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Structural balance theory is an established framework for studying social relationships of friendship and
enmity. These relationships are modeled by a signed network whose energy potential measures the level of
imbalance, while stochastic dynamics drives the network toward a state of minimum energy that captures
social balance. It is known that this energy landscape has local minima that can trap socially aware dynamics,
preventing it from reaching balance. Here we first study the robustness and attractor properties of these local
minima. We show that a stochastic process can reach them from an abundance of initial states and that some local
minima cannot be escaped by mild perturbations of the network. Motivated by these anomalies, we introduce
best-edge dynamics (BED), a new plausible stochastic process. We prove that BED always reaches balance and
that it does so fast in various interesting settings.
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I. INTRODUCTION

The formation of social relationships is a complex process
that has long fascinated researchers. It is well understood
that, besides pairwise interactions, friendships and rivalries
are affected by social context. The study of such phenomena
dates back to Heider’s theory of social balance [1–3], which
can be seen as a rigorous realization of the proverb “the enemy
of my enemy is my friend.” The theory classifies a social state
as balanced whenever every group of three entities (a triad)
is balanced: It consists of either three mutual friendships or
one friendship whose both parties have a mutual enemy. The
other types of triads create social unrest that eventually gets
resolved by changing the relationship between two parties.
For example, a triad with three mutual enmities will even-
tually lead to two entities forming an alliance against the
common enemy. A triad with exactly one enmity will either
see a reconciliation to a friendship under the uniting influence
of the common friend or lead to the break of one friendship
following the social axiom “the friend of my enemy is my
enemy” [4].

Cartwright and Harary developed a graph-theoretic model
of Heider’s theory [5] and showed that any balanced state
is either a utopia without any enmities, or it consists of two
mutually antagonistic groups [6,7]. This structural theory of
social balance has seen applications across various fields rang-
ing from philosophy, sociology, and political science [8–12]
to fields such as neuroscience or computer science [13–16].
It has also been supported by empirical evidence [17–19],
see also Ref. [20] for a review. The setting is attractive to

physicists due to its intimate connection to the Ising model
and spin glasses [21], and indeed tools and techniques from
statistical physics have proved to be instrumental in improving
our understanding of such systems [22–24], see also Ref. [25]
for a review.

It is natural to associate each network state with a poten-
tial energy that counts the difference of imbalanced minus
balanced triads; hence the perfectly balanced states are those
that minimize the energy of the network [26]. Understanding
how energy is minimized in a system is a fundamental prob-
lem studied across different physics fields, and signed graphs
present a clean theoretical framework to study this problem in
a setting with a population structure. It is well known that the
energy landscape over signed graphs has local minima (also
known as jammed states) [27], that is, states from which all
paths to social balance must temporarily increase the number
of imbalanced triads.

When the network state is imbalanced, we expect that a
social process will perturb it until balance is reached. The
seminal work [28] introduced a stochastic process known as
local triad dynamics (LTD), according to which imbalanced
triads are sampled at random, and the sampled triad is bal-
anced by flipping the relationship of two of its entities. This
step is called an edge flip. The same work also introduced
constrained triad dynamics (CTD), a socially aware variant
of LTD under which an edge flip is only possible if it reduces
the number of imbalanced triads. Unfortunately, the existence
of local minima in the energy landscape implies that CTD
can get stuck in jammed states and thus remain permanently
imbalanced.
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Although the existence of jammed states is well understood
in terms of the energy landscape, little is known about them
from the perspective of the stochastic process, that is, about
their reachability properties. For example, from which initial
states is it possible to reach a jammed state? Moreover, if a
jammed state is reached, can the process escape if we slightly
perturb the network? Finally, is there a plausible, socially
aware stochastic dynamics (like CTD) that always reaches
balance (unlike CTD)? We tackle these questions in this work.

First, we study the robustness and attractor properties of
the local minima of the energy landscape. We show that the
number of jammed states is superexponential, compared to the
previously known exponential lower bound, and that jammed
states are reachable from any initial state that is not too friend-
ship dense. Moreover, we show that some of those jammed
states are strongly attracting: Even when perturbing a constant
portion of edges adjacent to each vertex, the same jammed
state is subsequently reached with probability 1. As a by-
product, our results resolve an open problem from Ref. [26].

Second, we propose a new plausible dynamics called best-
edge dynamics (BED). Like CTD, BED is a stochastic process
in which edge flips are socially aware in the sense that they
maximize the number of newly balanced triads (see below for
details). We prove that, unlike CTD, BED always reaches a
balanced state from any initial state. Moreover, we show that
BED converges faster to a balanced state than CTD in various
interesting settings, such as when started from a state that is
already close to being balanced.

Finally, we complement our analytical results with com-
puter simulations in the cases when the initial friendship edges
form a random Erdős-Rényi network or a random scale-free
network.

II. TRIAD DYNAMICS IN SOCIAL NETWORKS

Balance on social networks is studied in terms of signed
graphs. A signed graph G = (V, E , s) consists of a finite
complete graph (V, E ) on |V | = n vertices together with an
edge labeling

s : E → {−1,+1}.
The labeling s assigns to each edge one of the two signs; the
edges labeled by +1 are friendships and those labeled −1 are
enmities. Thus each pair of individuals (modeled by vertices)
has a defined relationship: Either they are friends or they are
enemies.

Given a signed graph G = (V, E , s), a triad is a subgraph
of G defined by any three of its vertices. A triad is of type �k

for k = 0, 1, 2, 3 if it contains exactly k edges labeled −1. A
triad is balanced if its type is �0 or �2. Intuitively, a triad is
balanced if it satisfies the known proverb “the enemy of my
enemy is my friend.” For an edge e in G, its rank re is the
number of imbalanced triads containing e. Finally, a signed
graph G is balanced if each triad in G is balanced, see Fig. 1.

It is known that a signed graph is balanced if and only if its
enmity edges form a complete bipartite graph over the vertex
set [5]. This means that we may partition the vertices of a
balanced signed graph into two vertex classes, such that all
pairs of vertices from the same class form friendship edges,
and all pairs of vertices from different classes form enmity

FIG. 1. A triad of type �k contains k enmity edges. The imbal-
anced triads �1 and �3 can be made balanced by flipping any one
edge. A sequence of flips typically reaches a state where all triads
are balanced. The rank re of edge e is the number of imbalanced
triads containing e.

edges. Moreover, every signed graph which admits such a
partitioning is clearly balanced. In the special case where one
of the vertex classes in this partitioning is empty, each pair of
vertices forms a friendship edge and we refer to this balanced
signed graph as utopia.

The main interest in the study of social networks modeled
by signed graphs is the evolution of the network according to
some prespecified dynamics and the time until the balance is
reached. The goal is to understand which simple dynamics
ensure fast convergence to balance. Following the work of
Ref. [28], we focus on those dynamics that, at each time step,
select one edge e according to some rule and then flip its
sign. We then say that “e is flipped.” In Ref. [28], two such
dynamics on signed graphs were introduced: LTD and CTD.
In the rest of this section, we define these two dynamics and
discuss their advantages and limitations.

A. Local triad dynamics

Let G be a signed graph modeling a social network with
friendships and enmities.

The LTD with parameter p ∈ [0, 1] is a discrete-time
random process that starts in G and repeats the following
procedure until there are no imbalanced triads in G:

(1) Select an imbalanced triad � uniformly at random.
(2) If � is of type �3, then an edge of T is chosen to

be flipped uniformly at random. If � is of type �1, then
the unique edge with sign −1 is chosen to be flipped with
probability p and each of the two other edges is chosen with
probability 1−p

2 .
We refer to distinct signed graphs as states.
LTD is socially oblivious in the sense that once an im-

balanced triad is selected, the edge to be flipped is chosen
according to a (stochastic) rule that disregards the rest of the
network. Moreover, the guarantees of LTD on the expected
time to reach a balanced state are not very plausible: It was
shown in Ref. [28] that if p < 1

2 , then the expected time grows
exponentially with the size of the signed graph. On the other
hand, if p > 1

2 , then the dynamics is more likely to create
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rather than remove friendships and it reaches utopia with high
probability. This means that the eventual balanced state is
essentially predetermined.

B. Constrained triad dynamics

The CTD is another dynamics on signed graphs. Given a
signed graph G on n vertices, CTD is a random process that
starts in G and repeats the following procedure until there are
no imbalanced triads in G:

(1) Select an imbalanced triad � uniformly at random.
(2) Select an edge e of � uniformly at random.
(3) Flip e if re � 1

2 n − 1, that is, if the number of imbal-
anced triads in G does not increase on the flip (in the case of
equality, the flip happens with probability 1/2); otherwise, do
nothing.

Note that CTD introduces a nonlocal, socially aware rule:
When deciding whether a selected edge should be flipped,
we take into account all triads that contain it. In Ref. [28]
it was claimed that, starting from any initial signed graph
G, CTD converges to a balanced state and that balance is
reached fast—in a time that scales logarithmically with the
size n of the signed graph. If true, then this would imply that
CTD overcomes the limitation of LTD in which the expected
convergence time could be exponential in n. However, the
claim, which was supported by an informal argument, is not
quite true, since the energy landscape is rugged: There are
states, called jammed states, that are not balanced but where
CTD cannot make a move, since any flip would (temporarily)
increase the number of imbalanced triads [27]. Moreover, it
is known that there are at least roughly 3n jammed states
(compared to roughly 2n balanced states) and that some of
the jammed states have zero energy [26].

III. REACHING AND ESCAPING THE JAMMED STATES

Even though there are exponentially many jammed states,
computer simulations on small populations were used to sug-
gest that they can effectively be ignored [27]. In contrast, in
this section we present three results which indicate that for
large population sizes the jammed states are important.

First (“counting”), we study the number of jammed states.
It is known [27], that there are at least 3n jammed states, that
is, at least exponentially many. Here we construct a family
of simple, previously unreported jammed states and we show
that the total number of jammed states on n labeled vertices
is superexponential, namely at least 2�(n log n). This shows that
even on the logarithmic scale, the jammed states are substan-
tially more numerous than the balanced states (of which there
are “only” 2n−1).

Our second result (“reaching”) shows that, starting from
any initial signed graph that is not too friendship dense, a
specific jammed state J , which we construct below, is reached
with positive probability. In particular, this implies that the
expected time to balance in this stochastic process is formally
infinite, even for signed graphs that have a constant positive
density of friendship edges.

Our third result (“escaping”) shows that this specific
jammed state J forms a deep well in the energy landscape:

FIG. 2. A jammed state consisting of 4d + 2 roughly equal clus-
ters, each connected by friendships to the clusters at most d steps
apart.

Once it is reached, it cannot be escaped even if we perturb a
constant portion of edges incident to each vertex.

In the rest of this section, we sketch the intuition behind
these results. For the formal statements and proofs, see Theo-
rems 2 to 4 in Appendix A, respectively.

Regarding the first result (“counting”), the new jammed
states are defined in terms of an integer parameter d . We par-
tition the population into 4d + 2 clusters (4d + 1 or 4d + 3
would work too), arrange the clusters along a circle, and
assign a sign +1 to those (and only those) edges that connect
individuals who live in clusters that are at most d steps apart,
see Fig. 2. We then show that, for each friendship or enmity
edge (u, v), a strict majority 2(d + 1) > 1

2 (4d + 3) of clusters
have the property that any vertex w in that cluster forms
a balanced triad (u, v,w) with (u, v). Thus, flipping (u, v)
would increase the number of imbalanced triads. When all the
clusters are roughly equal in size, which is the typical behavior
for large population sizes, the state is thus jammed. Our con-
struction also resolves in affirmative an open question [26]
which asks whether there exist jammed states with an even
number of friendship cliques (here this number is 4d + 2).

Regarding the second result (“reaching”), we consider any
initial state In on n vertices in which each vertex is incident
to at most n/12 − 1 edges labeled +1. We define a jammed
state Jn as follows: We partition the vertices into three clusters
V1, V2, V3 of roughly equal size, label all edges within each set
+1 and all other edges −1. Then we exhibit a sequence of flips
that transforms In into Jn. This is done in two phases: First, one
can verify that any time we select an imbalanced triangle that
contains an edge labeled −1 within one cluster Vi, this edge
can be flipped. Hence, we may flip all enmity edges within the
three clusters to reach a state in which all edges within each
Vi are labeled +1. After that, one can similarly verify that all
edges labeled +1 that connect vertices in two different parts
Vi, Vj can be flipped one by one, thereby reaching the jammed
state Jn, see Fig. 3.

Regarding the third result (“escaping”), we consider any
state Sn that can be obtained from Jn by flipping a set E0 of
edges such that each vertex is incident to at most n/12 − 1
edges of E0. We then show that edges that do not belong to E0

can never be flipped. On the other hand, each edge that does
belong to E0 can be flipped. Thus all edges in E0 are eventually
flipped back and the jammed state Jn is reached again.

IV. BEST-EDGE DYNAMICS

Our results in the previous section show that the jammed
states are a profound feature of the energy landscape: They
are reachable from many conceivable initial states, and some
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FIG. 3. A jammed state Jn (right) on n vertices can be reached
from any not-too-friendship-dense initial state In (left). Moreover,
once it is reached, it cannot be escaped, even if a substantial portion
of edges around each vertex are perturbed.

of them trap stochastic dynamics such as CTD forever even if
we allow substantial perturbations.

This brings up a question of whether there exists a simple
socially aware dynamics with all the desirable properties of
CTD but one that cannot get stuck in a jammed state. To
address this question, we propose the BED, a modification of
CTD that, unlike CTD, reaches a balanced state with prob-
ability 1 from every initial state. Moreover, we prove that
BED converges fast to a balanced state in several important
cases (see Propositions 1 and 2), and our empirical evaluation
of both BED and CTD in Sec. V shows that in general the
convergence times are comparable (after we exclude the runs
where CTD does not terminate).

Let G be a signed graph. Then the BED is a discrete-time
random process that starts in G and repeats the following
procedure until there are no imbalanced triads in G:

(1) Select an imbalanced triad � uniformly at random.
(2) Select an edge e from � with the highest rank re (in

case of ties, pick one such edge uniformly at random).
(3) Flip e.
Note that, in contrast to CTD, we flip e even when its rank

re satisfies re < 1
2 |V | − 1, that is, when flipping the best edge

creates more imbalanced triads than it removes. In particular,
whenever we reach a jammed state, we still make a flip. In
principle, it could still happen that BED remains trapped in
a subset of imbalanced states, toggling edges back and forth
unable to escape it, but in fact we prove that this event occurs
with probability 0.

Theorem 1. For any initial signed graph on n vertices, BED
reaches a balanced state with probability 1 and in finite ex-
pected time.

To prove Theorem 1, we will show that any signed graph on
n vertices can become balanced on O(n3) flips. This suffices
since BED induces a finite Markov chain over the set of
all states, and the absorbing states of the Markov chain are
precisely the balanced signed graphs.

Fix an edge (v1, v2) in G of the lowest rank, and set
B = {v1, v2}. Note that it is possible to flip one edge in each
imbalanced triad containing (v1, v2) without flipping (v1, v2)
itself to make all triads containing (v1, v2) balanced: Indeed,
if we consider an imbalanced triad containing v1, v2 and some
third vertex w, as BED flips an edge of the highest rank,
then it can flip either (v1,w) or (v2,w). This makes the triad
balanced and decreases r(v1,v2 ) by 1, while decreasing the rank
of any edge that has not been flipped by at most 1. Hence,
(v1, v2) will still be of the lowest rank in all imbalanced triads

Signed graph Red-black graph

FIG. 4. An example of a signed graph (left) and the correspond-
ing red-black graph (right).

containing it, so we can flip one edge in each such triad until
all triads containing (v1, v2) become balanced.

The rest of the construction proceeds inductively by adding
a new vertex to B in each step and making all triads which
contain an edge with endpoints in B balanced. The process
ends when all vertices of G have been added to B. For the
inductive step, suppose that every triad containing at least two
vertices in B is balanced. Let (v,w) be an edge in G which
is of lowest rank among all edges with v ∈ B and w �∈ B.
Each triad containing w and two vertices in B is balanced.
On the other hand, since (v,w) is an edge of lowest rank
among all edges with v ∈ B and w �∈ B, it follows that for
each imbalanced triad � containing v, w and a third vertex u,
BED can flip either (w, u) or each edge (v′, u) with v′ ∈ B to
make � and all other triads containing u and two vertices in B
balanced. By doing this for each imbalanced triad containing
(v,w), we modify the signs in the graph in such a way that
all triads containing at least two vertices in B ∪ {w} become
balanced. Thus we can add w to B. By induction on the size
of B, this way we eventually reach a balanced state.

Notice that in each iteration of the above construction, at
most n · |B| edges are flipped. Hence the total number of edge
flips is at most n

∑n
i=1 i = O(n3) as claimed.

A. Fast convergence and red-black graphs

So far we have shown that, unlike CTD, BED ensures
convergence to balance with probability 1 and in finite ex-
pected time. In the rest of this section we show that BED
also provides theoretical guarantees on fast convergence when
started in certain states that are either “close” to being bal-
anced (Proposition 1) or jammed (Proposition 2), showing that
this new dynamics is robust.

We start by introducing the red-black graphs, a new con-
cept that allows neat reasoning about signed graphs that are
close to being balanced. Given a signed graph G, let C be a
balanced signed graph on the same number of vertices which
differs from G in the smallest number of edge signs. We refer
to C as a closest balanced state to G. Then the red-black graph
R associated to G and C is obtained from G by coloring each
edge of G in black if the signs of the edge in G and C agree
and in red otherwise. Thus, red edges are precisely those edges
whose signs in G and C are misaligned. Figure 4 shows an
example of a signed graph and the corresponding red-black
graph.

The key property of red-black graphs is that red and black
edges can be viewed as enmities and friendships when reason-
ing about balanced triads in the following sense: A triad in G
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is imbalanced if and only if exactly 1 or 3 of its edges are red
in R. The proof of this claim is by casework and is presented
in Appendix B, see Lemma 1. This also implies that the rank
of an edge in G is equal to its rank in R if we treat red edges
in R as enmities and black edges as friendships.

B. Fast convergence around balanced states

We are now ready to study the convergence of BED when
started in a signed graph which is close to being balanced.

Proposition 1. Consider a signed graph G whose red-black
graph R satisfies one of the following two conditions:

(1) Each vertex is incident to at most 1
4 n − 1 red edges.

(2) There are at most 1
2 n vertices incident to a red edge.

Then BED reaches a balanced state in O(n2) steps in the
worst case.

To prove the proposition, it suffices to show that BED flips
only red edges: Since in total there are O(n2) red edges, BED
reaches a balanced state in O(n2) steps.

Consider the imbalanced triad (u, v,w) selected by BED.
If the triad contains three red edges, then clearly BED flips
a red edge. Otherwise, from the key property of red-black
graphs (Lemma 1) we know that the triad contains exactly one
red edge. Without loss of generality suppose e = (u, v) is the
red edge. For each of the two conditions in Proposition 1 we
argue separately:

(1) Since (v,w) is a black edge, any triad containing
(v,w) is imbalanced if it contains precisely 1 red edge. There
are at most 1

2 n − 2 such triads, since there are at most 1
4 n − 1

red edges incident to v and similarly at most 1
4 n − 1 to w.

Thus, r(v,w) � 1
2 n − 2. Analogously r(u,w) � 1

2 n − 2. On the
other hand, as (u, v) is red, a triad containing (u, v) which
is balanced has to contain exactly two red edges. So (u, v)
is contained in at most 1

2 n − 2 balanced triads by the same
argument as above, and r(u,v) � n − 2 − ( 1

2 n − 2) = 1
2 n. Thus

r(u,v) > max{r(u,w), r(v,w)},
so BED will flip the red edge.

(2) By assumption, we can partition the vertices of G into
two sets V1 and V2 such that |V1| � |V2| and all red edges have
both endpoints in V2. Then any triad (u, v,w′) with w′ ∈ V1

contains exactly one red edge and is imbalanced, so re � |V1|.
On the other hand, as (u,w) is black, for any third vertex
contained in V1 the triad is balanced, so r(u,w) � |V | − 2 −
(|V1| − 1) = |V2| − 1 < |V1|. Analogously r(v,w) < |V1|, so e
has the highest rank in (u, v,w) and BED flips e.

C. Fast convergence from jammed states

Recall that a state is jammed if it is not balanced but CTD
cannot flip an edge in any imbalanced triad. Here we show
that, from certain jammed states, BED converges to a balanced
state after O(n2) edge flips, in expectation. Thus, BED ensures
fast convergence even when the convergence time of CTD is
infinite. (For details, see Appendix C, Proposition 2.)

As before, consider the jammed state Jn consisting of
three large roughly equal clusters of friends on n vertices
in total. Figure 5 illustrates that, started from Jn, BED con-
verges to balance in O(n2) time. Initially, BED keeps adding
friendship edges connecting different clusters. Due to random

FIG. 5. Left: Started from Jn, BED reaches balance in O(n2)
expected steps. Right: Friendship densities in different portions of
the signed graph J100, in a single run of BED. Apart from possibly
the very end, the friendships within clusters (aa, bb, cc) are never
flipped. Eventually, one pair of clusters (here a and b) merges.

fluctuations, the symmetry among the three clusters breaks
and one pair of clusters becomes more densely connected than
the other pairs. This difference is exaggerated over time and
eventually that pair of clusters merges.

Next, we consider a state J ′
n whose n vertices are split into

six clusters arranged along a circle with relative sizes roughly
2:1:1:2:1:1. Two vertices are connected by a friendship edge
if they belong to the same cluster or to adjacent clusters
[see Fig. 6 (left)]. The different cluster sizes ensure that the
symmetry is broken from the very beginning and allow for a
simpler formal argument.

It is straightforward to check that the state J ′
n is jammed

and that the closest balanced state C is the one depicted in
the left figure. The corresponding red-black graph is shown
on the right. Let E0 be the set of edges that are initially red in
the red-black graph. We show that the process always flips an
edge e ∈ E0 and that, at each point in time, we are a constant
factor more likely to turn a red edge into a black one rather
than the other way around. Thus the stochastic process can be
projected onto a random walk with a constant forward bias.
Since such a random walk terminates in the number of steps
that is linear in its length, this proves that the process finishes
in O(|E0|) = O(n2) steps in expectation.

V. COMPUTER SIMULATIONS

In this section, we compare the two dynamics CTD and
BED by means of computer simulations. In each simulation,
we generate a network (possibly randomly) and assign “+”
to each its edge. All other edges are assigned “−,” so the

FIG. 6. A jammed state J ′
n from which BED reaches a balanced

state in O(n2) expected steps.
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FIG. 7. Average number of steps until balance for CTD (ex-
cluding the runs that get jammed) and BED over 105 runs. The
friendships in the initial signed graphs form the Erdős-Rényi graph
with edge probability p = 1

2 and size n � 400. Both quantities scale
as �(n2).

underlying network is always a complete graph. Then we
simulate each dynamics to determine the quantities such as
the typical outcome and the number of steps until it reaches
balance.

A. Erdős-Rényi graphs

First, we consider random Erdős-Rényi graphs ER(n, p),
where each two of the n vertices are connected by a friendship
edge with probability p, independently of each other.

Since CTD can get jammed, the average number of steps
until it reaches balance is infinite for many initial states. To
have a meaningful comparison, we first exclude runs in which
CTD gets jammed (later we report their proportion). On this
exclusion, the two dynamics are comparable. First, the num-
ber of steps until balance for both dynamics scales as �(n2)
with the population size n, see Fig. 7.

Second, the final configuration does not depend on the
choice of the dynamics but it is strongly dependent on the
parameter p. Namely, for p � 0.5 the two cliques are almost
always roughly equal in size, whereas for p � 0.6 the larger
clique contains almost all the vertices, see Fig. 8. (See also
Appendix D for tables showing several network descriptors
before and after the network becomes balanced.)

FIG. 8. Distribution of the relative difference of the clique sizes
once balance is reached for BED (left) and CTD (right) over 105 runs.
Here n = 128.

FIG. 9. The jamming probability for CTD, when friendships
form an Erdős-Rényi graph with size n = 250 and edge density
p ∈ [0, 1] exhibits a threshold behavior.

Next we focus on the probability that CTD gets jammed.
For fixed n, this probability exhibits a threshold behavior as a
function of the friendship density p, see Fig. 9. The intuition
is as follows: When the initial friendship density is large (here
p � 0.6), then the initial state is close to utopia (the balanced
state that consists of only friendships). Utopia is then reached
quickly and with high probability (cf. Sec. IV B). When the
initial friendship density is small (here p � 0.5), the jamming
probability is nonzero (cf. Sec. III). Most imbalanced triads
are of type �3 (all enmities). The dynamics thus keeps adding
friendship edges and the jamming probability is mostly inde-
pendent of p. The same phenomenon occurs for other sizes n,
see Fig. 10.

FIG. 10. The jamming probability for CTD, when friendships
form an Erdős-Rényi graph with size n � 400 and edge density p ∈
{0, 0.5, 0.6, 0.75}. When p � 0.75 (or p � 0.6 and n large), the dy-
namics typically reaches utopia, otherwise there is a non-negligible
probability of reaching a jammed state.
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FIG. 11. Average number of steps until balance for CTD (exclud-
ing the runs that get jammed) and BED over 105 runs. The initial
signed graphs are Barabási-Albert with degree parameter d = 0.5
and size n � 400. Both quantities scale as �(n2).

B. Scale-free networks

Apart from Erdős-Rényi graphs we also consider the
Barabási-Albert model BA(n, d ) for scale-free networks [29].
This model creates a scale-free graph with edge density d ∈
[0, 1]. In particular, we start with a path on 11 vertices and
then process the remaining n − 11 vertices one by one. When
processing a vertex v, we randomly connect it to a subset of
vertices already present in the network in such a way that
the probability that a pair uv forms a (friendship) edge is
proportional to the degree of u (“preferential attachment”) and
the resulting (expected) edge density equals d .

Compared to Erdős-Rényi graphs, the degrees of the ver-
tices are unequally distributed. Despite this difference, the
number of steps until balance for both CTD and BED still
scales as �(n2) with the size n, see Fig. 11. Moreover, the
jamming probability for CTD still exhibits a similar threshold
behavior, see Figs. 12 and 13.

VI. SUMMARY AND DISCUSSION

The theory of structural balance provides a rigorous frame-
work for the study of friendships and enmities in a population.
A central concept in this theory has been the energy landscape
of networks and particularly the energy properties of its local
minima. In this paper we have taken a closer look at the
properties of these local minima with respect to the stochastic
process, addressing questions regarding their reachability and
attractor properties. We have shown that there are superexpo-
nentially many jammed states, as opposed to the exponentially
many balanced states and that any initial state that is not too
friendship dense can reach a jammed state. Moreover, such
jammed states are attractors and hence cannot be escaped
by random perturbations of the network. These findings have
strong implications for the socially aware CTD process, which
in fact gets stuck in such jammed states.

Motivated by these rich reachability and attractor prop-
erties of jammed states, we have introduced the plausible

FIG. 12. The jamming probability in CTD, for Barabási-Albert
networks with size n = 250 and parameter d ∈ [0, 0.7] exhibits a
threshold behavior comparable to Erdős-Rényi graphs but with sig-
nificantly lower edge density.

socially aware dynamics BED. We have shown that BED does
not get stuck in jammed states and that it always reaches
balance. Moreover, we have seen that BED converges fast
from many interesting states, such as those that are not too
far from balance.

The new BED dynamics spawns some natural questions
regarding its asymptotic behavior. Although we have shown
that BED converges fast [in O(n2) time] to balance from any
state that is suitably close to balance, the general convergence
rate remains open.

An assumption made throughout our work is that the un-
derlying network is complete. That is, at each point in time,
every two individuals have a defined relationship (they are ei-
ther friends or enemies). It is natural to consider noncomplete
underlying networks U , where only those pairs of individ-
uals who are connected by an edge e ∈ U have a defined

FIG. 13. The jamming probability in CTD, for Barabási-Albert
networks with size n � 400 and parameters d ∈ {0.0, 0.3, 0.5, 0.7}.
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FIG. 14. A blinker. Under both CTD and BED, the thick edge
in the middle keeps toggling between friendship (blue) and enmity
(red) indefinitely. There is always only one imbalanced triangle
(shaded) and flipping any other its edge would create more imbal-
anced triangles.

relationship. We note that this generalized setting is consider-
ably more complicated. First, one needs to adapt the notion of
balance accordingly. One way to do this is to say that a state
is balanced if all cycles are balanced, where a cycle in U is
balanced if it contains an even number of edges labeled “−.”
While checking whether a current state is balanced can be
done efficiently [30], several fundamental problems remain.
For instance, computing the distance to the closest balanced
state is known to be intractable [21]. As another example, to
our knowledge the balanced states do not have any simple
structure and even the complexity of computing their number
(for a given noncomplete underlying network U ) is open. As
a final illustration, we note that there exist “blinkers” [27],
that is, states where CTD and BED get stuck repeating moves
back and forth (rather than getting stuck being unable to
make a move), see Fig. 14. (Note that when the underlying
network is complete, there are no blinkers for BED due to
Theorem 1.) Investigating the properties of BED adapted to
such generalized settings is thus left as an interesting direction
for future research.
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APPENDIX A: PROOFS FOR REACHING AND ESCAPING
THE JAMMED STATES

Here we formally state and prove our results on jammed
states: We present a family of new jammed states, we show
that the jammed states vastly outnumber the balanced ones,
and we establish the reachability properties stated in the main
text.

Definition 1 (Circular graph Sk (n0, . . . , nd−1)). Given an
integer k � 0 and a partition n = n0 + · · · + nd−1 of n into d
parts, the circular graph Sk (n0, . . . , nd−1) is a signed graph

consisting of d clusters V0, . . . ,Vd−1 of sizes n0, . . . , nd−1,
respectively, arranged along a circle in this order, such that
the edge (u, v) with u ∈ Vi, v ∈ Vj is assigned a sign “+1” if
and only if Vi and Vj are at most k steps apart.

In particular, when n is divisible by 3 then the circular
graph S0(n/3, n/3, n/3) corresponds to the jammed state Jn

from Sec. III.
Theorem 2 (Counting jammed states). There are at least

2�(n log n) jammed states on n labeled vertices.
Proof. The proof proceeds in two steps: First, we show that

for any signed graph Sd (n0, . . . , n4d+1) and an edge (u, v)
there are at least 2d + 2 clusters with the property that all
the vertices from those clusters form a balanced triad with
(u, v). In particular, this immediately implies that the signed
graph S2

d with n0 = · · · = n4d+1 = 2 is jammed: Indeed, any
edge (u, v) is contained in at least 2(2d + 2) − 2 = 4d + 2
balanced triads (the −2 comes from omitting the vertices u,
v themselves) and in at most 2 · 2d = 4d imbalanced triads.
Second, we show that there are 2�(n log n) ways to draw the
signed graph S2

d over the n labeled vertices, hence at least
2�(n log n) jammed states.

For the first part, suppose that the vertices u, v belong to
clusters that are i steps apart. We distinguish two cases.

(1) i � d [that is, (u, v) is labeled “+”]: Then there are
2d + 1 − i “nearby” clusters whose vertices w form triads
(u, v,w) of type �0, and similarly 2d + 1 − i “far-away”
clusters whose vertices w form triads (u, v,w) of type �2. In
total, this is 4d + 2 − 2i � 2d + 2 clusters with the desired
property.

(2) i > d [that is, (u, v) is labeled “−”]: Then there are
2i � 2d + 2 clusters “nearby” either u or v and “far” from the
other vertex. All vertices w from those clusters form triads
(u, v,w) of type �2.

For the second part, we count only those jammed states
in which each cluster has size 2. Note that there are n − 1
ways to pick a vertex to join the cluster of vertex 0. Then
there are

(n−2
2

)
ways to select two vertices for the next (clock-

wise) cluster, then
(n−4

2

)
ways for the next cluster, and so on.

Finally, we must divide by 2, since the same signed graph
would be obtained by selecting the vertices in the reverse
order (or going counterclockwise). In total, using the Stirling
approximation n! � (n/e)n and a trivial inequality e

√
2 < 4,

we obtain that the number of different jammed states is at least

(n − 1)!

2n/2
� 1

n

n!

(
√

2)n
� 1

n
(n/4)n

= 2n log2 n−2n−log2 n = 2�(n log n).

�
Note that in comparison there are 2n−1 balanced states,

since each balanced state is characterized by a subset of ver-
tices of {1, . . . , n − 1} which are connected to vertex 0 by a
friendship edge. On the other hand, the total number of signed
graphs is 2(n

2) = 2�(n2 ).
Also, note that each of the 4d + 2 clusters of the jammed

state S2
d constitutes a balanced clique, as in Ref. [26]. This

answers in affirmative an open question posed there: For any
m ≡ 2 (mod 4) there exists a jammed state with m balanced
cliques.
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To prove the reachability properties, we define a specific
jammed state Jn on n vertices labeled 1, . . . , n: The edges
labeled “+” in J form three roughly equal clusters: One
on vertices labeled 1, . . . , 	n/3
, one on vertices labeled
	n/3
 + 1, . . . , 2	n/3
, and one on the remaining vertices
2	n/3
 + 1, . . . , n. It is easy to verify that for n � 11 the state
Jn is jammed.

Theorem 3 (Reaching a jammed state). Let G be a signed
graph on n � 11 vertices such that each vertex is incident to
at most n

12 − 1 friendship edges. Then CTD reaches Jn with
positive probability.

Since Jn is jammed, as a corollary we obtain that for any
such G the expected time to reach a balanced state is infinite.

Proof. For brevity, assume n ≡ 0 (mod 3) (the other cases
are completely analogous). We describe a finite sequence of
selected imbalanced triads and edge flips that results in Jn.
Denote the three clusters of Jn by V1, V2, and V3, respectively.

First, we show that one by one, all the enmity edges within
each cluster may be flipped into friendship edges. Fix an
enmity edge e = (u, v) where u, v ∈ Vi. It suffices to show
that, throughout this phase, e belongs to at most n/2 − 2
balanced triads. Each balanced triad must contain a friend-
ship edge incident to u or to v. Initially, there were n

12 − 1
friendship edges incident to u, and that many to v. Moreover,
throughout this phase, friendship edges to the other n/3 − 2
vertices within the cluster Vi might have been added. In total,
this is at most n/2 − 4 vertices w connected to one of u, v

by a friendship edge, thus at most n/2 − 4 balanced triads
containing e. Hence e can be flipped.

Second, we show that one by one, all friendship edges
connecting vertices from different clusters may be flipped into
enmities. Suppose that e = (u, v) is such a friendship edge.
It suffices to find n/2 imbalanced triads containing (u, v).
Consider the other vertices in the cluster containing u. They
are all friends with u, but at most n/12 − 1 of them are friends
with v (since we never add friendship edges leading across
clusters). Thus there are at least (n/3 − 1) − (n/12 − 1) =
n/4 imbalanced triads (of type �1) containing e and another
vertex in the cluster of v. Similarly, there are at least n

4 triads
of type �1 defined by e and another vertex in the cluster of u.
Hence re � 1

2 n, as claimed.
By flipping all friendship edges between different clusters

to enmity edges, we reach a jammed state Jn as claimed. �
Theorem 4 (Escaping a jammed state). Let E0 be any set

of edges such that each vertex is incident to at most n/12 − 1
edges of E0. Let Sn be a state obtained from Jn by flipping the
edges of E0. Then the CTD run from Sn reaches Jn.

Proof. Again, without loss of generality, we assume that
n ≡ 0 (mod 3). We first show that no edge e = (u, v) �∈ E0

can ever be flipped. In Jn, any enmity edge belongs to 2n/3 −
2 balanced triads (and the friendship edges belong to even n −
2 balanced triads). Since Sn differs from Jn by at most n/12 −
1 edges incident to each vertex, each edge e �∈ E0 belongs to
at least 2n/3 − 3 − 2(n/12 − 1) = n/2 balanced triads in Sn

and thus cannot be flipped.
On the other hand, any edge e ∈ E0 belonged to at least

2n/3 − 2 balanced triads in Jn, thus it belongs to at least
2n/3 − 2 − 2(n/12 − 1) = n/2 imbalanced triads in Sn, and
as such can be flipped. Moreover, once such an edge has been
flipped, by the above argument it cannot be flipped again.

Hence CTD will flip each edge in E0 once and return to the
jammed state Jn. �

APPENDIX B: RED-BLACK GRAPHS

The following lemma formalizes the key property of the
red-black graphs.

Lemma 1. Let G be a signed graph, let C be a balanced
state closest to G, let R be the red-black graph associated to G
and C. Then a triad in G is imbalanced if and only if exactly 1
or 3 of its edges are red in R.

Proof. To prove the lemma, we pick a triad in R and check
each of the 4 possible cases:

(i) If a triad contains 0 red edges, then all edge signs in G
agree with those in C thus the triad is balanced in G as C is a
balanced state.

(ii) If a triad contains one red edge, we distinguish two
cases. If both vertices of the red edge are in the same vertex
class of C (when treated as a bipartite graph with respect to the
friendship edges), then the triad is of type �1 in G. If vertices
are in different vertex classes of C, then the triad is again of
type �1 in G. Thus the triad is imbalanced in G.

(iii) If a triad contains two red edges, we distinguish two
cases. If all three vertices of the triad are in the same vertex
class of C, then the triad is of type �2 in G. If two vertices are
in one class and the third vertex is in the other, then depending
on which two edges are red the triad is either of type �0 or �2

in G. Thus the triad is balanced in G.
(iv) If a triad contains three red edges, we distinguish two

cases. If all three vertices of the triad are in the same vertex
class of C, the triad is of type �3 in G. If two vertices are in
one class and the third vertex is in the other, the triad is of type
�1 in G. Thus the triad is balanced in G. �

APPENDIX C: FAST CONVERGENCE OF BED FROM A
JAMMED STATE

Proposition 2. There exists a family of jammed states of
increasing size n such that BED starting in those states reaches
a balanced state in O(n2) expected steps.

Proof. Let n � 72 be a positive integer divisible by
8. Consider a circular graph J ′

n = S1(x, y, y, x, y, y), where
x = |V0| = |V3| = 1

4 n − 2 and y = |Vi| = 1
8 n + 1 for i ∈

{1, 2, 4, 5} (see Definition 1).
First, we show that J ′

n is jammed. Consider a balanced state
Bn with parts V0 ∪ V1 ∪ V5 and V2 ∪ V3 ∪ V4 and denote by E0

the set of red edges in the corresponding red-black graph.
Note that there are no triads with all edges red, hence the
rank of an edge is the number of triads that contain it and
contain precisely one red edge. For any red edge (u, v) we
have r(u,v) = 2x due to V1 and V4. Similarly, for any black
edge (u, v) such that |{u, v} ∩ (V1 ∪ V2 ∪ V4 ∪ V5)| = 1 we
have r(u,v) = 2y and for other black edges we have r(u,v) = 0.
Since all ranks are less than 1

2 n, the state J ′
n is indeed jammed.

Next, denote by Et the set of red edges (with respect to the
same balanced state Bn) after t steps of BED. We will show
that:

(1) Et ⊆ E0, and that
(2) at each point t in time, Pr[|Et+1| < |Et |] � 2 ·

Pr[|Et+1| > |Et |].
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Mapping the evolutionary dynamics to a one-dimensional
random walk with a constant forward bias and an absorbing
barrier corresponding to |Et | = 0, we thus conclude that the
expected number of steps till balance is O(|E0|) = O(n2).

To prove Item 1, we proceed by induction. Consider Et ⊆
E0. Note that, as before, there are no triads with all edges red.
Also:

(1) When (u, v) ∈ Et (that is, (u, v) is red) then as before
r(u,v) � 2x due to triads (u, v,w) with w ∈ V0 ∪ V3.

(2) When (u, v) �∈ E0 then (u, v) is black and as before we
have r(u,v) � 2y.

Now consider any imbalanced triad. It contains a red edge.
Since 2x > 2y, we always flip that red edge rather than any
edge outside of E0, thus Et+1 ⊆ E0 as desired. (Note that it is
possible that we flip a black edge in E0.)

To prove Item 2, consider any time point t and any red edge
(u, v). We say that an imbalanced triad is good if its red edge
has a strictly higher rank than its other two edges, and bad
otherwise. It suffices to show that (u, v) belongs to twice as
many good triads as bad triads. Recall that for w ∈ V0 ∪ V3 the
triad (u, v,w) is good, hence (u, v) belongs to at least 2x =
2 · ( 1

4 n − 2) � 32 good triads (here we use n � 72).
On the other hand, suppose that (u, v,w) is a bad triad

and without loss of generality, (u,w) is the (black) edge with
rank at least 2x. Note that (u,w) belongs to E0 \ Et (other
black edges have rank at most 2y). Denote by di the red
degree of vertex i, that is, the number of red edges incident to
i. Then 2x � r(u,w) = du + dw � du + 2y, thus du � 2x − 2y.
Vertex u is therefore connected to at most 2y − (2x − 2y) =
4y − 2x = 8 vertices in E0 by a black edge. Each such edge
gives rise to at most one bad triad and likewise for the edge
(v,w), so in total (u, v) belongs to at most 2 · 8 = 16 bad
triads, concluding the proof. �

APPENDIX D: NETWORK DESCRIPTORS FOR BED AND
CTD ON ERDŐS-RÉNYI GRAPHS

Here we present the network descriptors when BED
and CTD are run on Erdős-Rényi graphs with n = 128 and

p ∈ {0, 0.4, 0.5, 0.6, 0.7}, both before the process starts and
after it finishes.

Before
p d C E[S] Var[S]

0 0 0 – –
0.4 50.8 0.064 – –
0.5 63.5 0.125 – –
0.6 76.2 0.216 – –
0.7 88.9 0.343 – –

After BED
p d C E[S] Var[S]

0 63.160 0.246 61.468 3.820
0.4 68.294 0.307 45.818 8.244
0.5 78.144 0.423 32.990 7.596
0.6 103.317 0.720 13.264 6.127
0.7 125.260 0.979 0.883 0.815

After CTD
p d C E[S] Var[S]

0 63.179 0.246 61.321 4.279
0.4 68.274 0.306 45.866 8.716
0.5 78.116 0.423 33.025 7.967
0.6 103.185 0.719 13.348 6.236
0.7 125.144 0.978 0.942 0.867

As in the main text, we average over 105 runs and exclude
the runs of CTD that got jammed. Here d is the average
degree, C is the clustering coefficient, S is the size of the
smaller clique once the process finishes, E[S] is its mean,
and Var[S] its variance. The two dynamics match almost
perfectly.
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