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Provenance of life: Chemical autonomous agents surviving through associative learning
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We present a benchmark study of autonomous, chemical agents exhibiting associative learning of an envi-
ronmental feature. Associative learning systems have been widely studied in cognitive science and artificial
intelligence but are most commonly implemented in highly complex or carefully engineered systems, such
as animal brains, artificial neural networks, DNA computing systems, and gene regulatory networks, among
others. The ability to encode environmental information and use it to make simple predictions is a benchmark of
biological resilience and underpins a plethora of adaptive responses in the living hierarchy, spanning prey animal
species anticipating the arrival of predators to epigenetic systems in microorganisms learning environmental
correlations. Given the ubiquitous and essential presence of learning behaviors in the biosphere, we aimed
to explore whether simple, nonliving dissipative structures could also exhibit associative learning. Inspired
by previous modeling of associative learning in chemical networks, we simulated simple systems composed
of long- and short-term memory chemical species that could encode the presence or absence of temporal
correlations between two external species. The ability to learn this association was implemented in Gray-Scott
reaction-diffusion spots, emergent chemical patterns that exhibit self-replication and homeostasis. With the novel
ability of associative learning, we demonstrate that simple chemical patterns can exhibit a broad repertoire of
lifelike behavior, paving the way for in vitro studies of autonomous chemical learning systems, with potential
relevance to artificial life, origins of life, and systems chemistry. The experimental realization of these learning
behaviors in protocell or coacervate systems could advance a new research direction in astrobiology, since our
system significantly reduces the lower bound on the required complexity for autonomous chemical learning.
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I. INTRODUCTION AND CONCEPTUAL FRAMEWORK

Ever since the outspoken chemist Ilya Prigogine intro-
duced the concept, dissipative structures and their underlying
phenomenology have beguiled, entranced, and split opinions
of researchers from a range of disciplines [1,2]. The approx-
imate definition of a dissipative structure is a coherent and
discernible dynamical pattern that is maintained by external
disequilibria over a finite time. The structure exists at a higher
phenomenological or descriptive level to its microscopic con-
stituents and can thus be considered “emergent” [3–7].

The most frequently cited examples of dissipative struc-
tures are fluid convection cells [8–12], hurricanes [13],
dynamic surfactant structures such as micelles, vesicles, and
droplets [e.g., Refs. [14–19]], stars and galaxies [20], black
holes [21], and biological organisms [e.g., Refs. [22–24]]. In
the fields of artificial life and the origins of life (OoL), dis-
sipative structures are a key focus area, serving as metaphors
for simple forms of life and providing clues to the nonlife to
life transition [15,25–28]. Numerous experiments and simu-
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lations in this field have illustrated the emergence of subsets
of life’s properties. For example, various oil droplet systems
have been shown to exhibit chemotaxis, in which the motion
of the droplets is powered through the consumption of a fuel
compound, and the droplets’ motion follows gradients in the
concentration of that fuel [15,16,29–33]. Self-replication is a
common phenomenon in reaction-diffusion systems (RDSs)
[24,27,34–40] and vesicle-based structures, also known as
protocells [41–50]. Nonliving or artificial dissipative struc-
tures also exhibit ecological behavior including competition
[34,36,51], homeostasis [52] and symbiosis [35,53]. Artificial
cell studies commonly follow the doctrine of autopoiesis [54],
which is closely related to the “chemoton” concept [55] and
the container-metabolism-program framework [56], in that
they seek integrated cellular structures comprising a boundary
or membrane, a metabolic system for converting precursor
‘food’ molecules into the components of the cell, and an
information system that is normally analogous to a genetic
system [45,46,50,57–60]. While this approach is philosoph-
ically sound, the simultaneous synthesis of all the required
chemical components for such systems has proven to be
prohibitively difficult, especially in “prebiotically plausible”
scenarios, normally requiring very high precursor concentra-
tions [61,62]. Additionally, the physical driving forces that
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would compel a system of molecular components to exhibit
the requisite dynamics that we associate with life are poorly
understood [63,64].

While pursuing a parsimonious, “straight-shot” from pre-
biotic physics and chemistry to biology is a logical starting
point in seeking the OoL, given the often bizarre twists and
turns that life’s evolution has taken [65–67], it is also possible
that the earliest forms of life were not simplified versions
of extant life, but rather different in composition and organ-
isation [68,69]. A natural question thus arises: What are the
conserved quantities that we expect extant life, early life, and
even extraterrestrial life, to exhibit? While definitions of life
abound [70–76], and much previous work was inspired by
the autopoiesis and chemoton concepts, a definition has re-
cently been introduced that combines traditional and modern
ideas from thermodynamics, biology, information theory and
cognitive science [77]. This ‘four pillared’ definition suggests
that a living system must exhibit all of the following prop-
erties: (1) dissipation (the system must be exposed to one or
more thermodynamic disequilibria or free energy sources), (2)
autocatalysis (the system must exhibit or have the capacity
to exhibit exponential growth of a representative size metric
under ideal conditions), (3) homeostasis (the system must
possess regulatory or negative feedback mechanisms that can
mitigate external or internal perturbations), (4) learning (the
system must have the ability to sense, store, process and
exploit information).

While various model protocell systems have primitive ge-
netic components, and simpler artificial chemical systems
exhibit self-replication, chemotaxis, and homeostasis, emer-
gent learning in simple artificial systems has remained an
elusive goal. Chemical computing itself is a large discipline
that includes the incredible achievements of DNA computing
[78–82], computing using the Belousov-Zhabotinsky reaction
[83–91], and more general approaches that exploit the compu-
tational universality of chemical reaction networks [92–105].
Chemical computation has also been exploited for the control
of agentlike entities such as simple robots [106], but such
robots are not emergent and hence their analysis is primarily
a heuristic tool for the engineering of swarm intelligence
(as opposed to understanding the OoL).

Despite the great strides described above, the problem of
the emergence of a self-organized entity that satisfies a min-
imal definition of life including a basic learning ability, is
still very much open. Complex protocells that are scaled-down
versions of extant life provide extensive but somewhat limited
guidance to the OoL, since there remains a gap between the
passive, blind worlds of physics and chemistry, and the active
and goal-directed world of biology. In the present work, we
explored a minimal complexity, emergent system that exhibits
all the features of minimal life definitions, including the four
pillars of “lyfe” [77], autopoiesis [54], and the ability to per-
form associative learning.

This result reduces the lower bound on the required sys-
tem complexity of an autonomous chemical agent capable
of learning. Our approach is also expandable to larger sets
of variables or features. Given the vast diversity of prebiotic
reaction networks, it is almost guaranteed that the required
reactions can be found in a natural system, in the context of
the OoL. The key challenge is understanding the conditions

in which learning becomes the most stable dynamical process
in a system (the learning has to feed back positively on the
stability of the patterns performing the learning, it has to be
dynamically favored).

Our approach is based upon the solitonlike, spatially or-
ganized instabilities that form in nonlinear chemical systems,
collectively known as reaction-diffusion structures (RDSTs)
[24,27,34–39,53,107–122]. The systematic understanding of
RDSTs traces all the way back to [123], who introduced
their founding principles alongside the foundations of mor-
phogenesis, which became one of the pioneering triumphs
of mathematical biology. The RDS used in the present
work is commonly known as the Gray-Scott model (GSM)
[37,38,40,113,114,117,118], which is an elaboration of the
Selkov model of glycolysis [124]. Experimental realizations
of this system include the ferrocyanide-iodate-sulfite reaction
[125–127], and the rich dynamics of heterogeneous catalysis
on surfaces [128–133].

The GSM is a simple two-dimensional (2D) RDS that has
been shown to exhibit several emergent, lifelike properties. It
involves two chemical species, denoted A and B, interacting
through a simple autocatalytic reaction A + 2B → 3B. Along
with an appropriate supply mechanism for A, and removal
mechanism for B, this reaction produces a variety of patterns,
including self-replicating spots, able to progressively expand
into regions of space [40]. In addition, previous work has
shown that adding the thermal dimension to this system (orig-
inal versions were isothermal) reveals even more layers of
emergent phenomena including competition (between RDSTs
and convection cells) [36], and thermal homeostasis through
symbiotic thermal regulation [35].

II. THE ROLE OF LEARNING IN THE BIOSPHERE
AND ITS ORIGINS

Although the GSM exhibits lifelike characteristics, it lacks
an essential feature of life: learning. Broadly speaking, learn-
ing can be defined as the ability of a system to record
information about its environment and process that informa-
tion to modulate its behavior. It is believed that learning is
an essential pillar of life, providing a sensitivity to the en-
vironment that can improve the survival probability of the
living system (this includes fields such as cognitive science,
4E cognition (embodied, embedded, enactive, and extended),
perception-action cycles, measurement-feedback protocols,
immune cognition, etc.) [134–150]. Although learning is
sometimes viewed as specific to organisms having a nervous
system, a large and rapidly expanding list of nonneural learn-
ing mechanisms illustrate its biological ubiquity, and it is
hypothesized that learning may have played a role in life’s
origins [151–155]. Among the different learning mechanisms,
associative learning is particularly relevant in this regard. It
can be defined as the ability of a system to detect and record
correlated features about its environment [156–158]. Note
that such correlations can be either positive (high levels of
variable M are associated with high levels of variable N), or
negative (high levels of M are associated with low values of
N , and vice versa).

The selective advantage provided by such learning mech-
anisms can be illustrated by the case of predator-prey
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interactions. The simplest strategy for a prey to escape a
predator would be to trigger a response at the moment of the
actual predator attack. This purely reactive behavior could be
called a direct strategy. However, since predators are often
relatively fast and the motor abilities of prey relatively limited,
there is a survival incentive for prey species to be able to
anticipate and react in advance.

To do so, prey species use their sensory systems to detect
warning signs of predators. For instance, gazelle detect stalk-
ing predators such as cheetahs by visual detection, fish can
sense sudden variations in light or fluid flow, etc. Detecting
a predator ahead of time can then trigger a rapid response in
order to escape. Such a preemptive strategy is clearly advan-
tageous since it allows more time to escape, as opposed to
waiting for the actual predator attack. However, since such an
escape manoeuvre is energetically costly, prey species have
an incentive to escape only when there is an actual threat, and
avoid false positive detections.

The simplest way to achieve an escape response would be
to react when a given sensory stimulus (for instance level of
sound, or fluid flow disturbance) exceeds a certain threshold.
However, that threshold will depend on the environment (e.g.,
background level of noise, water turbulence, etc.). As those
environmental conditions may slowly vary because of natural
cycles or prey displacement, the threshold for reaction should
be continuously adjusted. For instance, for a fish, a change of
visibility caused by depth, turbidity or seasonal cycles should
have an impact on the decision to trigger a fast escape when
a given visual stimulus is sensed. Achieving such a behavior
as the environment changes is an associative learning task:
prey species need to learn the extent to which a stimulus is
associated with an actual threat in their current environmental
conditions, and update their behavior if environmental condi-
tions happen to change.

In this framework of predator-prey interactions, we con-
sider three possible strategies: a direct reaction, a preemptive
reaction, and associative learning. Although the benefit of
such an associative learning ability in the case of a predator-
prey interaction is quite clear, let us illustrate how this could
also play a role in the resilience and adaptability of a protoliv-
ing chemical system.

Consider a system that can be damaged by a chemical
species T (a toxin), which is delivered at regular intervals. If
the system has the ability to produce an antidote N , that de-
grades the toxin, then the simplest defense strategy would be
the direct mechanism, where antidote N is directly produced
when toxin T is encountered, for instance, through a catalytic
reaction:

T → T + N. (1)

Note that throughout this work, it is assumed that mass conser-
vation is satisfied through additional species that are omitted
from the reaction expressions for simplicity (in this case, a
precursor from which N is synthesized). Although such a di-
rect network would be able to tune its response to the strength
of the attack, it does not involve any anticipation. If the toxin is
delivered in a sudden way at high concentration, then antidote
production might be too slow to avoid significant damage to
the system.

Now suppose that the delivery of toxin T is always pre-
ceded by the delivery of another chemical compound S. The
presence of S could serve as a stimulus signaling the occur-
rence of T ahead of time. A possible preemptive strategy
would then be to start producing antidote N as soon as stim-
ulus S is detected, so the antidote concentration has time to
build up in advance. This preemptive mechanism is equiva-
lent to triggering a fast start escape whenever a predator is
detected, rather than waiting for the actual predator strike.
In our chemical system, such a preemptive mechanism can
be realized by a reaction that produces antidote N and is
catalyzed by stimulus S:

S → S + N. (2)

Now there is an obvious drawback with this strategy: since
antidote production is controlled by the presence of stimu-
lus, it is not sensitive to the actual strength of the attack
(in our case, the concentration of toxin T ). Suppose that the
relative concentrations of S and T depend on slowly vary-
ing environmental conditions (like temperature, pH, or the
concentration of another compound) such that a given stim-
ulus concentration would not always correspond to the same
amount of toxin. We could even imagine that under certain
conditions, the association disappears so that stimulus remains
but toxin occurrences cease. A simple preemptive network,
relying on stimulus concentration alone, would produce an-
tidote irrespective of the actual toxin level, and would even
keep producing antidote after the association between S and T
disappeared. This unnecessary production of antidote would
be detrimental, as it would incur a metabolic free energy cost,
or lead to damage if the antidote itself is a mild toxin. This
type of spurious antidote production would be analogous to
a prey animal repeatedly triggering fast start escapes even in
the absence of a real threat. Although many prey species of
mammal do exhibit this type of nervousness (even humans
can be easily startled), they are clearly not fleeing the scene at
every hint of a predator’s presence.

To avoid this, a more efficient chemical network would
have the ability to detect and record whether, in the prevail-
ing environmental conditions, S is actually followed by T ,
and to what extent (the strength of the association). Such
a network would then adapt if the environmental conditions
were to change, for instance if the relative concentrations of
S and T are evolving, or if the delivery of T is suppressed
while that of S remains. Fulfilling such a requirement is an
associative learning task: the network should first detect to
what extent S is followed by T , record that information and
react accordingly, while being able to update itself whenever
the link between S and T changes. We can hypothesize that
for a large class of conditions, such an associative learning
network would confer greater resilience than any direct or
preemptive network, providing a selective advantage for emer-
gent systems capable of associative learning.

As described above, chemical computing is already a well-
developed field, and approaches to chemical learning have
been suggested [98–101,104]. However, the approach used in
the present work was inspired by the learning networks of
Ref. [159]. Using search methods inspired by evolutionary
processes, these authors were able to find abstract chem-
ical networks able to solve learning tasks (such as basic

034401-3



STUART BARTLETT AND DAVID LOUAPRE PHYSICAL REVIEW E 106, 034401 (2022)

association, and the AB-BA task). However, their model used
a very large parameter space (searched using an evolutionary
algorithm), and it was somewhat difficult to interpret how
to choose the values of the different parameters involved.
Furthermore, the learning networks were not embodied within
emergent chemical structures.

The present work aims to: (1) explore minimally com-
plex reaction systems that clearly exhibit associative learning,
(2) investigate the resilience of such networks compared to
simpler strategies, such as the direct or preemptive networks
described above, (3) assess whether such networks can be
embedded within emergent, spatially distinct, self-organised
chemical structures. Such phenomena would serve as an im-
portant guide to the conditions in which the basic properties
of life can emerge. Crucially, this emergence occurs in the
absence of complex molecules, peptides, nucleic acids, bio-
chemical reactions, metabolic cycles, or membrane structures,
and hence lowers the bound on the necessary conditions for
chemical, autonomous, cognitive agents.

In the following section, we present minimal chemical net-
works that efficiently solve the learning task described above,
when placed in a well-stirred [zero-dimensional (0D)] envi-
ronment. We display plausible external conditions in which
those networks outperform direct or preemptive strategies. In
the second part of the paper, we extend those results to the
two-dimensional case, where the learning network is coupled
to a self-replicating spot system from the GSM. This provides
a realization of a dissipative structure able to replicate and
adapt to its environment using associative learning, a feat
which, as far as we are aware, has not been achieved before.

III. CHEMICAL LEARNING NETWORKS IN
WELL-STIRRED, ZERO-DIMENSIONAL SYSTEMS

A. Environment and learning task

Let us first describe the task to be solved. Consider an
environment where a stimulus S and a toxin T are regularly
delivered with period T , and a temporal separation �T be-
tween them, such that S can be used as a signaling cue for the
later occurrence of T (we choose T = 1000 and �T = 400).
We consider that S is delivered as boluses of unit concen-
tration, while T is delivered as boluses of concentration ε.
Finally, we assume both S and T degrade exponentially with
a short characteristic time (τS = 0.2T ), so that they quickly
disappear after each bolus. To model slowly varying envi-
ronmental conditions that manifest as a modulation of the
association between stimulus and toxin, the concentration ε of
toxin boluses is allowed to slowly vary with time. We consider
ε(t ) linearly rising from 0 to 1 during the first 10 delivery
periods, decreasing linearly during the next 10 periods, and
staying at zero thereafter. This is illustrated in Fig. 1. We now
consider a chemical compound B, serving as a proxy for the
presence of a protoliving chemical system. To achieve this, B
has an autocatalytic dynamic, with an equilibrium concentra-
tion of unity, representing environmental capacity constraints.
Evolution of the concentration of B, denoted ψB, is modeled
by a logistic growth differential equation:

dψB

dt
= 1

τB
ψB(1 − ψB). (3)

FIG. 1. Dynamics of key compounds in learning task. Stimulus
and toxin bolus deliveries in the learning task to be solved. Delivery
period is T = 1000 and the time separation between stimulus and
toxin occurrences is �T = 400. Stimulus boluses are always of unit
concentration, while the magnitude of toxin boluses are controlled by
the environmental parameter ε(t ) (black line), which varies slowly
over time. Both stimulus S and toxin T decay exponentially with a
short characteristic time τS = 0.2T .

Note that the logistic differential equation is a realization of
the following set of chemical equations: B −→ B + B (auto-
catalysis) and B + B −→ ∅ (capacity constraint).

The growth rate of ψB vanishes as it reaches its equilibrium
value of 1, and τB represents the (minimum) characteristic
growth time. We choose τB = 500, so that the system has time
to recover between each toxin delivery, but not completely.

To model the effect of toxin on our system, T reacts with
B, causing decay into inert waste products:

T + B
kBT−→ ∅, (4)

where the reaction constant kBT = 0.5. This moderate value
ensures that the protoliving system is significantly damaged
by the toxin at each delivery, without being completely de-
stroyed by a single event.

The evolution of B in the presence of stimulus and toxin
delivery is illustrated in Fig. 2. We see that the system gets
progressively destroyed after each toxin bolus. Despite partial
recovery between each delivery (due to the autocatalytic be-
havior of B), the system (represented by the concentration of
B) does not survive more than a couple of periods. Suppose
now that T can be degraded by an antidote N , via a reaction
into inert waste:

N + T
kNT−→ ∅, (5)

where kNT = 1 so that the antidote is effective at removing T .
To allow for functional anticipation mechanisms, we assume
that the antidote is a long-lasting compound, and hence decays
with a relatively long characteristic time τN = 5000.

FIG. 2. Dynamics of system in the absence of a defense mecha-
nism. Time evolution of the concentration of B with toxin deliveries,
in the absence of any defense network (network N0, see Table I for a
summary of chemical equations used).
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To implement the assumption that spurious antidote pro-
duction is detrimental, we add a reaction in which the antidote
degrades B as well,

N + B
kNB−→ ∅, (6)

although with a much smaller rate constant kNB = 0.0025.
There are two interpretations of this effect: (1) the antidote
itself acts as a mild toxin, or (2) production of the antidote
incurs a metabolic (free energy) cost to the prebiotic system,
hence it consumes a certain quantity of B via the above reac-
tion. This will enforce the fact that antidote cannot be freely
and arbitrarily produced, and must be used in a parsimonious
and timely manner.

B. Reaction network design

Several defense networks can be considered for the produc-
tion of antidote in response to the toxin. Below we describe a
direct network ND, a preemptive network NP, and an associa-
tive learning network NA

1. Direct network

The simple, “instantaneous” response of network ND only
involves one reaction in which the production of antidote N is
directly catalyzed by B in the presence of toxin T (the relevant
supply compound for N is omitted):

B + T
kD−→ B + T + N, (7)

where reaction constant kD controls the rate of the response.

2. Preemptive network

This network NP, resembles the direct network, but the
production of antidote N is instead catalyzed by the presence
of stimulus S:

B + S
kP−→ B + S + N, (8)

where kP controls the rate of the response.

3. Associative network

This network NA, involves two additional species: M, act-
ing as a short-term memory, and L, acting as a long-term
memory. Production of M is catalyzed by the presence of
stimulus S:

S
kM−→ S + M. (9)

To serve as a short-term memory, its characteristic decay time
should be of the order of the expected separation time between
the boluses of S and T , hence τM = 200.

The long-term memory L will encode the association be-
tween stimulus and toxin. To do so, L will be produced from
M in the presence of T (effectively acting as an AND gate
on the simultaneous presence of M and T ), hence recording
the fact that a bolus of S has actually been followed by the
occurrence of T :

M + T
kL−→ L + T . (10)

Note that for the simple environment used here, it is possi-
ble to implement an associative network in which long-term

TABLE I. List of chemical equations used in each network.

Network Equation numbers

N0 (No network) (3) (4) (5) (6)
ND (Direct network) (3) (4) (5) (6)+(7)
NP (Preemptive network) (3) (4) (5) (6)+(8)
NA (Associative network) (3) (4) (5) (6)+(9) (10) (11)

memory is stimulated only by the presence of T, precluding
the need for short-term memory M. This network is explored
in the Supplemental Material [160], which also discusses why
we retain short-term memory in network NA.

To serve as a long-term memory, the characteristic decay
time of L should be of the order of several multiples of the
period T , reflecting the rate at which the system will learn
and adapt to a varying environment. Hence, a value of τL =
4T = 4000 was chosen.

Finally, for this network production of antidote N is cat-
alyzed by B and the long-term memory compound L, in the
presence of stimulus S:

B + S + L
kA−→ B + S + L + N. (11)

In this description of the associative network NA, three reac-
tion rates kM , kL and kA have been so far left unspecified, and
can in principle be tuned to vary the dynamics and strength
of the response. However, from the three reactions involved
in the network, it can be seen that the amount of N produced
essentially depends only on the product kMkLkA. Hence, we
choose to use only kA as a free parameter when perform-
ing sensitivity analyses. Without loss of generality, we set
kM = 0.01 and kL = 0.25 (those values being chosen so that
maximum concentrations of M and L remain of order unity).

The chemical equations used in each network are summa-
rized in Table I.

4. Simulation

We simulate the dynamics of the networks and the envi-
ronment with a set of coupled ordinary differential equations.
If {Ci}i=1..N represents the set of N chemical species, subject
to R reactions, then the time evolution of concentration ψCi is
given by

∂ψCi

∂t
= −

R∑

r=1

kr[α′
ri − α∗

ri]
N∏

j=1

ψ
α′

r j

Cj
,

where α′
ri is the left-hand side stoichiometric coefficient for

reaction r and chemical species i (the number of molecules
of species i entering as reactants into reaction r), and α∗

ri is
the right-hand side stoichiometric coefficient for reaction r
and chemical species i (the number of molecules of species i
leaving as products from reaction r). Here we have ignored the
role of temperature, and kr denotes the rate constant of reac-
tion r. Reactions are simulated only in the forward direction,
and possible reverse reactions are considered as extra, separate
reactions from their forward counterparts. The exponential
decay of each species is included as a reaction.

We simulated the networks coupled to the environment
over 40000 time steps, starting with zero concentrations for
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all species except unit concentration for B. We use explicit
time forward Euler integration (dt = 1).

5. Optimization

For each network, only one reaction rate is left unspecified,
and can be tuned to vary the strength of the response: kD for
the direct network ND, kP for the preemptive network NP, and
kA for the associative network NA. Since our goal is to com-
pare each of these networks at their maximum functionality,
we searched for optimal values using line search optimization,
with the temporal averaged concentration of B as the target
to be maximised. Since T degrades B, such an optimization
selects for values of reaction rates where the toxin causes
minimal damage to the system. However, since B is slightly
damaged by excess levels of antidote N , an optimal solution
will also avoid spurious production of N .

C. Results

After appropriately tuning the reaction constants, we ob-
tained the results displayed in Fig. 3, with kD = 0.1 for ND,
kP = 0.005 for NP, and kA = 0.006 for NA. We see that the
direct network gets degraded after a few periods, and barely
survives longer than when no network is present. The network
is constrained by the production of antidote, and the toxin-
induced decay of B (which is required to catalyze antidote
production). Loss of B is thus too rapid to permit sufficient
production of N . Note that there is an upper bound on the
allowed rate constant kD (see discussion at the end of this
section).

In contrast, the preemptive network starts to build up an-
tidote concentration as soon as stimulus boluses occur. This
leads to the accumulation of antidote, which is then at a
sufficiently high concentration when toxin strikes, allowing
an effective removal of T , and limited degradation of B.
However, the amount of antidote produced is only linked to
stimulus concentration and does not depend on toxin level.
This leads to an excess of antidote when the toxin boluses
are small, and to spurious antidote production in the second
half of the sequence, when stimulus remains but toxin is no
longer delivered. This creates a high residual concentration of
antidote, that continuously damages the system, constraining
the concentration of B to a level significantly lower than its
nominal equilibrium concentration ψB = 1.

Finally, we see that the associative learning network is
more resilient than both the direct and the preemptive net-
works. As the concentration of toxin boluses increases over
time, long-term memory L accumulates and enables the an-
ticipatory production of antidote N when stimulus occurs.
Furthermore, as the strength of the association between stim-
ulus and toxin evolves, the long-term memory concentration
changes accordingly and promotes a response of appropriate
magnitude. As the association disappears, long-term memory
decays to zero, as does antidote concentration, allowing a
full recovery of the system toward its dynamic equilibrium.
This provides an effective associative learning mechanism,
recording information about the environment, using this in-
formation to react accordingly, while adapting behavior when
the external condition changes.

FIG. 3. Concentration time series for the three networks. Top:
Direct network ND with kD = 0.1. Middle: Preemptive network NP

with kP = 0.005. Bottom: Associative learning network NA with
kA = 0.006 (see Table I for a summary of chemical equations used in
each network).

We can see that despite the learning mechanism, complete
elimination of the toxin does not occur. This is because the
system reaches a dynamic steady state through a feedback
mechanism. Since the renewal of long-term memory is cat-
alyzed by the presence of toxin, an excessive production of
antidote would remove more of the toxin, and hence reduce
the renewal of long-term memory, which would subsequently
decrease the antidote level. Conversely, if the initial antidote
level is too low due to excessive toxin, L would increase in
response, with a concomitant increase in N . At steady state,
the residual level of toxin provides just the necessary exposure
to renew the long-term memory.

Moreover, variations in long-term memory concentration
closely mimic the variation of the environmental parameter
ε(t ) (that drives toxin bolus concentration), and displays a
high temporal correlation with it, although with a slight lag,
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FIG. 4. Dynamics of environmental parameter and long-term
memory. Time evolution of the environmental parameter ε(t ) con-
trolling toxin bolus concentration and long-term memory L for the
optimal associative learning network.

as can be seen in Fig. 4. It shows that the associative network
can effectively learn the value of ε(t ) in a continuous fashion
and adapt the system’s behavior, while periodically updating
its knowledge about the environment. Since the network re-
vises its memory state (the set of concentrations of network
compounds could be considered the system’s “composome”
[28,161]) at every bolus (with period T ), and has a natural
response time τL, the evolution of L over time can be seen as
the result of a recursive, discrete, low-pass filter applied to the
(time-varying) magnitude of toxin boluses ε(t ). This is a natu-
ral interpretation since at each bolus, the network samples ε as
the strength of the association between S and T , and updates
the level of L accordingly. This is exactly the function of a
discrete low-pass filter, since the discrete low-pass filter of a
signal xn is a signal yn such that yn+1 = (1 − α)yn + αxn. The
parameter α governs the learning speed. For a low-pass filter
with characteristic time RC = τ and discrete signal sampled
with time step T , we find α = T /(T + τ ). This can be illus-
trated further with the case of an environment parameter ε(t )
that varies with a more complex temporal pattern, as shown
in Fig. 5. It is instructive to consider the performance of each
network when the reaction constant is varied. This sensitivity
analysis is summarised in Fig. 6. When the reaction constant
is too low, all three networks perform poorly, since the system
gets quickly destroyed by toxin. The direct network performs
poorly for all values of the reaction constant kD. When its
reaction constant kP is sufficiently high, the preemptive net-
work is able to neutralise the toxin. However, at higher values
of kP, its performance degrades because of damage caused
by spurious antidote production at low or zero toxin level.

FIG. 5. Long-term memory concentration as a low-pass filter.
Environmental parameter ε(t ) varies with a more complex time
evolution (computed as the sum of three sine waves of random
amplitude, frequency and phase). The long-term memory concentra-
tion acts like a low-pass filter on ε(t ). It approximates ε(t ) with a
slight lag related to the long-term memory characteristic timescale,
and also exhibits high frequency oscillations (appearing as the thick
segment of the curve) due to the periodic bolus deliveries.

FIG. 6. Performance variations as a function of reaction constant.
Performance of the different networks, measured as the temporal
average of the concentration of B, as each key network reaction con-
stant is varied. (See Table I for a summary of chemical equations used
in each network.)

Finally, the associative network is able to perform effectively
for a larger range of reaction constant values, especially since
it does not suffer from spurious production of antidote when
the association between stimulus and toxin disappears. This
illustrates that the associative network outperforms both the
preemptive network and the direct network in a wide range of
situations. It can be seen that the performance of the direct
network increases slightly with reaction constant, which is
expected since a higher reaction constant allows that network
to produce antidote at a higher rate when the toxin strikes.
Increasing this reaction constant to even higher values would
eventually allow that network to perform better. However, this
would require a very high production rate of the antidote, typ-
ically a hundred times greater than that of the preemptive and
associative networks. Reaching such extreme production rates
is unlikely in realistic settings, where such synthesis would
be limited by various factors such as precursor availability or
saturation effects. If arbitrarily high reaction constants were
allowed, then a direct network could eventually always per-
form as well as a preemptive or associative one. In the context
of our predator-prey analogy, this would be equivalent to as-
suming that a prey animal can react and escape arbitrarily fast,
in which case there is no need for it to learn to detect predators
in advance. In practice, the speed at which a prey species can
react is limited by environmental, physical, and biochemical
constraints, hence the reason that associative learning became
a widespread and important trait in the biological world, pro-
viding a competitive advantage over simple reactive strategies.

IV. CHEMICAL LEARNING NETWORKS
IN 2D REACTION-DIFFUSION SYSTEMS

We now consider similar networks but embed them in a
2D environment, coupled to a GSM. Hence, there is a spatial
dependence for the concentration of every species.

A. Model description

The model uses a 256×128 grid with a spacing of
dx = 1, and an isotropic diffusion coefficient for each species.
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The GSM consists of two chemical species A and B,
subject to the chemical reaction A + 2B −→ 3B, along with
a decay mechanism for B and a supply mechanism for A
[37,38,40,113,114,118]. The equations of motion for the con-
centrations of A and B are as follows:

ψ̇A = DA∇2ψA − ψAψ2
B + f (1 − ψA), (12)

ψ̇B = DB∇2ψB + ψAψ2
B + ( f + r)ψB, (13)

with DA = 0.2, DB = 0.1, f = 0.03, and r = 0.061, a choice
of constants known to give rise to self-replicating RDSTs, or
spots [40]. With this configuration, the spots are distinguished
by local excess concentrations of B (relative to the equilib-
rium concentration of 0), colocated with local deficits in the
concentration of A (relative to the equilibrium concentration
of 1). We use the concentration of B as an order parameter for
visual representations.

To couple this GSM to the chemical networks described
in the previous section, we use reactions that are identical
to those of the 0D case, with the Gray-Scott B component
playing the role of the B component in the 0D version. The
only change we applied to the chemical reactions are for the
associative network NA, where the production of short-term
memory M in the presence of S now occurs only in the pres-
ence of B. This is to reflect the fact that short-term memory
can only be produced where spots are located:

B + S
kS−→ B + S + M. (14)

1. Experimental relevance

In this numerical work, we used nondimensional units (for
time, space, and concentration) to facilitate straightforward
analysis and comparison with existing literature on numer-
ical simulations of RDSs. However, we can easily translate
these into meaningful experimental values. With a timescale
of dt = 1 s, and a spatial scale of dx = 10−2 cm, our simu-
lation would represent a 2D patch of approximately 2.56 ×
1.28 cm2, with spots of approximately 1 mm evolving over
timescales of ≈10 min. With those values, the diffusion coef-
ficients would be of order 10−5 cm2/s. Such values are in line
with experimental work that has been carried out on RDSs
using, for instance, iodate-ferrocyanide-sulfite reactions in a
thin layer of polyacrylamide gel [37].

2. Bolus delivery

In this spatial system, the delivery mode of the boluses
of S and T is a key consideration and two different cases
were explored. In the so-called uniform condition, boluses are
delivered everywhere in a homogeneous fashion, as would
occur for a 2D system sandwiched between porous plates,
allowing the transverse diffusion of certain species (this is the
way A is supplied and B removed in the classic GSM). Under
this condition, all the spots come under equivalent attack from
the toxin and are likewise homogeneously exposed to signals
from the stimulus.

The second delivery mode is the boundary diffusion con-
dition, in which boluses are delivered on the boundary of the
domain, and permeate via diffusion. For this condition, we
use higher bolus concentrations, along with larger diffusion

TABLE II. Diffusion constants, characteristic decay times, and
reaction constants for the 2D networks. For stimulus and toxin diffu-
sion coefficients, and stimulus bolus concentration, different values
have been used for uniform and boundary diffusion conditions.

Parameter Value Description

CS 1/10 Stimulus bolus concentration Uniform/Diffusion
DS 1/20 Stimulus diffusion coefficient Uniform/Diffusion
DT 1/20 Toxin diffusion coefficient Uniform/Diffusion
τS 100 Stimulus decay time
τT 100 Toxin decay time
DN 1 Antidote diffusion coefficient
τN 400 Antidote decay time
kT B 0.02 Reaction constant T+B

kNT 1 Reaction constant N+T
kNB 0.005 Reaction constant N+B
kM 1 Short-term memory production reaction rate
kL 0.025 Long-term memory production reaction rate
DM 0.2 Short-term memory diffusion coefficient
τM 20 Short-term memory decay time
DL 0.2 Long-term memory diffusion coefficient
τL 400 Long-term memory decay time

coefficients, to ensure that sufficient stimulus and toxin levels
reach the center of the domain (see Table II). For both condi-
tions, we used a delivery period of T = 100 with an interval
�T = 50 between stimulus and toxin. The concentration of A
is initialised homogeneously to ψ t=0

A = 1. To provide the ini-
tial seeds for the development of the spots, for each grid point
ψ t=0

B = 1 with a probability of 0.35, and ψ t=0
B = 0 otherwise.

To ensure the spots have time to fully develop before the toxin
arrives, the boluses arrive only after 2000 time steps. Similar
to the 0D case, the environment parameter ε(t ), representing
the magnitude of the toxin boluses relative to the stimulus
boluses, rises linearly from 0 to 1 for 5000 time steps (from
t = 2000 to t = 7000), then decreases linearly at the same rate
(from t = 7000 to t = 12000) and remains at 0 thereafter.

The parameters of the reaction network were manually
adjusted from the values found for the 0D case, and the three
networks were compared at identical reaction rates (0.15 in
the uniform case and 0.1 in the boundary diffusion case).
Simulations were performed using forward Euler integration
(we used dt = 0.1 for the uniform case, and a smaller value
dt = 0.01 for the diffusion case, because of the larger dif-
fusion coefficient). To speed up the core calculations, the
simulation was implemented on a GPU using HLSL compute
shaders, and Unity3D software for interface and rendering.

To quantify the evolution of the spot system while being
perturbed by T , we computed the spatial average of ψB as a
function of time. The number of spots was also counted using
a thresholding and flood-fill procedure applied to the order
parameter ψB − ψA (threshold = −0.3).

B. Results

For both modes of bolus delivery (uniform and boundary
diffusion), we simulated the three networks ND, NP, and
NA in addition to a control case with an empty network (no
antidote production). Results for the uniform and boundary
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FIG. 7. Dynamics of uniform delivery system. Time series of
the spatial average concentration of Gray Scott component B, Toxin
T and Antidote N , along with the number of RDSTs, in the case
of uniform bolus delivery: (1) no network, (2) direct network, (3)
preemptive network, (4) associative learning network (time series
of toxin and antidote concentration have been filtered to remove
high frequency oscillations). See Table I for a summary of chemical
equations used in each network.

delivery modes are displayed in Figs. 7 and 8, respectively.
Full video of all eight simulations can be found in Ref. [162].
For both delivery mechanisms, we can draw similar conclu-
sions, which are analogous to what was observed in the 0D
case. In the control case (without any antidote production),
the spots get quickly destroyed by the toxin. Oscillations of
the average concentration of B can be observed, as toxin is
periodically delivered and progressively damages the system,
which only partially recovers in between boluses. This is anal-
ogous to the decreasing oscillations of B that were observed
in the 0D case (see Fig. 2).

For the direct network ND, antidote is released when toxin
boluses occur, but at an insufficient rate to prevent the com-
plete destruction of the spots. As occurred in the 0D case,
the system barely survives longer than when no antidote is
produced.

For the preemptive network NP, antidote gets released
when stimulus occurs, which constitutes an effective defense
against the toxin. However, since it is only correlated with the

FIG. 8. Dynamics of boundary delivery system. Time series of
the spatial average concentration of Gray Scott component B, Toxin
T and Antidote N , along with the number of RDSTs, in the case
of boundary diffusion bolus delivery: (1) no network, (2) direct
network, (3) preemptive network, (4) associative learning network
(time series of toxin and antidote concentration have been filtered to
remove high frequency oscillations). See Table I for a summary of
chemical equations used in each network.

stimulus level, the response is initially too strong when the
toxin level is low, causing initial damage to the spots, and
making them eventually disappear when the toxin level in-
creases and causes additional damage, which is insufficiently
mitigated by antidote production.

Finally, for the associative learning network NA, produc-
tion of antidote occurs only when and where it is necessary.
In this condition, from the count of spots and the average
concentration of B (bottom left of Figs. 7 and 8), we can
see that the spots get initially damaged by the toxin, until
the progressive buildup of long-term memory triggers the ap-
propriate response and prevents further destruction. The spots
then replicate autocatalytically and reinhabit the space they
previously lost (see Figs. 9 and 10 for snapshots of their spatial
evolution). Overall, the features observed in the 0D-case are
recapitulated in this spatial version. For the direct network,
since antidote production is catalyzed by the presence of
toxin, the response will naturally be tuned to the magnitude
of the attack. However, the lack of an anticipation mechanism
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FIG. 9. Spatial behavior of uniform delivery system. Snapshots
of the Gray-Scott B component and long-term memory L concen-
tration at regular time intervals in the uniform delivery case, for the
associative learning network NA. This sequence corresponds to the
bottom panel of Fig. 7.

means that such a network would work only with a much
higher reaction constant involving a very high instantaneous
production rate of antidote. The preemptive network is able to
produce antidote before toxin occurs but at a lower rate. This
response is only proportionate to the level of stimulus, not the
toxin. Hence, it lacks the ability to tune itself to the actual
magnitude of the toxin concentration. A sensitivity analysis
revealed that no value of the reaction rate kP can lead to a
survival of the system. A higher reaction constant is actually
detrimental in the initial stages, when stimulus is high and
toxin low, while a lower reaction constant leads to better
survival at the beginning but increased damage when the toxin
level becomes higher.

In contrast, we can see that the associative learning
network combines both the anticipation mechanism of the
preemptive network, and the self tuning ability of the direct
network. A sensitivity analysis revealed that the network per-
forms equally well for almost any value of the reaction rate
kD. As long as it is above a minimum of approximately 0.08
(for the uniform case), survival of the system occurs.

To illustrate the self-tuning of the associative network,
and how it impacts its spatial differentiation abilities, it
is instructive to compare it with the preemptive network.
Figure 11 shows a concentration map after 10 toxin deliveries.
We can see that for the associative network, antidote pro-
duction is located on the boundary, as dictated by long-term
memory concentration. However, for the preemptive network,
antidote is produced by all the spots at similar rates, irrespec-

FIG. 10. Spatial behavior of boundary delivery system. Snap-
shots of the Gray-Scott B component and long-term memory L
concentration at regular time intervals in the boundary diffusion
delivery case, for the associative learning network NA. This sequence
corresponds to the bottom panel of Fig. 8.

tive of their location. On the boundary, the antidote level is too
low to resist high toxin levels. In the center, that same amount
of antidote causes spots damage, since there is no toxin to
degrade, and excess antidote is detrimental.

V. DISCUSSION

The results of the previous sections demonstrate a rudimen-
tary associative learning ability of simple catalytic reaction
networks. This was achieved using a pair of memory
compounds with different characteristic timescales allowing
external correlations to be encoded. In addition, the synthesis
of long-term memory effectively proceeded through a logical
AND operation on the presence of short-term memory and
the presence of toxin. Hence, simple catalysis, an appropriate
separation of timescales, and associative synthesis reactions
appear to be the necessary and sufficient conditions for chem-
ical associative learning [104,159].

Due to the associative feedback mechanism that catalyzes
the production of long-term memory L, the system exhibits
an automatic adaptation to the strength of the association
between S and T (controlled by the environmental parameter
ε). The level of L essentially becomes the learned estimation
of the strength of this association. Hence, L is a discrete,
low-pass filtered version of the time evolution of ε(t ). The
cut-off frequency of this filter is governed by the characteristic
timescales of the network.
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FIG. 11. Comparison between preemptive and associative concentration fields. Concentration map for preemptive and associative network
in the boundary diffusion case, at the same time stamp (t = 3010, after 10 toxin deliveries.) For the associative network (right), antidote
production is located at the boundary, as dictated by long-term memory concentration. For the preemptive network (left), antidote is produced
by all spots in comparable amounts.

Tuning of our system parameters is based only on the
temporal dynamics of the environment (period of deliv-
ery, spacing between stimulus and toxin, decay rate of the
toxin, characteristic time of environmental changes). When
all these factors are combined, only one parameter remains,
and governs the tradeoff between residual toxin level and the
amount of antidote produced. This parameter can be tuned
based on the relative effect of toxin damage and antidote
cost.

Note that in addition to lacking a learning ability, the pre-
emptive network requires tuning to the strength of the toxin,
whereas the associative network is self-tuning. The associative
network could be less resilient if the toxin delivery events
were short and fast, but there would be no favorability for very
slow decay of long-term memory, so this only holds under
extreme parameter values. In this work, the focus is situations
beyond simple responses, where there is a tangible value in
anticipation and learning. For scenarios where learning has
no selective advantage, we would of course not expect any
learning systems to emerge, so those scenarios are not relevant
to the present work.

Beyond illustrating chemical associative learning, we pre-
sented simulations of emergent dissipative structures that can
exploit these learning abilities to defend themselves against
toxic compounds. These RDSTs exhibit a diverse reper-
toire of behaviors including replication (autocatalysis) [40],
interstructure competition [36], homeostasis and symbiosis
[34,35], among others [39,53,107,111,112,120,122]. With the
results presented herein, we can now add associative learning

to the remarkable list of lifelike properties exhibited by RD-
STs. In fact, they now satisfy the elementary four conditions
to be classed as “lyfe” [77].

The addition of a simple learning network allows these
emergent patterns to exploit environmental correlations to en-
code information (a single variable in this case), and use that
information to adapt their behavior. Figures 9 and 10 illustrate
how toxin delivery initially degrades the spot population until
long-term memory builds up. This promotes the synthesis of
antidote compound, and the spots then replicate into regions
from which they had previously been eliminated.

In addition, the system shows a degree of functional dif-
ferentiation, in which the spots that are exposed to toxin
and stimulus build up a local memory and produce anti-
dote, whereas isolated spots in the core of the group are
largely shielded by the toxin (in the boundary delivery case,
which is spatially heterogeneous in terms of the delivery of
toxin and stimulus). This illustrates that specialization in a
colony of dissipative structures naturally follows from differ-
ences in environmental selective forces, and does not require
genetically-encoded, cellular structures or complex molecular
machinery. A similar spatial division of function was observed
in thermal homeostasis models of RDSTs [35]. In the context
of prebiotic structure formation, one could even speculate
that environmental spatial heterogeneity may be the driving
force for the emergence of individuated patterns. Perhaps the
differing physical selective forces placed upon such heteroge-
neous systems naturally promotes the emergence of boundary
structures.
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A natural question that arises from our results is the degree
to which the emergent behaviors are genuinely emergent. One
might contend that this system is simply a hand-designed
reaction network that necessarily achieves the desired goal be-
cause it was engineered to do so. Thus how does this have any
relevance to the natural world? The relevance of our results
lies in the demonstration that such a simple chemical learning
mechanism is possible and the conditions under which it is
dynamically favored. What we have presented is a locus from
which the feasibility of emergent learning in OoL contexts can
be explored. Having demonstrated the core requirements for
autonomous chemical learning, the next question to answer is
how such behavior would still be favored in the presence of
larger networks populated by deleterious side reactions that
are neutral or detrimental to learning? This would constitute
a rigorous test of the emergence of the demonstrated learning
behaviors.

Specifically, we intend to embed our system in progres-
sively larger networks containing random reactions. The null
hypothesis of such an investigation would be that adding su-
perfluous reactions to learning networks disrupts and obscures
the learning behavior, and the system simply loses its learning
abilities. Rejection of such a hypothesis would require the
observation of conditions in which learning is dynamically
favored by a set of external conditions, i.e., a positive feed-
back between learning and the resilience or persistence of the
system performing the learning. In this case there would be a
subtle interplay between thermodynamic, kinetic and higher
level effects that is difficult to predict without numerical or
experimental modeling. The second law of thermodynamics
is of limited utility because the system is not isolated and
short-term or stochastic effects can be amplified nonlinearly.
However, the system’s dynamics on average would be exer-
gonic. Hence, our next phase of modeling will explore the
selection of learning behavior from a larger, naturally disor-
dered space of dynamical processes.

We presented these results in the context of a pro-
tometabolic system that is vulnerable to degradation by a
toxic compound. This compound’s arrival is time varying
but predictable via the occurrence of its precursor compound
in associated environments. While appearing somewhat eso-
teric, this scenario could be generalized to other situations,
such as predicting the arrival of nutrient compounds, or any
exploitable association of time-varying events. If a learning
system existed in an environment with no learnable features,
then clearly a learning ability would be futile, offer no selec-
tive advantage, and would not persist (instantaneous feedback
responses with no memory would be the optimal strategies
in that case). However, life is surrounded by learnable fea-
tures, and despite the stochastic and challenging nature of the
Hadean and Archaen eons, there would still have been peri-
odic, correlated, or predictable features of the environment
that a nascent prebiotic system could potentially exploit (at
the very least, diurnal or tidal cycles that would correlate with
external fluxes of different compounds).

The primary feature separating life from the abi-
otic world is its unique information-processing abilities
[134–141,143–150], whereas nonliving entities are at best
only weakly predictive, teleological, nor do they exhibit
perception-action cycles or measurement-feedback protocols

[163–165]. When considering the emergence of the living
state, it seems clear that information-processing and learning
are a fundamental feature that must arise at some point. Given
its importance, we suggest that that point was relatively early
in the abiogenesis story, and we hope that the results presented
here may provide a fruitful path to understanding that emer-
gence in a general context.

In the OoL field, tremendous progress has been achieved
in the areas of droplet systems [15,16,29–33] and coacer-
vates [43,59,60,166–170]. In both cases, nonlipid molecules
spontaneously produce individuated structures or boundaries.
Such structures readily exhibit complex behavior such as
self-replication, chemotaxis, molecular concentration, or the
enhancement of oligimerization reactions. We suggest that
the incorporation of simple learning circuits as presented in
this work could add a novel and essential feature to these
protocellular systems. In addition, it is likely that our learning
circuits could be implemented using peptide or RNA-based
systems. This could add a whole new dimension to contempo-
rary origins experiments.

VI. CONCLUSIONS

This work presents a simple catalytic reaction network
capable of encoding correlations in environmental variables.
In the context of emergent, prebiotic systems, such an asso-
ciative learning ability could provide a defense mechanism
against detrimental, but predictable perturbations imposed
by an unstable environment. We demonstrated how associa-
tive chemical learning can be implemented using long- and
short-term memory compounds. This allows the system to
sense its environment over different timescales and encode
the presence of correlated features. The synthesis of long-
term memory effectively implements an AND operation on
the short-term memory and the environmental variable being
sensed. Such a mechanism allows the long-term memory con-
centration to serve as a low-pass filter on the environmental
variable (the degree to which a toxin is correlated with a pre-
cursor compound). Hence, the learning ability is continuous,
as opposed to discrete.

We showed that such a learning capacity can enhance
the resilience of emergent chemical patterns (RDSTs). When
endowed with learning networks, these structures are capa-
ble of autocatalysis, homeostasis and rudimentary learning.
Implementations of this chemical learning system in OoL
models such as droplets, coacervates or mineral surfaces could
introduce a novel level of adaptive functionality that is an es-
sential step in the journey from geophysics and geochemistry
to biophysics, biochemistry, and information processing.

Future work will carry out rigorous tests on the persistence
of learning in the presence of deleterious side reactions. Estab-
lishing these necessary and sufficient conditions for emergent
learning would have significant implications for research in
Artificial life, OoL, systems chemistry, complexity science,
and synthetic biology.
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