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Hypergraphs and simplical complexes both capture the higher-order interactions of complex systems, ranging
from higher-order collaboration networks to brain networks. One open problem in the field is what should
drive the choice of the adopted mathematical framework to describe higher-order networks starting from data
of higher-order interactions. Unweighted simplicial complexes typically involve a loss of information of the
data, though having the benefit to capture the higher-order topology of the data. In this work we show that
weighted simplicial complexes allow one to circumvent all the limitations of unweighted simplicial complexes
to represent higher-order interactions. In particular, weighted simplicial complexes can represent higher-order
networks without loss of information, allowing one at the same time to capture the weighted topology of the data.
The higher-order topology is probed by studying the spectral properties of suitably defined weighted Hodge
Laplacians displaying a normalized spectrum. The higher-order spectrum of (weighted) normalized Hodge
Laplacians is studied combining cohomology theory with information theory. In the proposed framework we
quantify and compare the information content of higher-order spectra of different dimension using higher-order
spectral entropies and spectral relative entropies. The proposed methodology is tested on real higher-order
collaboration networks and on the weighted version of the simplicial complex model “Network Geometry with
Flavor.”
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I. INTRODUCTION

Higher-order networks [1–10] capture the higher-order
interactions of complex systems, including collaboration
networks, face-to-face social interaction networks, brain net-
works, and chemical reaction networks. For instance, in a
collaboration network among scientists, higher-order net-
works allow one to capture interactions of a team of coauthors
formed by two or more scientists [11,12]. Higher-order
networks include hypegraphs and simplicial complexes. Hy-
pergraphs are formed by a set of hyperedges, describing
higher-order interactions. Simplicial complexes are formed by
simplices, where an n-simplex is formed by n + 1 nodes. In
the literature there is an increasing attention in determining the
differences between these two mathematical frameworks, both
tailored to model higher-order data. The difference between
unweighted simplicial complexes and hypergraphs is that hy-
pergraphs are arbitrary set of hyperedges, while simplicial
complexes are sets of simplices closed under the inclusion
of the faces of each simplex in the simplicial complex. This
additional property implies, for instance, that if a three-way
interaction (2-simplex, or filled triangle) [A, B,C] among the
nodes A, B, and C is present in the simplicial complex, then
we must include in the simplicial complex also all the links
(pairwise interactions) and all the nodes which constitute the
faces of the triangle, i.e., we should also include the simplices

[A, B], [B,C], [A,C], [A], [B], [C]. This can be perceived as
a limitation in some application domains, such as in collab-
oration networks. Indeed, if three authors in a collaboration
network have coauthored a paper together, it is not generally
the case that also two-author papers written by each pair of
scientist in the triangle exist. On the other hand, simplicial
complexes provides the network scientists with very powerful
tools coming from algebraic topology [1,13–15] to charac-
terize the structure of higher-order data sets [6,8,16–22] and
the interplay between topology and dynamics [1,23–50]. One
direction to solve this dichotomy between hypergraphs and
simplicial complexes is to introduce the notion of algebraic
topology to treat hypergraphs [51,52]. Here we pursue an-
other direction and we propose to study weighted simplicial
complexes, which are attracting increasing attention [53–55],
where each simplex of the simplicial complex is associated to
a real number called weight. Weighted simplicial complexes
retain the property that they are closed under the inclusion of
the faces of each simplex. However, in this paper we show
that if the weights of the simplices are defined according to
our algorithm, it is possible to distinguish between simplices
that are only included in the simplicial complex for the closure
condition to be satisfied (and do not describe bare higher-
order interactions present in the data) and simplices that are
also encoding for bare higher-order interactions. Therefore,
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with the proposed choice of weights, simplicial complexes
can be used interchangeably to hypergraphs, as they can retain
all the information present in the data. Moreover, we show
that the proposed choice of weights for the weighted sim-
plicial complexes also allows one to use algebraic topology
of weighted simplicial complexes and hence to investigate
their higher-order topology. Indeed, the proposed choice of
weights of the simplices allows us to define normalized Hodge
Laplacians of every dimension. Normalized Hodge Lapla-
cians are particularly useful to compare the spectral properties
of a simplicial complex at different dimension, revealing im-
portant aspects of its higher-order structure. Here we show
how the higher-order spectral entropies, which generalize
the notion of spectral or von Neumann entropy of networks
[56–62], can be used for characterizing the properties of
higher-order diffusion processes [25,26,31,32,63] and their
associated characteristic timescales. These theoretical insights
have been applied to a real data set of higher-order scientific
collaboration network and to the weighted simplicial complex
model “Network Geometry with Flavor” [63–67] revealing
the information content encoded in these higher-order net-
work structures. Importantly, when analyzing the higher-order
collaboration network, we also propose a way to quantify the
bare weights associated to each team of collaborators, thus
extending to higher-order networks the popular choice of net-
work weights for scientific collaboration networks proposed
by Newman [68].

Note that in this paper our focus is in establishing how
weighted simplicial complexes can be used to capture real
data without loss of information. Therefore our approach is
different in nature and scope with respect to other recent
works [69] aimed at exploring the different dynamical effects
observed when considering different higher-order representa-
tions.

The paper is organized as follows. In Sec. II we discuss
weighted simplicial complexes and our proposed choice of the
topological weights. In Sec. III we introduce the fundamental
aspects of algebraic topology that lead to the definition of
higher-order normalized Hodge Laplacians and of a normal-
ized Dirac operator. In Sec. IV we discuss the higher-order
spectral entropies of simplicial complexes and their proper-
ties. In Secs. V and VI we present the application of the
proposed mathematical framework to a real collaboration net-
work and to the model “Network Geometry with Flavor,”
respectively. Finally, in Sec. VII we provide some concluding
remarks. The paper is enriched by an Appendix providing the
proof that the proposed Hodge Laplacians are normalized at
every order.

II. WEIGHTED SIMPLICIAL COMPLEXES

A simplicial complex K is a type of higher-order net-
work [1] that is increasingly used to study the underlying
topology of data. A simplicial complex encodes the higher-
order interactions of complex systems, i.e., the interactions
between two ore more nodes. In other words, simplicial
complexes allow one to go beyond the network descrip-
tion of complex systems based exclusively on pairwise
interactions.

The building blocks of a simplicial complex are the sim-
plices. An n-dimensional simplex α (or n-simplex) is formed
by a set of n + 1 nodes

α = [v0, v1, . . . , vn], (1)

with an assigned orientation.
Based on this definition, a 0-simplex is a node, a 1-

simplex is a link, a 2-simplex is a triangle, and so on. The
n′-dimensional faces of a n-simplex α are defined as the sim-
plices formed by a proper subset of the nodes in α. Finally,
a simplicial complex is a set of simplices closed under the
inclusion of the faces of each simplex. The dimension d of
a simplicial complex is the largest dimension of its simplices.
The simplices of a simplicial complex that are not faces of any
other simplex are called facets.

Here and in the remainder of this work we indicate with
N[n] the number of simplices of dimension n present in a
simplicial complex. Therefore, N[0], N[1], and N[2] indicate,
respectively, the total number of nodes, links, and triangles
present in the simplicial complex.

As an example, a higher-order collaboration network can
be described by a simplicial complex where one considers all
the teams of coauthors of at least one paper as simplices, and
includes the corresponding simplex and all its faces in the
simplicial complex [11,12]. Therefore, given an unweighted
simplicial complex constructed in this way the collaboration
network cannot be fully reconstructed, as only the facets will
indicate for sure a higher-order collaboration.

Our aim is to show that weighted simplicial complexes
are instead able to capture faithfully the higher-order collab-
oration data without any loss of information, provided that a
proper choice of weights is made.

In a general framework, weighted simplicial complexes are
enriched by topological weights wα > 0 associated to each
simplex α of the simplicial complex. The question that we
want to address is: how can we best choose these topological
weights without losing the information present in higher-order
network data?

We assume to have as input data some bare affinity weights
ωα � 0 associated to each simplex of a simplicial complex.
For instance, in the collaboration network that will be used for
the present analysis, the bare affinity depend on the number
of papers coauthored by the team represented by the generic
simplex α. Therefore, we can have a triangle [1,2,3] with a
positive bare weight ω[1,2,3] > 0 indicating the existence of at
least one paper written by the corresponding three authors. At
the same time, we might also have one of more of its faces
with null bare weights; for instance, we could have ω[1,2] = 0,
indicating that there are no two-author papers written by au-
thors 1 and 2. Starting from collaboration data, we propose a
way to derive the topological weights wα , which are positive
for every simplex of the simplicial complex. In the above
example, for instance, we would have w[1,2,3] > 0, as well
as w[1,2] > 0. Given a d-dimensional simplicial complex, the
proposed choice of topological weights associated to the sim-
plices α′ of dimension d is equal to the bare affinity weights

wα′ = ωα′ . (2)

However, the topological weights of simplices α′ of dimen-
sion n′ = nα′ < d are defined iteratively as the sum of the
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topological weights of the n′ + 1 dimensional simplices α

incident to it plus the bare affinity weights ωα′ ,

wα′ =
∑
α⊃α′

wαδ̃(nα, nα′ + 1) + ωα′ , (3)

where δ̃(x, y) indicates the Kronecker delta, δ̂(x, y) = 1 if
x = y and δ̂(x, y) = 0 otherwise. For example, in a simplicial
complex of dimension d = 2 formed by nodes, links, and
triangles, the topological weights associated with the triangles
are the bare affinity weights, while the topological weights
associated to the links are the sum of all the weights of the
triangles incident to them, plus their bare affinity weights.
Similarly, the topological weight of the nodes will be the sum
of the topological weights of their incident links plus their
bare affinity weight.

It is easy to check that since Eq. (2) and Eq. (3) are linear,
they are invertible. Therefore, with this choice of topological
weights, it is always possible to reconstruct the bare affinity
weights and have a faithful representation of the data, also if
the data include a set of higher-order interactions that is not
closed under the inclusion of the subset of their nodes as in
general collaboration data.

The topological weights of a simplicial complex can even-
tually evolve and fluctuate in time, and, in that case, they
are properly called topological signals, whose dynamics has
recently attracted large attention [1,23–32,34–37]. In this
paper, however, we will consider only topological weights
constituted by single snapshots of topological signals, or by
topological signals that are constant in time.

III. HIGHER-ORDER SPECTRUM OF WEIGHTED
SIMPLICIAL COMPLEXES

Weighted simplicial complexes are able not only to faith-
fully represent higher-order network data without any loss
of information, but allow also the investigation of their
higher-order spectrum thus revealing important properties of
higher-order diffusion [26,31,32]. In this section we introduce
the key algebraic topology background to study the higher-
order spectrum of weighted simplicial complexes, which
constitutes a fundamental pathway to relate higher-order
structure to higher-order dynamics. Interesting background
literature for this section include the Refs. [1,13–15,69,70].

A. Chains and cochains

An n-chain is an element of the free Abelian group Cn with
basis the n simplices of the simplicial complex defined with
respect to the field Z. Therefore, any n-chain σ ∈ Cn can be
written as a linear combination of n-simplicies with integer
coefficients,

σ =
∑

α

σαα, (4)

with σα ∈ Z. The boundary operator ∂n : Cn → Cn−1 is a lin-
ear operator that maps n-chains to (n − 1)-chains, and it is
completely defined by its action on each n-simplex as follows:

∂n[v0, . . . , vn] =
n∑

p=0

(−1)p[v0, . . . , v̂p . . . , vn], (5)

where the notation v̂p denotes the fact that vertex vp is missing
from the simplex [v0, . . . v̂p . . . , vn]. From Eq. (5) it is clear
that the boundary of an n-simplex is an (n − 1)-chain formed
by the (n − 1)-dimensional simplices at its boundary, and
oriented in the same way as the n-simplex. One of the major
topological properties of the boundary operator is that “the
boundary of the boundary is null” which translates into the
following algebraic condition:

∂n∂n+1 = 0. (6)

Given a basis for the simplices of a simplicial complex, the
boundary operator ∂n is represented by incident matrices B[n]

which are Nn−1 × Nn rectangular matrices of elements

Bn(α′, α) = (−1)p, (7)

where α′ and α are the simplicies

α′ = [v0, v1, . . . , v̂p, . . . , vn], (8)

α = [v0, v1, . . . , vn]. (9)

Since the boundary operator satisfies Eq. (6), we have

B[n]B[n+1] = 0, (10)

for every n > 0.
An n-cochain f in the cochain group Cn is an homeomor-

phism between the n-chains Cn and the set of real numbers R.
Given an n-chain σ = ∑

α∈Qn
σαα we have that

f (σ ) =
∑
α∈Qn

σα f (α). (11)

It follows that an n-cochain f is uniquely determined by the
vector f of elements given by fα = f (α). The coboundary
operator δn is a linear operator mapping n cochains f (i.e., lin-
ear functions defined on n-simplices) to n + 1 cochains (i.e.,
linear functions defined on n + 1-simplices). In particular, the
n-coboundary operator δn : Cn → Cn+1 is defined by

(δn f )[v0, . . . , vn+1]

= an

n∑
p=0

(−1)p f ([v0, . . . , v̂p, . . . , vn+1]), (12)

where here we have introduced the constant an ∈ R+ that
depends only on n for later convenience. Typically, an is taken
to be one, namely, an = 1, but in the present setting an can
be assigned a value equal to any real positive constant. For
an = 1 the coboundary operator δn is the dual of the boundary
operator ∂n+1, and for any value of an it satisfies

(δn f )[v0, . . . , vn+1] = an f (∂n+1[v0, . . . , vn+1]). (13)

The topological properties that the “boundary of the boundary
is null” stated in Eq. (6) implies the following analogous
algebraic property of the coboundary operator:

δn+1δn = 0. (14)

Given a basis for the simplices of a simplicial complex, the
coboundary operator δn−1 is represented by the matrix B̂[n],
which is a Nn × Nn−1 rectangular matrix of elements

B̄n(α, α′) = an(−1)p, (15)
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where α and α′ are the simplices

α′ = [v0, v1, . . . , vp−1vp+1, . . . , vn], (16)

α = [v0, v1, . . . , vn]. (17)

Therefore, we have that B̄[n] is simply related to the transposed
of B[n],

B̄[n] = anB�
[n]. (18)

Since the coboundary operator satisfies Eq. (14) we obtain

B̄[n+1]B̄[n] = 0, (19)

for every n > 0.

B. The coboundary operator and its dual

We introduce now a nontrivial “metric” induced by the
affinity weights wα > 0 of the simplices α of the simplicial
complex. Using a similar notation used in Grady and Polimeni
[70] we define the matrices G−1

[n] as the diagonal N[n] × N[n]

matrices having as diagonal elements the topological weights
of the n-simplices,

G−1
[n] (α, α) = wα. (20)

The matrices G−1
[n] are used to define a L2 norm between n-

cochains. In particular, indicating with f (1) and f (2) two n-
dimensional cochains, the L2 norm between the two cochains
is

〈 f (1), f (2)〉 =
∑
α∈Qn

wα f (1)
α f (2)

α = (f (1) )�G−1
[n] f (2). (21)

Based on this norm, the definition of B̄∗
[n] as the adjoint oper-

ator of B̄[n] is derived. Formally, for any n-cochain f and any
(n + 1)-cochain g, the adjoint operator B̄∗

[n] satisfies

〈g, B̄[n] f 〉 = 〈B̄∗
[n]g, f 〉. (22)

From this definition we deduce the explicit expression of B̄∗
[n]

in terms of the coboundary operator B̄[n] and the matrices G[n].
Indeed, given Eq. (22) we obtain

g�G−1
[n] B̄[n]f = g�(B̄∗

[n] )
�G−1

[n−1]f . (23)

Since this expression should hold for any arbitrary f and g,
we obtain

G−1
[n] B̄[n] = (B̄∗

[n] )
�G−1

[n−1], (24)

from which we get the explicit expression of the adjoint of the
coboundary operator given by

B̄∗
[n] = G[n−1]B̄

�
[n]G

−1
[n] . (25)

This operator [14] is sometimes referred to in the literature
as the “weighted boundary operator” [53,54]. In fact, if the
metric matrices are trivial, G[n] = I , the above expression
reduces to the boundary operator multiplied by an,

B̄∗
[n] = B̄�

[n] = anB[n]. (26)

C. Higher-order weighted Laplacians and Hodge decomposition

The graph Laplacian is a well-known operator that de-
scribes diffusion from nodes to nodes through links in a
network. Higher-order Laplacians L[n], also called Hodge
Laplacians [13,14,34], generalize the notion of graph Lapla-
cian to describe higher-order diffusion. For instance, if we
consider diffusion from links to links (n = 1), the Hodge
Laplacian can describe diffusion through nodes or through
triangles. On a d-dimensional simplicial complex the higher-
order Laplacian (or Hodge Laplacian) L[n] is defined for each
n = 0, . . . , d as

L[0] = Lup
[0],

L[n] = Ldown
[n] + Lup

[n] for n > 0, (27)

where Ldown
[n] and Lup

[n] describe diffusion from n-simplices to
n-simplices through (n − 1)-simplices and (n + 1)-simplices,
respectively. They are formally defined as

Ldown
[n] = B̄nB̄∗

n,

Lup
[n] = B̄∗

n+1B̄n+1. (28)

From the definition of the higher-order Laplacians [Eq. (27)]
and from Eqs. (28) it follows immediately that not only Lup

[n]

and Ldown
[n] commute, but they also obey the additional stronger

property that

Lup
[n]L

down
[n] = 0,

Ldown
[n] Lup

[n] = 0. (29)

This property implies that

kerLup
[n] ⊇ imLdown

[n] ,

kerLdown
[n] ⊇ imLup

[n]. (30)

Therefore any eigenvector of L[n] corresponding to a nonzero
eigenvalue λ > 0 is either a nonzero eigenvector of Lup

[n] or
a nonzero eigenvector of Ldown

[n] with the same eigenvalue λ.
This implies that the set of cochains Cn obeys the Hodge
decomposition, as we have

Cn = im(B̄[n] ) ⊕ ker(L[n] ) ⊕ im(B̄∗
[n+1]). (31)

For example, a n = 1 signal can be decomposed into a gradi-
ent flow, an harmonic flow, and a solenoidal flow.

D. The weighted Dirac operator

The topological Dirac operator [28,71–73] is an important
topological operator that can be interpreted as the “square
root” of the Laplacian and can be used to treat simultaneously
topological signals of different dimensions. On a weighted
simplicial complex we define the weighted topological Dirac
operators as the linear operator acting on the direct sum of all
the n-cochains defined in the system, i.e., acting in the linear
space ⊕d

n=1C
n and having as matrix representation the M × M

matrix where M = ∑d
n=1 N[n] of elements

Dα,α′ =
{

B̄∗
[n](α, α′) if nα′ = n = nα + 1,

B̄[n](α, α′) if nα = n = nα′ + 1.
(32)

In the case of a simplicial complex of dimension d = 2 includ-
ing nodes, links, and triangles, the weighted topological Dirac
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operator has dimension M × M, with M = N[0] + N[1] + N[2],
and a block matrix structure of the form

D =
⎛
⎝ 0 B̄∗

[1] 0
B̄[1] 0 B̄∗

[2]
0 B̄[2] 0

⎞
⎠. (33)

From the definition of the weighted topological Dirac operator
one concludes that the square of the Dirac operator is the
direct sum of the higher-order Laplacians

D2 = L[1] ⊕ L[2] ⊕ L[3] ⊕ · · · L[n]. (34)

This implies for a simplicial complex of dimension d = 2 that

D2 =
⎛
⎝L[0] 0 0

0 L[1] 0
0 0 L[2]

⎞
⎠. (35)

Moreover it follows that the weighted topological Dirac oper-
ator is self-adjoint,

D∗ = D. (36)

The eigenvalues λ of the weighted topological operators are in
absolute value equal to the singular values of the coboundary
operators of the simplicial complex under consideration.

E. Normalized higher-order Laplacians

Defining normalized Laplacians is a central theme in spec-
tral graph theory [74]. For graphs, the Hodge Laplacian L[0] =
B̄∗

[0]B̄[0] depends on the choice of suitable metric matrices. For
the choice of the metric matrices G[0] = I and G[1] = I , and
for a1 = 1, we obtain the unnormalized (or combinatorial)
Laplacian

L[0] = K[0] − A, (37)

where K[0] is the diagonal matrix having the degree of the
nodes as diagonal elements and where A is the weighted
adjacency matrix of the network. The normalized (weighted)
Laplacian can instead be obtained by considering the weights
of the links wi j as arbitrary (positive) values, the weight of
the nodes as given by the node strength, i.e., the sum of the
weights of the incident links, and imposing also that the metric
matrices given by Eq. (20),

G−1
[1] ([i, j], [i, j]) = wi j,

G−1
[0] ([i], [i]) = wi =

N[0]∑
j=1

wi j . (38)

This choice of the metric matrices, together with the choice
a1 = 1, implies that

L[0] = I − K[0]
−1A, (39)

where now K−1
0 = G[0] is the diagonal matrix having the in-

verse of the strength of the nodes as diagonal elements. This
normalized Laplacian is well known to have a real bounded
spectrum with eigenvalues 0 � λ � 2 (see discussion in [74]).
This implies that by considering the metric matrices given by
Eq. (38), but taking a1 = √

2, we obtain a Laplacian matrix
whose eigenvalues are nonnegative and not larger than one,

with

L[0] = 1
2 [I − K[0]

−1A]. (40)

One important question is whether we can follow similar
arguments to propose a normalized version of the higher-
order Laplacian. In general, proposing a normalized higher-
order Laplacian is an important problem in graph theory.
However, this issue has only been addressed in a few papers
until now (see, e.g., [14,34]). Here we show that with our
choice of topological weights given by Eq. (2) and Eq. (3), by
using metric matrices whose diagonal elements are given by
Eq. (20), the higher-order Hodge Laplacians are automatically
normalized provided that we choose

an = (n + 1)1/2, (41)

for any n up to the order of the simplicial complex. Under
these hypotheses, it can be shown that the eigenvalues of the
Hodge Laplacians are always in the interval [0,1] (see the
Appendix).

Note that the choice of topological weights proposed in
this work, Eq. (2) and Eq. (3), naturally generalizes to the
higher-order case the choice of weights that is usually adopted
for normalizing the graph Laplacian that, as discussed above,
assigns to nodes the sum of the weights of the incident links.

IV. HIGHER-ORDER SPECTRAL ENTROPY
OF SIMPLICIAL COMPLEXES

A. Definition of higher-order spectral entropy

In order to characterize the information content encoded in
the spectrum of networks and generalized network structures,
the spectral entropy, also called von Neumann entropy of
networks, has been introduced [56–61]. The spectral entropy
of a network is defined as the quantum mechanics von Neu-
mann entropy [75], where the density operator is taken to
be a semidefinite positive operator associated to the network
and having normalized trace. Therefore, typical choices for
the density operator are taken to be functions of the graph
Laplacian. Here we define the higher-order spectral entropy of
weighted simplicial complexes and use this quantity, together
with the associated higher-order relative entropy, in order to
evaluate the information content of the higher-order spectrum
of weighted simplicial complexes.

Given a simplicial complex of order d , we define the
higher-order spectral density ρn as

ρn = e−βL[n]

Zn
, (42)

where Zn = Tr[e−βL[n] ]. Note that for n = 0 this definition
reduces to the spectral density of networks proposed in [59].

The spectral entropy of order n, also called n-order von
Neumann entropy, is then defined as

Sn = −Tr[ρn ln ρn]. (43)

Note that here and in the following we choose for convenience
to use the natural logarithm, as is common practice in ma-
chine learning and statistical mechanics [78,79]. As usual for
the von Neumann entropy it is straightforward to derive the
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following compact form of Sn:

Sn = β〈λn〉 + ln Zn, (44)

where

〈λn〉 =
∑

i e−βλi (L[n] )λi(L[n] )

Zn
, (45)

and λi(L[n] ) denotes the generic ith eigenvalue of L[n]. It is
useful to recall that based on the Hodge decomposition, if
n > 0 the eigenvalues of the higher-order Laplacian L[n] can
be partitioned into the following: zero eigenvalues (denoted as
{λh}); non-zero eigenvalues of Lup

[n] (denoted as {λu}); nonzero
eigenvalues of Ldown

[n] (denoted as {λd}). In the case n = 0, in-
stead, the eigenvalues are either zero (harmonic eigenvalues)
or nonzero eigenvalues of Lup

[0] = L[0].

B. Spectral density and return time distribution

The adoption of Eq. (42) as a network density can be inter-
preted in terms of a higher-order diffusion process, as we will
discuss next. From this observation we will be able to derive
a higher-order relation between the entropy, the specific heat
and the temporal scales of higher-diffusion processes which
represent the higher-order version of the analogous relations
on networks [62]. Higher-order diffusion [25,26,31,32,63]
describes diffusion from n-simplices to n-simplices going
either though n − 1-simplices or n + 1-simplices. The dif-
fusion corresponding dynamics is dictated by the Laplacian
L[n] as described by the following system of differential
equations [26]:

Ẋ(t ) = −L[n]X(t ), (46)

where X (t ) is a column vector representing an n-cochain
and can be seen as a function describing the distribution of
information on the n-dimensional simplices of a simplicial
complex at time t . By solving the above equation and using
the spectral decomposition of the Hodge Laplacian, we can
express X(t ) as

X(t ) =
∑

λ

cλ(t )uλ, (47)

where uλ is the eigenvector associated to the eigenvalue λ of
L[n], and every cλ follows the temporal evolution

cλ(t ) = e−λt cλ(0). (48)

Let us suppose that a random walker starts a walk in the
network at a simplex α0. Then we will have

Xα (t ) =
∑

λ

cλ(0)e−λt uλ
α. (49)

We observe that at time t = 0 we have

Xα (0) = δα,α0 =
∑

λ

cλ(0)uλ
α. (50)

From Eq. (50) we derive that cλ(0) = uλ
α0

; thus, Xα (t ) can
be expressed as

Xα (t ) =
∑

λ

e−λt uλ
α0

uλ
α. (51)

Finally, the return time distribution on simplex α0 is ob-
tained as

Xα0 (t ) =
∑

λ

e−λt uλ
α0

uλ
α0

. (52)

Taking the average over all possible n-dimensional sim-
plices and using the normalization of the eigenvectors of L[n]

we obtain that return time probability p(t ) is given by

p(t ) = 1

N

∑
λ

e−λt . (53)

It follows that, classically, it is possible to interpret the
density operator ρn in terms of the average return time distri-
bution. Indeed, since Zn = ∑

λ e−βλ, if we interpret β as time
t , Zn can be seen as the return time distribution associated
to the higher-order diffusion of order n. By consequence,
the density ρn introduced in Eq. (42) tells how much each
eigenvalue contributes to the return time probability p(t ) for
t = β, and the spectral entropy tells how many eigenvalues
contribute significantly to the return time distribution. In the
analysis of the spectral entropy of a network it has been
recently proposed [62] to monitor the specific heat whose
local minima and maxima capture the characteristic scale of
diffusion on nodes and links. Here we propose to use the
higher-order specific heat Cn given by the derivative of the
higher-order spectral entropy

Cn = ∂Sn

∂β
, (54)

to monitor and to characterize the typical temporal scales of
higher-order diffusion on simplicial complexes.

C. Relative entropy

In quantum information theory [75] the von Neumann
relative entropy (or quantum Kullback-Leibler divergence)
between two densities operators ρ and σ acting over the same
space is defined as

KL(ρ‖σ ) = Tr[ρ(ln ρ − ln σ )]. (55)

Note that analogously to the classical Kullback-Leibler di-
vergence, the quantum relative entropy KL(ρ‖σ ) is not
symmetric. When associating density operators to networks,
the condition that ρ and σ should act on the same space
imposes that the number of nodes of the two considered net-
works must be the same. In particular, in Ref. [59] the spectral
relative entropy of networks has been studied to perform a
pairwise comparison of the layers of a multiplex network. In
our setting, as we will show in the remainder of this analysis,
the quantum relative entropy KL(ρ‖σ ) is suitable to perform
a comparison between density matrices constructed on higher-
order Laplacians starting from the weighted or the unweighted
version of the same data set (i.e., a data set in which the bare
affinity weights can be chosen to be heterogeneous, or instead
to be homogeneous and all equal to one).

When studying the spectral properties of simplicial com-
plexes, it is desirable to compare also the density operators
associated to Hodge Laplacians of different orders, with the
aim of revealing differences in the diffusion processes occur-
ring at different dimensions. However, the generalization of

034319-6



WEIGHTED SIMPLICIAL COMPLEXES AND THEIR … PHYSICAL REVIEW E 106, 034319 (2022)

Eq. (55) is not straightforward, as ρn and ρn+1 act on spaces
of different dimension.

To overcome the dimensional incompatibility, we propose
to consider the projected density operator ρ̂n+1,n given by

ρ̂n+1,n = B̄∗
n+1

e−βL[n+1]

Ẑn
B̄n+1, (56)

where Ẑn is the normalization constant given by

Ẑn = Tr[B̄∗
n+1e−βL[n+1] B̄n+1]. (57)

Using the projected density operator ρ̂n+1,n we can use the
quantum relative entropy to compare the densities operators
associated to different orders:

KL(ρ̂n+1,n||ρn) = Tr[ρ̂n+1,n(ln ρ̂n+1,n − ln ρn)]. (58)

This relative entropy can be also written as

KL(ρ̂n+1,n||ρn) = J (ρ̂n+1,n||ρn) − Ŝ(ρ̂n+1,n), (59)

where Ŝ(ρ̂n+1,n) is the von Neumann entropy associated with
the projected density operator ρ̂n+1,n and J (ρ̂n+1,n||ρn) is the
quantum cross-entropy,

Ŝ(ρ̂n+1,n) = −Tr[ρ̂n+1,n ln ρ̂n+1,n],

J (ρ̂n+1,n||ρn) = −Tr[ρ̂n+1,n ln ρn]. (60)

A straightforward calculation shows that we can express
Ŝ(ρ̂n+1,n) and J (ρ̂n+1,n||ρn) as

Ŝ(ρ̂n+1,n) = β〈λn,u↑〉 − 〈ln λn,u↑〉 + ln Ẑn.

J (ρ̂n+1,n||ρn) = β〈λn,u↑〉 + ln Zn, (61)

in which we have used the notation

〈λn,u↑〉 =
∑M

i=1 e−βλ(i)
n,u

(
λ(i)

n,u

)2

Ẑn
,

〈ln λn,u↑〉 =
∑M

i=1 e−βλ(i)
n,uλ(i)

n,u ln
(
λ(i)

n,u

)
Ẑn

, (62)

where M denotes the number of nonzero eigenvalues of
the Lup

[n] Laplacian. Note that while Ẑn only depends on the
nonzero spectrum of Lup

[n], Zn depends both on the nonzero
spectrum of Lup

[n] and to the nonzero spectrum of Ldown
[n] .

V. APPLICATION TO HIGHER-ORDER
COLLABORATION NETWORKS

A. The topological weights of higher-order
collaboration networks

Let Q be the set of simplices formed by the teams of
coauthors of the papers included in a collaboration network,
where p is the largest dimension of a simplex in Q. First, let us
work under the assumption that the higher-order collaboration
network is encoded in a simplicial complex of dimension
d = p. In this ideal hypothesis, the higher-order collaboration
network is a simplicial complexKp including all the simplices
belonging to Q, together with all their faces. We indicate with
mn(α) the number of papers written by the team of n + 1
coauthors forming the simplex α of dimension nα = n, and we
indicate with ωα a measure of the strength of the collaboration
of team of coauthors α ∈ Q. The aim is to define the correct

definition of the bare affinity weights ωα such that the topo-
logical weight [given by Eq. (3)] associated with each node
of the simplicial complex is equal to the number of papers
written by the corresponding author. With the definition of the
topological weight given by Eq. (3) it is easy to show that
since each n-simplex includes n faces of dimension n − 1, if
we want to enforce a topological weight of the nodes equal to
the number of paper written by the corresponding author, the
strength of the collaboration encoded by the simplex α ∈ Q is
uniquely defined as

ωα = mn(α)

nα!
. (63)

For instance the strength of a collaboration of a team formed
by two authors is just equal to the number of two-author
papers they have written together, while the strength of a
collaboration of a team of three authors is equal to the number
of three-author papers they have written together divided by
two, etc. (see Fig. 1).

Note that both the recursive equations Eq. (3) and Eq. (63)
are also perfectly defined nα′ = 0 and for nα = 0, thus allow-
ing one to consider also single-author papers.

Since in higher-order collaboration data p might be large,
for computational reasons it might be convenient to encode
the data in a simplicial complex Kd of dimension d strictly
smaller than p. In the special case in which d = 1 the col-
laboration network K1 is obtained, in which each pair of
nodes is connected if the linked authors have written a paper
together. The collaboration networkK1 retains only the nodes
and links of Kp and is referred to as the network skeleton of
Kp. Similarly, in the case d = 2, the simplicial complex K2,
will be considered, which is the 2-skeleton of Kp retaining
only the nodes, links, and triangles present in Kp.

Our goal is to define a proper measure of the strength of the
collaboration ωα associated to the simplices ofKd , so that the
topological weights defined recursively by Eq. (3) attribute to
each node a topological weight given by the number of the
paper they have coauthored.

In this case we want to recover the normalization proposed
in Ref. [68] for collaboration networks, where the link weights
are given by

ωα =
∑
α′⊃α

m1,n′ (α′)
n′ . (64)

Here m1,n(α′) indicates how many papers a team α′ of (n + 1)
coauthors, including the two authors of the link α have written
together.

In the general case in which the higher-order collaboration
network is the d skeleton Kd , we can generalize Eq. (64) in
the following way. Let mn,n′ (α′) denote the number of papers
written by the team represented by the n′-simplex α′ including
the n + 1 authors of the group of coauthors α, with n � n′.
A simple combinatorial calculation provides the strength of
collaboration of the simplex α ∈ Kd that ensures that the
topological weights defined in Eq. (3) are consistent with a
topological weight of the nodes that is equal to the number of
papers written by that author. In particular, for nα < d Eq. (63)
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FIG. 1. Examples of bare affinity weights (indicated in blue) and topological weights (indicated in black) for higher-order collaboration
networks captured by simplicial complexes of dimension d = 2. Nodes, labeled with capital letters, represent authors; a blue link indicates a
collaboration between two authors that coauthored a two-author paper; a filled triangle represents a collaboration among three authors leading
to at least one three-author paper. In panel (a) we consider the trivial case where a single article written by two coauthors is considered.
Panel (b) represents the case of a single article written by three coauthors, while panel (c) is a more general situation where three papers are
considered, each of which with a variable number of authors. In each of the studied cases, it can be verified that the topological weight of a
node given by the sum of the topological weights of the links incident to it is given by the number of papers written by that node (author).
From panel (c) it results that the topological weight of a link results in general from the sum of the topological weights of the triangles incident
to it and the bare affinity weight.

applies, while for nα = d we get

ωα = 1

d!

∑
α′⊇α

md,n′ (α′)θ (n′, d )(
n′
d

) , (65)

where θ (x) = 1 if x � 0 and θ (x) = 0 if x < 0
Figure 1 is an example helping to visualize the result of the

weight assignment. Starting from the left, the trivial case of
a single paper written by two coauthors is depicted. Then the
case of a paper written by three authors, followed by a more
general situation, are depicted. It is easily verified from case
(c) that the bare affinity weight of a link can be obtained by
subtracting the topological weight of the link by the sum of
the topological weights of the triangles incident to it.

B. Higher-order collaboration data set

In order to perform our analysis, we build our own collabo-
ration data set starting from a list of articles downloaded from
Scopus [76]. Specifically, we selected data and metadata of
articles whose metadata contained the expression “multilayer
network” and referred to five years (2017–2021). Only articles
published in scientific journals were selected, while papers
published in conference proceedings were excluded, for a total
of 686 articles. The original and processed data are avail-
able and can be downloaded from [77]. In view of studying
collaboration between authors, articles with only one author
were filtered out. This results in 2169 authors with at least
one collaboration. We encode the higher-order collaboration
data into a weighted simplicial complex of dimension d = 2
where the affinity weights are chosen according to Eq. (65)
for triangles (with n = d) and Eq. (63) nodes and links (with
n < d). Overall, the simplicial complex consists of 2169 ver-
tices, 5296 edges, and 9279 triangles.

As expected, the network skeleton of the simplicial com-
plex is a disconnected graph, reflecting the fact that there
might be isolated groups of collaborating authors. Since the
study of the von Neumann entropy can be interpreted in terms

of information diffusion through the simplicial complex, we
restrict our analysis to the simplicial complex originated by
the largest connected component of the network skeleton.
In Fig. 2 we show the network skeleton of the considered
simplicial complex that has a rich community structure. The
resulting simplicial complex has much smaller size than the
original data set and consists of 356 nodes, 1172 edges, and
2614 triangles.

C. Higher-order spectral entropy of the higher-order
collaboration network

In this section we reveal the information content encoded
in the higher-order spectrum of the simplicial collaboration
network by studying the higher-order spectral entropy and
the relative entropy. A numerical analysis was carried out
on the higher-order spectrum of both the weighted and the
unweighted version of the simplicial collaboration network.
In the unweighted simplicial complex all the affinity weights
are set to one, i.e., ωα = 1 for every simplex α.

In Fig. 3 the von Neumann entropy and its derivative are
plotted as functions of 1/β in logarithmic scale. The continu-
ous line represents the entropy, while the dotted line indicates
the specific heat. The first row shows the results obtained
for the unweighted network, and the second row shows those
obtained for the weighted network. Starting from the left, the
entropy of each order up to the order of the simplicial complex
(2 in this case) is plotted. From the picture, a multiscale
behavior of the entropy emerges from the observation of the
entropy of order 0 and 1. This is highlighted by the presence
of local minima/maxima in the derivative. More specifically,
while a plateaux with very shallow local minima and maxima
can be observed for order 0 and 1 in the unweighted network,
a more clear separation of timescales determined by two more
pronounced peaks is observed for the weighted case. These
different timescales are related to the mesoscale community
structure of the collaboration simplicial complexes and its
large scale topology. We note, however that this separation
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FIG. 2. Network skeleton of weighted collaboration simplicial complex. Nodes and edges are colored according to their modularity class.
Size of nodes is proportional to their weighted degree. Edge thickness is proportional to the edge weight. The network is plotted with the
Gephi software [80] using the ForceAtlas2 visualization algorithm [81]. Different colors correspond to distinct communities computed using
the Louvain algorithm [82] by setting the resolution parameter to 1 [83]. The modularity score associated to the partition is 0.873. Here for
clarity we represent the network as unlabeled. For a labeled version of the network see [77].

of timescale is not apparent from the analysis of the spectral
entropy of order 2, and this is explained by the fact that differ-
ent communities typically are formed by triangles connected
to triangles only through nodes, which does not allow any
diffusion from triangles to triangles through links.

Figure 4 displays the relative entropy between the weighted
and unweighted version of the collaboration complex at each
order. It emerges that the weights are responsible for changing
significantly the diffusion properties at large timescales, as
revealed by the larger values of the relative entropy for small
values of 1/β.

Finally, in Fig. 5, the relative entropy between the network
density of order 1 and 2 and their projections onto the 0-chains
and 1-chains are shown. The analysis is performed both on
the weighted and the unweighted version of the simplicial
complex as well. This last analysis reveals a very rich structure
of local maxima and minima when the spectral properties of
order 0 and 1 are compared, thus demonstrating the nontrivial
effect of studying the higher-order diffusion properties of the
simplicial complex. Indeed, while ρ0 is only dependent on

L[0], which captures the diffusion from nodes to links, ρ1,0

is dependent on both Ldown
[1] and Lup

[1], which describe diffusion
from links to links through nodes and through triangles, re-
spectively. Therefore the relative entropies KL(ρ̂1,0||ρ0) and
its weighted version KL(ρ̂W

1,0||ρW
0 ) are able to capture the

effect of coupling diffusion processes occurring on different
dimensions. Since the considered collaboration data set is a
simplicial complexes of dimension d = 2, when ρ1 and ρ̂2,1

are compared we only see a decreasing behavior of the relative
entropy with increasing values of 1/β.

VI. APPLICATION TO THE NETWORK GEOMETRY
WITH FLAVOR

In this section we study the higher-order spectrum of
the weighted simplicial complex model called “Network
Geometry with Flavor” [64,65,67], which is a very interest-
ing benchmark to validate our proposed methodology. The
analysis follows the same steps of that carried out on the
collaboration complex described in the previous section.
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FIG. 3. Von Neumann entropy of order 0 (a, c), 1 (b, d), and 2 (e, f) of collaboration network as a function of 1/β (β is the density
parameter). Purple lines refer to the unweighted version of the network. Yellow lines refer to the weighted version. Dotted lines represent the
derivative of the entropy with respect to the logarithm of β.

A. Network geometry with flavor as a model
of weighted simplicial complex

“Network Geometry with Flavor” (NGF) [64,65,67] is
a model of weighted growing simplicial complexes which
generates simplicial complexes whose network skeleton is
small-world, modular, and hyperbolic. The model is very
comprehensive and general and admits several important ex-
tensions [1,63,66]. Here we focus on its original formulation
for a d-dimensional simplicial complex in which each node
j is associated a feature called energy ε j drawn from a dis-
tribution g(ε) that does not change in time. The energy εα

associated to every simplex α of dimension n > 0 is given by
the sum of the energy of its nodes,

εα =
∑
j⊂α

ε j . (66)

The fitness ηα of simplex α is given by

ηα = e−β̂εα , (67)

where β̂ � 0 is a tunable parameter of the model. (Note that
for β̂ = 0 all fitnesses are the same, ηα = 1 for any simplex
α). Therefore for every simplex α of dimension n > 0 they
obey

ηα =
∏
j⊂α

η j, (68)

where η j indicates the fitness associated to the generic node j
belonging to the simplex α. The NGF is a model for a growing
d-dimensional simplicial complex defined as follows. Starting
at time t = 1 from a single d-simplex, at each time a new
d-dimensional simplex is added to the network. The new

FIG. 4. Relative entropy between weighted and unweighted simplicial complexes of collaboration data as a function of 1/β. Panels (a),
(b), and (c) depict the relative entropy between the unweighted and weighted densities (ρn and ρW

n , n = 0, 1, 2) for the Hodge Laplacian of
order 0, 1, 2, respectively. Purple lines represent the quantity KL(ρn||ρW

n ); yellow lines represent the quantity KL(ρW
n ||ρn).
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FIG. 5. Each plot depicts the relative entropy KL(ρ̂n,n−1||ρn−1), for n = 1 (a, c) and n = 2 (b, d) as a function of 1/β. Purple curves refer
to the unweighted collaboration network; yellow curves refer to the weighted version.

simplex has a single new node and it is attached to an existing
(d − 1)-dimensional face α chosen with probability


α = ηα[1 − s + skd,d−1(α)]

Ẑ
, (69)

where s ∈ −1, 0, 1 is a parameter called flavor, kd,d−1(α)
indicates how many simplices of dimension d are incident
already to the face α, and Ẑ is the normalization con-
stant. Here we focus on NGFs with flavor s = −1 and
dimension d = 2 with energy distribution g(ε) = 1/10 for
ε ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. These are hyperbolic man-
ifolds (random Farey graphs) that as a function of the
parameter β̂ undergo a topological transition from a small
world network for low values of β̂ to a finite dimensional
network for large values of β̂ [67]. In other words, the diam-
eter of the network skeleton grows only logarithmically with
the network size for small values of β̂, while it grows as a
power of the network size for large values of β̂ (see Fig. 6 for
visualization of instance with β̂ = 0 (small world topology)
and with β̂ = 5, 10 [in the finite (Hausdorff) dimensional
regime)].

B. Higher-order entropy of network geometry with flavor

As the entropy can be interpreted as a quantity describing a
mechanism of diffusion of information through the network, it
is relevant to compare the behavior of this quantity computed
at different orders. We have considered both an unweighted

and a weighted version of the NGF model. By an unweighted
version of the NGF we indicate the case in which each simplex
has bare affinity weights all equal to 1, ωα = 1, for every
simplex α of the simplicial complex. In other words, in the
unweighted version of the NGFs the bare affinity weights are
independent from the fitness. On the contrary, the weighted
version of the NGF indicates the case in which the bare
affinity weights are given by the simplices fitness ωα = ηα .
In both the weighted and the unweighted version of NGFs the
topological weights are calculated according to Eq. (3).

First, we calculated the higher-order spectral entropy and
the higher-order specific heat of NGFs of flavor s = −1 and
dimension d = 2. This allows us to characterize the typical
temporal scale of higher-order diffusion processes as a func-
tion of their order n.

Figure 7 shows the higher-order spectral entropy of order
0, 1, and 2 and the corresponding higher-order specific heat
as functions of 1/β for the unweighted NGF with s = −1,

d = 2, and β̂ ∈ {0, 5, 10}; Fig. 8 refers to the weighted NGF
plotted here only for the relevance cases β̂ ∈ {5, 10}. All
the simulations are performed on simplicial complexes of
N = 200 nodes. Moreover, results from Figs. 7 and 8 were
obtained by averaging the results obtained over 100 realiza-
tions of the NGFs. From Figs. 7 and 8 we clearly notice that
diffusion at different order can have different temporal scales,
indicated by the local maxima and minima of the higher-order
specific heat. Moreover, it emerges that taking into account the
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FIG. 6. Visualization of the network skeleton of the NGF with flavor s = −1, dimension d = 2 and β̂ = 0 (a), β̂ = 5 (b), β̂ = 10 (c). The
color of the nodes and the links indicate their fitness value.

FIG. 7. Entropy computed on the unweighted version of NGF with 200 nodes and flavor s = −1 as a function of the reciprocal of the
density parameter 1/β varying logarithmically in the interval [10−4, 102]. From top to bottom, the von Neumann entropy of order 0 (a–c),
1 (d–f), and 2 (g–i) is represented with continuous lines. Dashed lines depict the derivative of the corresponding entropy with respect to the
logarithm of the density parameter β. Each column corresponds to a different value of the model parameter β (from left to right, β = 0, 5, 10).
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FIG. 8. Entropy computed on the weighted version of NGF with 200 nodes and flavor s = −1 as a function of the reciprocal of the density
parameter 1/β varying logarithmically in the interval [10−4, 102]. From top to bottom, the von Neumann entropy of order 0 (a, b), 1 (c, d), and
2 (e, f) is represented with continuous lines. Dashed lines depict the derivative of the corresponding entropy with respect to the logarithm of
the density parameter β. Each column corresponds to a different value of the model parameter β (from left to right, β = 5, 10).

fitness of the simplices as the bare affinity weights of the dif-
fusion dynamics, clearly allows one to establish characteristic
scales of the higher-order diffusion dynamics that are more
clearly distinguished and well defined, since the peaks of the
specific heat are more narrow in the weighted case.

Figure 9 depicts the quantum relative entropy between the
weighted and the unweighted version of the NGF simplicial
complex for β̂ = 5. This quantity generally follows a de-
creasing behavior, reflecting the fact that the weights impact
significantly on the diffusion properties of the complex at
large timescales. Interestingly, at order 0, Fig. 9 (a) highlights

that the quantum relative entropy is not monotonic, but admits
a local minimum and a local maximum.

In Fig. 10 and Fig. 11 we plot the quantum relative entropy
calculated respectively on the unweighted and weighted ver-
sion of the NGF with flavor s = −1, dimension d = 2, and
β̂ ∈ {0, 5, 10} (for the unweighted case) and β̂ ∈ {5, 10} (for
the weighted case). Interestingly the effect of changing β̂ is
noticeable from the study of the quantum relative entropy.
Indeed the quantum relative entropy KL(ρ̂1,0||ρ0) develops a
nonmonotonicity for β̂ = 5, 10 in the unweighted case, and a
very well-defined peak for the weighted case.
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FIG. 9. Quantum relative entropy between weighted and unweighted NGF complex having 200 nodes, flavor s = −1 and β̂ = 5 as a
function of the reciprocal of the density parameter 1/β varying logarithmically in the interval [10−3, 102].

VII. CONCLUSIONS

Here we propose to study weighted simplicial complexes
with a precise convention for the weights of the simplices to
overcome the limitation of simplicial complexes to capture
arbitrary higher-order network data. The advantage of the
proposed mathematical framework is that the weighted sim-
plicial complexes have a rich higher-order structure that can
be probed with higher-order weighted and normalized Hodge
Laplacians. The spectrum of the higher-order Hodge Lapla-

cians allows one to use tools of information theory to quantify
the information content included in the higher-order spectrum
of the simplicial complex and the properties of higher-
order diffusion processes. Indeed, we propose the notion of
higher-order spectral entropy and we show that this quantity
can be used to characterize the typical temporal scales of
higher-order diffusion. Moreover, the higher-order relative
spectral entropy allows us to compare the information content
encoded in the spectrum of Hodge Laplacians of different
dimensions.

FIG. 10. Relative entropy KL(ρ̂n||ρn−1) computed on the unweighted version of NGF with 200 nodes, flavor = −1, as a function of 1/β,
where β is the density parameter. Starting from the left, (a) and (d) correspond to the model parameter β = 0, (b) and (e) to β = 5, and (c) and
(f) to β = 10.
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FIG. 11. Relative entropy KL(ρ̂n||ρn−1) computed on the weighted version of NGF with 200 nodes, flavor = −1, as a function of 1/β,
where β is the density parameter. Panels (a) and (c) correspond to the model parameter β = 5, and (b) and (d) to β = 10.

The proposed approach is here tested on a real higher-order
collaboration data set that is extracted from bibliometric data
by adopting a procedure to weight the higher-order collabora-
tions that is based on an extension of a widely used convention
adopted for simple networks.

Finally the approach is also applied to the weighted ver-
sion of the simplicial complex model “Network Geometry
with Flavor.” The analysis reveals a the dependence of the
higher-order diffusion properties on the simplicial complex as
a function of a control parameter. This give an insight into how
the higher-order spectral properties of the simplicial complex
depend on its underlying topology.

We believe that the proposed choice of weights for sim-
plicial complexes, and the associated normalized Hodge
Laplacian, will constitute a very useful tool to capture the
structure of higher-order network data. In addition, since
Hodge Laplacians are increasingly used to capture the dynam-
ics of topological signals on simplicial complexes, we believe
that the proposed normalized and weighted Hodge Laplacians
would be a very useful tool to describe the dynamics of topo-
logical signals on weighted simplicial complexes.

APPENDIX: NORMALIZED HIGHER-ORDER
LAPLACIANS

Due to the Hodge decomposition of L[n] the nonzero eigen-
values of L[n] are either nonzero eigenvalues of Ldown

[n] or
nonzero eigenvalues of Lup

[n]. Moreover, we note that Lup
[n] and

Ldown
[n+1] are isospectral, i.e., they have the same nonzero eigen-

values. It follows that to demonstrate that for a given choice of

an and the metric matrices G[n] all the higher-order Laplacians
L[n] are normalized, it can be equivalently demonstrated that
under these conditions every higher-order up Laplacian Lup

[n] is
normalized, independently on the value of n with 0 � n < d .
In order to do that we first notice that Lup

[n] given by

Lup
[n] = G[n]B̄

∗
[n+1]G

−1
[n+1]B̄[n+1] (A1)

is isospectral to the symmetrically normalized higher-order
Laplacian Lup,symm

[n] given by

Lup,symm
[n] = G1/2

[n] B̄∗
[n+1]G

−1
[n+1]B̄[n+1]G

1/2
[n] . (A2)

The spectrum of Lup,symm
[n] can be studied by considering the

Rayleigh quotient [74]. Given a generic column vector X de-
fined on the n-simplices of the considered simplicial complex,
then the Rayleigh quotient of the symmetrically normalized
higher-order Laplacian is given by

RQ(Lup,sym
[n] , X ) = X T Lup,symm

[n] X

X T X
, (A3)

and we have for every eigenvalues λ of Lup,symm
[n]

0 = min
X

RQ
(
Lup,sym

[n] , X
)

� λ � max
X

RQ
(
Lup,sym

[n] , X
)
. (A4)

Let us use the following notation. With wτ (r,s) is the topolog-
ical weight of the n + 1-simplex τ (r, s) incident to a chosen
pair of n-simplices r and s that are up adjacent. With sr we
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indicate the sum of the weights of the n + 1-simplices incident
to the n-simplex r,

sr =
∑
τ⊃r

wτ . (A5)

We the introduce the N[n] × N[n] matrices A[n]
↑↓ and A[n]

� . The

matrix A[n]
↑↓ has elements A[n]

↑↓(r, s) = 1 if the n-simplex r
is up adjacent to the n-simplex s and r and s have the
opposite orientation with respect to the common (n + 1)-
simplex τ (r, s); otherwise a[n]

↑↓(r, s) = 0. Similarly, A[n]
� has

elements A[n]
� (r, s) = 1 if an only if r and s are up ad-

jacent with the same orientation with respect to τ (r, s)
and otherwise has elements a[n]

� (r, s) = 0. Note that given
the definition of the matrices A↑↓ and A�, for any choice
of a pair of simplices r and s we cannot have si-
multaneously A[n]

↑↓(r, s) = 1 and A[n]
� (r, s) = 1, therefore we

have

|A[n]
↑↓(r, s) − A[n]

� (r, s)| � 1. (A6)

By setting Y = G1/2
[n] X the Rayleigh quotient can be ex-

pressed as

RQ(Lup,sym
[n] , X ) = Y T L̂up

[n]Y

Y T G−1
[n]Y

, (A7)

where L̂up
[n] is the N[n] × N[n] matrix of elements

L̂up
[n](r, s)

= 1

n + 2
[s[n]

r δ̃r,s − wτ (r,s)(A
[n]
↑↓(r, s) − A[n]

� (r, s))]. (A8)

We can easily show that

Y �L̂[n]Y �
∑

r

srY
2

r . (A9)

Indeed, by using Eq. (A6) and the inequality 2|xy| � x2 + y2

we obtain

|(A[n]
↑↓(r, s) − A[n]

� (r, s))YrYs| � YrYs � 1
2

[
Y 2

r + Y 2
s

]
. (A10)

Therefore we obtain

Y �L̂[n]Y =
∑
r,s

YrL̂up
[n]Ys

� 1

n + 2

(∑
r

srY
2

r +
∑
r,s

wτ (r,s)Y
2

r

)
. (A11)

Now we note that since every n + 1-simplex τ incident to r is
also incident to other n + 1 n-simplices, we obtain∑

s

wτ (r,s) = (n + 1)sr . (A12)

Using this relation in Eq. (A11), Eq. (A9) follows directly.
Finally, using the definition of the matrix G−1

[n] given by
Eq. (20) with topological weights given by Eq. (3), since the
bare affinity weight satisfy ωα � 0 for every simplex α, it
follows immediately that

Y �G−1
[n]Y �

∑
r

srY
2

r . (A13)

Therefore, using Eq. (A9) and Eq. (A13) we obtain that the
Rayleigh quotient, and hence the spectrum of Lup,symm

[n] , is
bounded by one. As a consequence of this, the eigenvalues
of λ of Lup

[n] satisfy

0 � λ � 1. (A14)

This concludes the proof that the spectrum of the higher-order
Laplacian L[n] is normalized and has an upper bound one, for
any order n, provided that the topological weights are chosen
according to Eq. (3).
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