a full width at half maximum
of 5◦ [corresponding to a variance σ 2 = 0.00137 rad2, green (dark
gray) curve] or 10◦ [corresponding to a variance σ 2 = 0.00549 rad2,
orange (light gray) curve]. (b) Closeup of the first 100 ms of the
OCF shown in panel (a), with a linear fit of the first 50 ms of
the data.

measurements becomes

CN
⊥ (τ ) = C⊥(τ )〈cos2 δθ〉 � C⊥(τ )(1 − σ 2). (C1)

The whole OCF is multiplied by a factor (1 − σ 2). As a
consequence, instead of having an intercept of 1 at τ = 0, it
has an intercept of 1 − σ 2. This is indeed what is observed
when measurement noise is added in the simulations: At very
short lag times, when the OCF approaches 1, measurement
errors result in a downward shift of the OCF by exactly σ 2

(Fig. 13). Thus, such an offset should also be expected in
experimental OCF, and the variance of the experimental er-
ror can be recovered by considering the vertical intercept of
experimental OCF.

2. Experimental error on the measurement of cell orientation

Using the intercept of the experimental OCF (as explained
in Appendix C 1) allowed retrieving the standard deviation of
the measurement error (σ ) for each cell, for both angles θ and
ψ (Fig. 14). The error made on θ is very small (on the order of
1◦). It is significantly larger for ψ (on the order of 5◦). As the
cell length increases, the error on both angles monotonously
decreases.

FIG. 14. Standard deviation (σ ) of the error on the value of the
angle θ measured using an elliptical fit [green (light gray)] and on
the value of ψ measured using a sine fit [blue (dark gray)], plotted
as a function of cell length. In both cases, σ was obtained for each
individual cell from the intercept of the OCF computed from the
angle measurements for that cell.

APPENDIX D: ORIENTATION CORRELATION FUNCTION
IN THE PRESENCE OF A MAGNETIC FIELD

The orientation correlation function (OCF) related to the
apparent focal plane orientation of a cell is given by

C⊥(τ ) = 〈cos[θ (t + τ ) − θ (t )]〉
= 〈cos θ (t ) cos θ (t + τ )〉 + 〈sin θ (t ) sin θ (t + τ )〉,

(D1)

where brackets indicate average over time. Below we discuss
the short-time and long-time asymptotic behavior of the OCF,
and based on this we propose an expression for the OCF in the
presence of a magnetic field.

1. Long-time behavior

At long time (τ → ∞), the values of θ (t ) and θ (t + τ )
become uncorrelated and

C⊥(τ ) = 〈cos θ (t )〉〈cos θ (t + τ )〉 + 〈sin θ (t )〉〈sin θ (t + τ )〉.
(D2)

In the particular case of a magnetic field directed along the x
axis, by symmetry 〈sin θ (t )〉 = 0, resulting in

C⊥(∞) = 〈cos θ (t )〉2. (D3)

The value of C⊥(∞) is determined by the distribution of
orientations of the cell at equilibrium, p(θ ):

C⊥(∞) =
[∫ π

−π

p(θ ) cos θdθ

]2

. (D4)

When the ratio H = μB/(kT ) is high (H > 10, a condition
always realized in our experiments), the axis of the cells
can be considered almost parallel to the focal plane, and the
distribution of orientations is given by Eq. (3) leading to

C⊥(∞) = [I1(H )/I0(H )]2. (D5)

(Note that because of a typo, this equation was incorrectly
written down in Ref. [14]). For a very strong magnetic field
(H → ∞), we get as expected C⊥(∞) = 1.
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2. Short-time behavior

To characterize the short-time behavior of the OCF, we
express it in terms of the characteristic function of the random
variable θ (τ ) = θ (t + τ ) − θ (t ):

C⊥(τ ) = Re〈eiθ (τ )〉. (D6)

Assuming θ (τ ) is a random Gaussian variable (mean
〈θ (τ )〉 = 0, standard deviation 〈θ (τ )2〉), its characteristic
function is 〈eikθ (τ )〉 = eik〈θ (τ )〉e−k2〈θ (τ )2〉/2 = e−k2〈θ (τ )2〉/2.
Thus,

C⊥(τ ) = e−〈θ (τ )2〉/2. (D7)

To estimate 〈θ (τ )2〉, we write the one-dimensional
Langevin equation associated with the rotation of the cell in
the focal plane (i.e., again assuming that H > 10 and that the
cell axis is more or less aligned with the focal plane):

dθ (t )

dt
= 1

fr⊥
ξ (t ) − μB

fr⊥
sin θ (t ), (D8)

where ξ (t ) is the random force associated with Brownian
motion. For times smaller than the magnetic relaxation time
τB = fr⊥/(μB) (in the conditions of our experiments, μ <

10−15 A m2, B < 1 mT, and fr⊥ > 10 fNμm s, thus τB > 10
ms), we may consider that the magnetic torque is constant,
and write

θ (τ ) � 1

fr⊥

∫ t+τ

t
ξ (s)ds − μB

fr⊥
sin θ (t )τ. (D9)

Then,

〈θ (τ )2〉 � 1

f 2
r⊥

∫ t+τ

t
ds

∫ t+τ

t
〈ξ (s)ξ (u)〉du

+
(

μB

fr⊥

)2

τ 2〈sin2 θ (t )〉. (D10)

As a result of the fluctuation-dissipation theorem,

〈ξ (t + τ )ξ (t )〉 = 2dfr⊥kT δ(τ ), (D11)

where d is the dimension of the motion (d = 1 here). In
addition, at thermal equilibrium we have

〈sin2 θ (t )〉 =
∫ π

−π

sin2 θeH cos θdθ/[2π I0(H )] = 1

H

I1(H )

I0(H )
.

(D12)
Therefore,

〈θ (τ )2〉 � 2
kT

fr⊥
τ + kT

fr⊥

μB

fr⊥

I1(H )

I0(H )
τ 2. (D13)

For τ < τB the second term is negligible and thus

C(τ ) � e
− kT

fr⊥
τ
. (D14)

3. OCF in the presence of a magnetic field

To obtain an expression for the orientation correlation
function (OCF) related to the apparent direction of a MTB
in the focal plane in the presence of a magnetic field, we
assumed that it would retain an exponential relaxation form,
but no longer decay toward 0, i.e., C⊥(τ ) = ae−t/τ ′

P + b. The
constants a, b, and τ ′

P were calculated by taking into account
the following constraints:

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 15. Variation of cell parameters upon cephalexin trerat-
ment. (a) Distributions of cell length (L) and cell width (R) measured
for AMB-1 cells in a control culture [magenta (dark gray)] and a
cephalexin-treated culture [yellow (light gray)]. (b) Cell length distri-
bution for the subset of n = 108 cells whose diffusion was analyzed
in this work [blue (dark gray), cells grown in normal conditions and
imaged at 40× magnification; green (gray), cells grown in normal
conditions and imaged at 100× magnification; orange (light gray),
cephalexin-treated cells imaged at 100× magnification]. [(c)–(f)]
Wavelength of the cell helical backbone (c), amplitude of the cell
helical backbone (d), cell body radius (e), and cell overall radius (f),
as a function of cell length. Color scheme is the same as in panel (b).
The distribution associated with each of these parameters is shown
on the right. For panels (c), (d), and (f), the distribution only takes
into account cells longer than the average wavelength λ̄ = 2.5 µm,
for which the corresponding parameters could be measured reliably.
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(a)

(b)

FIG. 16. Influence of a misalignment between the cell longitudi-
nal axis �L and its magnetic moment �μ. (a) Orientation distributions
for simulated cells placed in a magnetic field B = 1 mT, for simu-
lations equivalent to a 200-s experiment. (b) Coupling between the
apparent orientation in the focal plane, θ , and the apparent orienta-
tion around the cell longitudinal axis, ψ , for a misalignment angle
β = 20◦. The pink (gray) points show the result from the first 2 s of
the simulation. The solid line is the fit to the black points (simulation
equivalent to a 200-s experiment) in the form of Eq. (F1).

(i) C⊥(∞) = [I1(H )/I0(H )]2 = b.
(ii) C⊥(0) = 1 (neglecting any source of experimental

noise), and thus a = 1 − b.
(iii) dC⊥

dτ
(0) = − kT

fr⊥
[Eq. (D14)] and thus τ ′

P = a fr⊥/(kT ).

Thus,

C⊥(τ ) =
(

1 −
[

I1(H )

I0(H )

]2)
e−t/τ ′

P +
[

I1(H )

I0(H )

]2

, (D15)

with

τ ′
P =

(
1 −

[
I1(H )

I0(H )

]2) fr⊥

kT
. (D16)

APPENDIX E: EFFECT OF CEPHALEXIN ON CELL
LENGTH AND MORPHOLOGY

As a result of addition of 10 µg/mL cephalexin to the
growth medium, the length distribution of AMB-1 cells
slightly shifted toward longer cells; however, other morpho-
logical parameters were mostly unaffected (Fig. 15).

APPENDIX F: EFFECT OF A MISALIGNMENT BETWEEN
CELL AND MAGNETIC AXIS

We performed simulations (see Appendix B and Sec. II
in the main text for details) to investigate the effect of a
misalignment (β) between the cell longitudinal axis (�L) and its

(a)

(b)

(d)

(c)

FIG. 17. (a) Influence of a misalignment on OCF for rotation per-
pendicular to the cell longitudinal axis, for B = 0.5 mT and β = 0◦

[blue (very dark gray)], β = 10◦ [green (dark gray)], and β = 20◦

[orange (light gray)]. Lines are fit of the first 1 s of the data with
Eq. (4) in the main text. (b) Closeup of the first 100 ms of the OCF
shown in panel (a), with a linear fit of the first 50 ms of the data.
(c) μ values obtained from fitting the OCF with Eq. (4) in the main
text. (d) Dr⊥ values obtained from fitting the first 50 ms of the OCF
with a linear function. [(c), (d)] Same color scheme as in (a). [(c),
(d)] The horizontal lines represent the value of μ or Dr⊥ used in the
simulations.
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FIG. 18. (a) Influence of a misalignment on OCF for rotation
parallel to the cell longitudinal axis, for B = 0.5 mT and β = 0◦

[blue (very dark gray)], β = 10◦ [green (dark gray)], or β = 20◦

[orange (light gray)]. Lines are exponential fits of the first 1 s of the
data. (b) Closeup of the first 100 ms of the OCF in panel (a), with an
exponential fit for the first 50 ms of the data. (c) Dr‖ values obtained
from fitting the first 50 ms of the OCF with an exponential function
as a function of B. Same color scheme as in panel (a). (d) Apparent
measured Dr‖ for B = 1 mT and either Dr‖ = 0.01 or 0.5 s−1 as a
function of β. [(c), (d)] Horizontal lines represent the actual value of
μ or Dr‖ used in the simulation.

magnetic moment (�μ) on measured OCF. This misalignment
is on average β = 6◦ and can be up to β = 20◦ for individual
M. magneticum AMB-1 cells [19].

(a)

(b)

(c)

FIG. 19. Binned data for (a) rotational and (b) translational fric-
tion coefficients, and (c) longitudinal coupling friction coefficient. In
panels (a) and (b), lines are fits with a cylinder model [Eqs. (A4),
(A5), (A7), and (A8) in Appendix A], whereas in panel (c) the line
is a fit with a helical model [Eq. (A11) in Appendix A]. The radius
of the cylinder or the helix (ρ) was left to vary and found to be equal
to (a) 0.51 and 0.43 µm, (b) 0.37 and 0.40 µm, and (c) 0.11 µm.
Shaded areas represent the values expected for variations in the value
of ρ by up to 30%.
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When placed in a magnetic field (B = 1 mT), cells with a
small or no misalignment have single-peak orientation distri-
butions centered around θ = 0; however, as β becomes larger,
the distribution splits into two symmetric peaks on either
side of β = 0 [Fig. 16(a)]. This change in the distribution of
orientations is due to the fact that rotation of the cell around
its magnetic axis (�μ, which tends to be aligned with �B) results
in a rotation of the cell longitudinal axis (�L). Such a rotation
results in θ (rotation of the cell in the focal plane) and ψ

(rotation of the cell around its longitudinal axis) being coupled
in a specific way (Eq. (11) in Ref. [19]):

θ (ψ ) = tan−1 ( tan β cos(ψ + δ)), (F1)

where δ is a geometrical phase shift. This relationship has
been previously observed in experiments [19], and it is also
clearly observed in our simulations [Fig. 16(b)]. Fitting of the
experimentally observed θ (ψ ) relationship with Eq. (F1) for
a particular cell allows to obtain the value of β for that cell.

As can be seen in Fig. 16(b), rotational diffusion relaxation
is achieved in less than 2 s (the usual length of a simulation),
while capturing the relaxation of the rotation of �L around �μ
requires running longer experiments or simulations (here the
relaxation has been achieved after 200 s). This means that
the OCF associated with θ should now have two character-
istic relaxation times, one associated with the diffusion of �μ
around �B, τ ′

P = [1 − (I1[μB/(kT )]/I0[μB/(kT )])2]/Dr⊥ (see
Appendix D) and one associated with the rotation of �L around

�μ, τC , where τC > τP. Calculating the OCF for only a few
seconds of data, i.e., for lag times τ < τC , ensures that a single
relaxation time is visible [Fig. 17(a)]. Fitting such OCF only
for short lag time (τ � 1 s) using Eq. (4) in the main text, or
for even shorter lag times (τ � 50 ms) with a linear fit allows
to recover the value of Dr⊥ (and, in the first case, of μ) as for
cells for which β = 0 (Fig. 17).

A misalignment may also may also influence the OCF
associated with ψ (t ), since the rotation of the cell around �μ
also results in a rotation around �L and therefore also affect
ψ . At large Dr‖ [Figs. 18(a)–18(c)], this does not affect the
measurement of Dr‖ obtained from the fit of the OCF for
τ � 50 ms. But for smaller Dr‖ , it can result in a quicker decay
of the OCF, and an overestimated value of Dr‖ [Fig. 18(d)]. It
is therefore better, when trying to measure Dr‖ , to use only
cells with a small misalignment.

APPENDIX G: BINNING AND FITTING OF THE
FRICTION COEFFICIENTS

In order to verify the dependence between friction coef-
ficient and cell lengths, the data obtained for the different
friction coefficients were binned according to cell length, and
fitted with the form expected for either a cylinder model ( fr⊥ ,
fr‖ , ft⊥ , ft‖) or a helical model ( fc‖). The result of these binning
and fits is shown in Fig. 19.
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