
PHYSICAL REVIEW E 106, 034320 (2022)

First-passage process in degree space for the time-dependent
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In this work, we investigate the temporal evolution of the degree of a given vertex in a network by mapping
the dynamics into a random walk problem in degree space. We analyze when the degree approximates a
preestablished value through a parallel with the first-passage problem of random walks. The method is illustrated
on the time-dependent versions of the Erdős-Rényi and Watts-Strogatz models, which were originally formulated
as static networks. We have succeeded in obtaining an analytic form for the first and the second moments of the
first-passage time and showing how they depend on the size of the network. The dominant contribution for large
networks with N vertices indicates that these quantities scale on the ratio N/p, where p is the linking probability.
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I. INTRODUCTION

The study of the properties of networks led to the devel-
opment of many mathematical, statistical, and computational
tools that can be used to analyze, model, and understand
how systems behave in many areas of knowledge such as
physics, biology, ecology, and social sciences, to name some
of them. Modeling complex systems by networks [1–3] is
a natural strategy to investigate a system from a very basic
structure composed of agents and interactions among them,
represented, respectively, by vertices (or nodes) and links.

In this work, we are mainly interested in the time evolution
of the degree of a given node. Concretely, a vertex can gain
and/or lose connections during its dynamics, and we inves-
tigate when it achieves a preestablished degree for the first
time. This is a particularly relevant issue when agents can not
afford an indefinite number of connections and some indica-
tion of approaching the maximum capacity of the node [4,5]
is desired. As an instance, it is known that airports (where
the links can be assigned to the routes) have constraints that
prevent growth without careful planning [6].

We map the dynamics of increasing or decreasing degrees
into a random walk process, as was introduced in Ref. [7],
and see if and how long it takes for a vertex with degree k0

to reach degree k for the first time. This is a one-dimensional
random walk in degree space, where the rules of gaining or
losing degrees are governed by the dynamics of the network.
The random walk is a classical problem [8,9] where a particle
moves in random directions and one typically inquires about
its statistical properties after a long time. Starting from an
origin, one possible question that can be formulated concerns
the probability of returning to the starting point, and the first-
passage process refers to its return for the first time [10–12].
First-passage processes are seen in many applications, and
examples are present in random searches [13–16], cyclization
of a polymer [17], integrate-and-fire neurons [18], chemi-
cal reactions [19,20], narrow escape problem [21–23], and

diffusion on cell membranes [24] to cite some of them. When
the random walk is defined on a (hyper)cubic lattice [25],
and the particle can move in any direction with the same
probability, it is known that the mean first-passage time scales
as Ld [26], where L is the linear size of the d-dimensional
lattice with periodic boundary conditions; furthermore, in the
limit of infinite lattice, this random walk is known to be re-
current (i.e., it returns to the origin with probability 1) for the
one-dimensional chains and two-dimensional square lattices,
while the process is transient (i.e., there is a positive probabil-
ity of not returning to the origin) for hypercubic lattices with
larger dimensions [12,26].

We investigate how the mean first-passage time of a vertex
reaching a preestablished degree scales with the size of the
network and other relevant parameters. Our study is based
on an extended version of the Watts-Strogatz model [27],
which was also introduced in Ref. [7], but we consider first a
dynamical version of the Erdős-Rényi model [28] to illustrate
and outline the main steps of analysis. An important difference
between these two models stems from the locality in the dy-
namics in the following sense. While the degree dynamics in
Erdős-Rényi model depends on two fixed parameters (the total
number of vertices and the linking probability, as seen in the
next section), the Watts-Strogatz model behaves differently. In
the latter, the probability of a vertex gain or losing connections
also depends on the degree it has. This means that the number
of links of a given vertex is influenced by the actual state of
the node, and the dynamics is not trivial as in the Erdős-Rényi
case anymore. We analyze the consequence of this property
in the present work. On the other hand, both models allow
a simplification that arises from a property shared between
them, which is the time-translational invariance. Systems that
do not have this property, such as the random recursive tree
[29,30] or Barabási-Albert network [31], indicate the need for
a different approach, and will be examined elsewhere.

This paper is organized as follows. We define the dynami-
cal version of the Erdős-Rényi and Watts-Strogatz models in
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Sec. II and the general formalism to investigate the moments
of the first-passage time is presented in Sec. III. The results for
both models are shown in Sec. IV and some final comments
are given in the last section.

II. MODELS

Two models are introduced to test our ideas in this work.
Both of them are already well known in the literature [27,28],
but were initially defined as static networks.

The first one, which is a minimal model, is the dynamical
Erdős-Rényi network: the dynamics is just a simple addition
of edges per time unit, and we monitor the increase of degrees
only. The second one, the dynamical Watts-Strogatz model, is
the simplest network that contains the process where a vertex
can gain and/or lose connections randomly. The usual first-
passage process (which is concerned with the return to the
starting point) in the latter model corresponds to the so-called
Motzkin paths [32]. Evaluating the number of such paths is a
combinatorial problem and is given by the Motzkin numbers
[33,34], which are related to many other problems [35]. There
is an interesting example in biology, where the connections
in the endoplasmatic reticulum network can be regulated by
lysosomes [36].

A. Time-dependent Erdős-Rényi model

In the dynamical version of the Erdős-Rényi model, con-
sider a network with N vertices. At each unitary time step, two
vertices are randomly chosen and connected with probability
p; this includes the possibility of (i) having a loop (i.e., an
edge that connects a vertex to itself) and (ii) having more than
one connection between the same pair of vertices. Since there
is no preferential attachment, the probability of any vertex
being chosen is 1/N .

Defining ps(k, t ) as the probability that a vertex s has
degree k at time t , the dynamics can be represented by the
recurrence relation

ps(k, t + 1) = ωER(k|k − 2)ps(k − 2, t )

+ ωER(k|k − 1)ps(k − 1, t )

+ ωER(k|k)ps(k, t ). (1)

The term ωER(k|m) is the time-independent transition rate
of changing the degree of a vertex from m to k; in this
time-discrete case with unitary time step, the transition rate
coincides numerically to the conditional probability. The
right-hand side of the dynamics (1) contemplates three cases:

(i) The degree of vertex s changes from k − 2 (at time t)
to k (at time t + 1). An edge is introduced, with probability
p (there should be no confusion with ps), and the vertex s is
connected to itself (by being chosen twice); this leads to

ωER(k|k − 2) = p

N2
; (2)

(ii) The degree of vertex s changes from k − 1 (at time t)
to k (at time t + 1). An edge is introduced, with probability p,
and links to two different vertices, but the vertex s has to be

one of them. This situation is described by

ωER(k|k − 1) = 2p

N

(
1 − 1

N

)
; (3)

(iii) The vertex s already has degree k, and one should
consider the probability of not changing its degree, i.e., the
link is not introduced (with probability 1 − p) or, when the
edge joins the network (with probability p), it connects two
vertices other than s with probability (1 − 1/N )2. In this case,
one has

ωER(k|k) = (1 − p) + p

(
1 − 1

N

)2

= 1 − 2p

N
+ p

N2
. (4)

B. Time-dependent Watts-Strogatz model

In this version of the Watts-Strogatz model, the network
has a fixed number N of vertices and

M := cN (5)

degrees, where c is the mean degree of the network (therefore,
the entire graph has cN/2 edges). At each time step, an edge
end is chosen at random with uniform probability 1/M and
reconnected with probability p (and no action takes place
with probability 1 − p). This scheme does not forbid loops
or multiple connections between the same pair of vertices.

Defining ps(k, t ) as the probability that a vertex s has
degree k at time t as before, the dynamics can be represented
by

ps(k, t + 1) = ωWS(k|k − 1)ps(k − 1, t )

+ ωWS(k|k + 1)ps(k + 1, t )

+ ωWS(k|k)ps(k, t ), (6)

where ωWS(k|m) represents the time-independent transition
rate of a vertex changing its degree from m to k.

There are some different possible scenarios for a given
vertex to change its degree from m to k in a single time step:

(i) The degree of vertex s changes from k − 1 (at time
t) to k (at time t + 1). An edge end not connected to s is
chosen with probability 1 − k−1

M , rewired with probability p
and connects to s with probability 1

N . In this situation, one has

ωWS(k|k − 1) = p

N

(
1 − k − 1

M

)
; (7)

(ii) The degree of vertex s changes from k + 1 (at time t)
to k (at time t + 1). An edge end connected to s is chosen with
probability k+1

M , rewired with probability p and connects to a
vertex other than s with probability 1 − 1

N , resulting in

ωWS(k|k + 1) = k + 1

M
p

(
1 − 1

N

)
; (8)

(iii) The vertex s has degree k at time t and neither gains
nor loses connections. This is represented by the sum of some
disjoint cases: (a) there is no rewiring at all in the process
with probability 1 − p, or (b) an edge end connected to s is
chosen with probability k

M , rewired with probability p and
connected again to s with probability 1

N ; (c) an edge end not
connected to s is chosen with probability 1 − k

M and rewired
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(with probability p) to connect to a vertex other than s with
probability 1 − 1/N . The sum of these probabilities results in

ωWS(k|k) =
(

1 − p

)
+ p

k

M

1

N
+ p

(
1 − k

M

)(
1 − 1

N

)

= 1 − p

N

(
1 + kN

M
− 2k

M

)
. (9)

III. RANDOM WALK IN DEGREE SPACE

Considering that vertices, in general, gain or lose connec-
tions, one can look at these changes in degree (of a specified
vertex) as a one-dimensional random walk in degree space
[7]. Furthermore, the mean time required by a vertex to reach
a certain degree for the first time can be evaluated through
a parallel with the first-passage problem of random walks
[11,12].

In both models presented in the previous section, there are
two important symmetries. First, the particular choice of a
vertex s is irrelevant, and this parameter has no role in our
work, except for remembering that we are dealing with the
time evolution of the degree of a given vertex.

Let us consider a vertex s from the network, and assume
that it has degree k0 at time t0 = 0. The choice of initial time is
irrelevant, as we will see later, since the system displays time-
translational symmetry. The mean time 〈t〉 to reach a certain
degree k for the first time is given by

〈t〉 =
∞∑

t=0

t fs(k, t |k0, 0), (10)

where fs(k, t |k0, 0) is the probability of vertex s having degree
k for the first time at t , given that it had degree k0 at time
t0 = 0. This probability can be obtained from the discrete-time
version of the first-passage process equation [11,12], and it
obeys the equation

ps(k, t |k0, 0) =
t∑

t ′=0

fs(k, t ′|k0, 0)ps(k, t |k, t ′), (11)

which describes the probability ps(k, t |k0, 0) of the vertex s
having degree k at time t (not necessarily for the first time),
given that it had degree k0 at time t0 = 0. This is a sum of all
disjoint probabilities where the degree of the vertex reaches
k at time t ′ (� t) for the first time, and then reaches degree
k again at instant t . The initial condition ps(k, 0|k0, 0) = δk,k0

is satisfied by assuming fs(k, 0|k0, 0) = δk,k0 (an extra term in
(11) associated to the initial condition is not required here as
it is in the continuous-time version [11,12] of the equation).

The second important symmetry of our models can be
seen from the transition rates ωER and ωWS: they are invari-
ant under time translation. As a consequence, ps(k, t |k′, t ′) =
ps(k|k′; t − t ′) and fs(k, t |k′, t ′) = fs(k|k′; t − t ′) depend on
the difference t − t ′ only. Therefore, Eq. (11) can be cast as

ps(k|k0; t ) =
t∑

t ′=0

fs(k|k0; t ′)ps(k|k; t − t ′). (12)

As usual, the convolution product in (12) suggests the
introduction of the characteristic function

pz
s(k|k0; z) =

∞∑
t=0

zt ps(k|k0; t ) (13)

and a similar definition for the characteristic function f z
s of the

function fs. Then, it is immediate that

f z
s (k|k0; z) = pz

s(k|k0; z)

pz
s(k|k; z)

, (14)

and we can access the first-time probability fs (or f z
s ) from the

probability ps (or pz
s). As stated before, this is a consequence

of the time-translation invariance; models that do not have
this symmetry (such as the random recursive tree [29,30] or
Barabási-Albert network [31]) do not display the form (12).

We are mainly interested in (14) because it provides some
quantities of interest. The first one is

A := lim
z→1

f z
s (k|k0; z) =

∞∑
t=0

fs(k|k0; t ), (15)

which stands for the arriving probability of a vertex reaching
degree k, starting from degree k0, at some time, while

〈t n〉 = lim
z→1

(z∂z )n f z
s (k|k0; z) =

∞∑
t=0

t n fs(k|k0; t ), (16)

where ∂z stands for the partial derivation in z variable, shows
that the quantity f z

s is also useful to evaluate any moment
of the first-passage time. In this work, we are particularly
interested in the first and second moments, 〈t〉 and 〈t2〉, re-
spectively; the latter is directly associated with the variance
σ 2 = 〈t2〉 − 〈t〉2.

Hence, one can also expand (14) as

f z
s (k|k0; z) = A + 〈t〉(z − 1) +

[ 〈t2〉 − 〈t〉
2

]
(z − 1)2 + · · ·

(17)

and obtain the desired quantities (A, 〈t〉, and 〈t2〉) through this
series representation.

IV. RESULTS

In this section, we present the results for the first and
second moments of the first-passage time for both models.

A. Time-dependent Erdős-Rényi model

The discrete-time evolution for the dynamical version of
Erdős-Rényi model, introduced in Sec. II, is given by (1).
Introducing the characteristic function

pK
s (K ; t ) =

∞∑
k=0

Kk ps(k|k0; t ) (18)

into (1) leads to

pK
s (K, t ) =

[
1 − p + p

(
K

N
+ 1 − 1

N

)2]t

Kk0 , (19)

where the initial condition ps(k|k0; 0) = δk,k0 or, equivalently,
pK

s (K ; 0) = Kk0 was adopted. From (18), the probability
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ps(k|k0; t ) is the coefficient of the term Kk in the series;
therefore, expanding (19) and organizing the terms implies

ps(k|k0; t ) =
t∑

m=� �
2 �

(
t

m

)(
2m

�

)
(1 − p)t−m pm

×
(

1 − 1

N

)2m−� 1

N�
. (20)

From (20), the function ps depends on the difference � :=
k − k0 only, and not on the initial and final degrees indepen-
dently. This property is propagated to the quantities of interest
in this work.

Using (20), the characteristic function (in time variable) of
ps is

pz
s(k|k0; z) =

∞∑
t=0

zt ps(k|k0; t )

=
∞∑

m=� �
2 �

(
2m

�

)(
1 − 1

N

)2m−�

× 1

N�

(zp)m

[1 − z(1 − p)]m+1 , (21)

from which one can also evaluate pz
s(k|k; z) by taking k0 = k

(or � = 0). Then, using the relation

∞∑
m=� �

2 �

(
2m

�

)
x2m = x�

2
[(1 − x)−�−1 + (−1)�(1 + x)−�−1]

(� ∈ N, x ∈ (−1, 1) ⊂ R), (22)

which can be deduced by combining the expansion of (1 ±
x)−�−1 for |x| < 1, it is now possible to obtain

f z
s (k|k0; z) = 1 − ζ 2

2(N − 1)�

[
ζ�

(1 − ζ )�+1
+ (−1)�ζ�

(1 + ζ )�+1

]
,

(23)

where

ζ := ζ (z) =
(

1 − 1

N

)√
zp

1 − z(1 − p)
. (24)

Expanding (23) as in (17) is a tedious but direct procedure.
From this operation, the arrival probability can be obtained as
being

AER = 1 − 1

2N

[
1 − (−1)�

(2N − 1)�

]
. (25)

Although the dynamics suggests that the vertex s can achieve
any larger degree if one waits a sufficiently long time, the
probability (25) is less than one. However, this odd result is
a consequence of the network growing rule, which allows
a vertex to increase its degree by two units by forming a
loop. In this case, the targeted degree, k, may be surpassed
from k − 1 to k + 1 without being accessed. For this rea-
son, the arrival probability is not 1. Nonetheless, if one

evaluates
∞∑

t=0

fs(degree � k|k0; t )

=
∞∑

t=0

[ fs(k|k0; t ) + ωER(k + 1|k − 1)ps(k − 1, t )],

(26)

which is a correction to (25), the arrival probability is 1, as
expected. Note that the arrival probability (25) tends to 1 with
the size of the network, which is expected since the loop
becomes rare with the number of vertices. One should also
note that this result is valid for any positive linking probability
p (the case p = 0 is trivial), but does not depend explicitly on
this parameter. As shown below, this parameter scales the time
elapsed until a vertex reaches some degree for the first time,
but it does not have any impact on the probability of reaching
the preestablished degree (except the trivial case p = 0, when
A = 0 for � > 0).

The first and second first-passage time moments can also
be derived from (23). The leading term of the mean first-
passage time is

〈t〉ER � N

2p
� (27)

for N � 1, while the second moment is

〈t2〉ER �
(

N

2p

)2

�(� + 1). (28)

The variance can also be determined from (27) and (28), and
depends quadratically on the ratio N/p, but linearly on the dif-
ference � := k − k0 as σ 2

ER := 〈t2〉ER − 〈t〉2
ER � ( N

2p )2�. The
results (27) and (28) are supported by numerical simulations,
as one can see in Fig. 1.

B. Time-dependent Watts-Strogatz model

The analysis of the dynamical version of the Watts-
Strogatz model is much more intricate than the previous
model. To convey better the ideas, all the technical details
are presented in the Supplemental Material [37], and we will
restrict ourselves to highlighting only the important points in
this section. It is important to stress that our mains results
are all established analytically, and despite the fact that the
techniques involved are not new, a careful choice in the man-
agement of the expressions involved is required to obtain a
compact form of the final result.

The dynamics of this model was already presented in (6),
where the transition rates are given in (7), (8), and (9). In-
troducing a characteristic function that transforms both the
degree and time variables [see (18) and (13)] into new ones,
the recurrence relation (6) can be converted into the differen-
tial equation

∂

∂K
pKz

s (K, z) =− M

p

(
1 − z−1

1 − K
+ 1 − p − z−1

N + K − 1

)
pKz

s (K, z)

− Mz−1

p

(
1

1 − K
+ 1

N + K − 1

)

× pK
s (K, t = 0). (29)
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FIG. 1. The mean first (left) and second (right) moments of the first-passage time as a function of the ratio N/p for the dynamical version
of the Erdős-Rényi model with k0 = 2 and k = 5. The simulations used 100 samples and compared with the asymptotic results (27) and (28);
the error bars are smaller than the size of the points.

Using the normalization condition pKz
s (K = 1, z) = 1

1−z and
assuming N � 1, the solution of (29) can be cast as

pKz
s (K, z) = Mz−1

p
(1 − K )−Mαe−c(1+α)(1−K )

×
∫ 1

K
dξec(1+α)(1−ξ )(1 − ξ )Mα−1 pz

s(ξ, t = 0),

(30)

where

α := 1

p
(z−1 − 1). (31)

Then, returning back to the degree variable by inverting the
transform (18) leads to

pz
s(k|m; z) = 1

k!

∂k

∂Kk

[
Mz−1

p
A−1

α (K )

×
∫ 1

K
dξ (1 − ξ )−1Aα (ξ )ξm

]
K→0

, (32)

for m ∈ {k, k0} and

Aα (K ) := ec(1+α)(1−K )(1 − K )Mα. (33)

The probability (32) is the key function to compute (14),
which can be used to evaluate some quantities of interest
through (17). This procedure is not smooth as it was in the
case of the dynamical Erdős-Rényi model and the technicali-

FIG. 2. The mean first-passage time as a function of the ratio N/p. Left: k0 = 2 and k = 5; right: k0 = 5 and k = 2. In both graphs, the
mean degree of the network is c = 4 and the results were obtained from 100 samples; the error bar is smaller than the size of the points. These
simulations were compared with the analytical result (35).
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FIG. 3. The (mean) second moment of the first-passage time as a function of the ratio N/p. Left: k0 = 2 and k = 5; right: k0 = 5 and k = 2.
In both graphs, the mean degree of the network is c = 4 and the results were obtained from 100 samples; the error bar is smaller than the size
of the points. These simulations were compared with the analytical result (36).

ties are exposed in the Supplemental Material [37]. Here, we
will show the results only.

The arrival probability in this model is

AWS = 1, (34)

as expected. No anomalous behavior as seen in the previous
model is present here, where the degree changes by a single
unit only at each time step.

The leading term of the first-passage time is

〈t〉WS ∼

⎧⎪⎨
⎪⎩

N
p ec

∑k−1
n=k0


(n+1,c)
cn , k > k0

N
p ec

∑k0−1
n=k

γ (n+1,c)
cn , k < k0

, (35)

where 
(·, ·) and γ (·, ·) are, respectively, the upper and lower
incomplete 
 functions. It is worth mentioning that this time
is also proportional to N/p, as in the dynamical Erdős-Rényi
model. The simulation of this model supports the analytical
expression (35), which is valid for N � 1, as shown in Fig. 2.
One can also see that (35) depends on the initial (k0) and final
(k) degrees independently.

On the other hand, the leading contribution to the second
moment is given by

〈t2〉WS

∼
⎧⎨
⎩

2
(

N
p

)2
ec

∑k−1
n=k0

n!
cn

∑n
�=0

c�

�!

∑k−1
m=�


(m+1,c)
cm , k > k0

2
(

N
p

)2
ec

∑k0−1
n=k

n!
cn

∑∞
�=n+1

c�

�!

∑�−1
m=k

γ (m+1,c)
cm , k < k0

,

(36)

and is proportional to (N/p)2. Like the asymptotic expres-
sion for the first moment (35), (36) depends also on k0 and
k independently. The validity of (36), which also assumes
N � 1, was tested by comparing to simulation in Fig. 3. There
is an alternative representation of (36) in the Supplemental
Material [37], but the form given here seems to be the most
compact one. Naturally, (36) and (35) can be used to compute
the variance, which is also proportional to (N/p)2. Since this
expression shows no special aesthetic appeal, it will not be
presented here.

V. CONCLUSION

In this work, we investigated the time needed for a vertex
to achieve a preestablished degree for the first time. The main
strategy was mapping the problem into a first-passage prob-
lem in degree space. The gain (loss) of degrees was illustrated
by the time-dependent version of the Erdős-Rényi and Watts-
Strogatz models, which display time-translational symmetry.
This property was explored and analytical results concerning
the first and second moments of the first-passage time were
obtained. In both cases, the arrival probability ensured that
the preestablished degree is achieved with probability 1 (with
a careful interpretation in the case of the Erdős-Rényi dy-
namics). Furthermore, the mean first-passage time is scaled
linearly with the ratio N/p for both models in the asymptotic
regime of large networks, while this scale is quadratic for the
second moment also in both models. Since the probability p
controls the change in degrees, the factor 1/p is related to the
time scale of the dynamics, and is present in our results.

As expected, the dynamics of the Erdős-Rényi model,
which depends solely on two fixed parameters (total vertices
N and linking probability p), is a trivial one in the sense
that the first-passage moments is a function of the difference
� between the final and initial degrees only. Watts-Strogatz
network, on the other hand, does not display such simplicity:
the transition rate associated with the degree dynamics of a
given vertex depends on its state (degree). We have shown
that in this case, the mean first-passage time and the second
moment are not a function of the difference � anymore, and
depend independently on the initial and final degrees. Fur-
thermore, this characterization can be accomplished through
a compact formula for the mean first-passage time, which
then can be represented as a sum of terms involving upper
(lower) incomplete 
 functions when the final degree is larger
(smaller) than the initial one.
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