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Basic reproduction number of epidemic models on sparse networks
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The basic reproduction number R0 is a standard indicator of infection control in epidemiology. Although R0

has been studied extensively for deterministic epidemic models, it has not been formulated accurately for models
adopting network structures. Here, we extend a four-compartment model that includes commonly used epidemic
models to a Markov process on networks. By examining the Markov process in detail, we derive a canonical
formula for R0 involving two probability values. Numerical calculations show that the derived formula is a better
approximation than the conventional formula when the network is very sparse. We propose this as a standard
formula for controlling infections that can only be transmitted through intimate contact, where contacts between
individuals can be described as a sparse network.
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I. INTRODUCTION

Despite advances in medical science and public health,
infectious diseases pose serious threats to humanity, as exem-
plified by the outbreaks of emerging infectious diseases such
as SARS, MERS, and COVID-19 [1,2]. In epidemiology, the
basic reproduction number R0 is an important indicator of the
transmission potential of infectious diseases [3–6]. R0 gives
the average number of secondary cases for a typical infection
in a completely susceptible population. When R0 > 1, the
infection can spread in the host population. By contrast, when
R0 < 1, the infection does not spread. Higher values of R0

indicate epidemics that are difficult to control, and infection
prevention measures are focused on reducing R0. The features
of R0 have been investigated thoroughly for compartmental
or mean-field models based on ordinary differential equa-
tions [3–6]. Despite the fact that human contact networks are
a key factor in the spread of infection [7,8], no unified formula
for R0 has been obtained for the epidemic models on networks
[9–13].

In this paper, we consider an SEIRS model with four
compartments—susceptible (S), exposed (E), infectious (I),
and recovered (R)—that encompasses several commonly used
epidemic models, and we investigate the impact of population
disorder as represented by a network on the spreading pro-
cesses. We assume a network that is sparse and has no loops.
By examining the stochastic process of this model in detail,
we clarify the importance of two probability values, c1 and c2,
defined below. Consider a pair of individuals i and j. When an
infection transmission occurs from individual j to individual
i, individual i recovers before individual j with probability
c1 [Fig. 1(b)]. By contrast, when an infection transmission
occurs from individual i to individual j, individual i recovers
before individual j with probability c2 [Fig. 1(c)]. We derive
a formula for R0 based on c1 and c2 for an SEIRS model
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on networks. This approach better approximates the number
of secondary infections, which is crucial given that neighbors
with waned immunity can be reinfected.

The remainder of this paper is organized as follows. Sec-
tion II redefines the SEIRS model as a Markov process on
networks. Section III presents a method for approximating the
basic reproduction number for the SEIRS model on networks.
Section IV compares the theoretical results with numerical
calculations for three types of networks. Section V discusses
the results and their implications.

II. MODEL

Here, we consider the SEIRS model. A susceptible individ-
ual is not infected and not immune, and an exposed individual
is infected but is in the latent noninfectious period. An
infectious individual has completed the latency period and
is infectious, and a recovered individual is immunized af-
ter recovering. The current model considers the process
of returning from R to S, assuming that immunity is lost
over time. Let S, E , I , and R be the populations of
susceptible, exposed, infectious, and recovered individuals,
respectively. In the framework of a deterministic ordi-
nary differential equation model, the SEIRS model is as
follows,

dS(t )

dt
= −βS(t )I (t ) + ωR(t ),

dE (t )

dt
= βS(t )I (t ) − σE (t ),

dI (t )

dt
= σE (t ) − γ I (t ),

dR(t )

dt
= γ I (t ) − ωR(t ), (1)

where β represents the rate of transmission between a sus-
ceptible and an infectious individual, exposed individuals
acquire infectivity at the rate σ (moving to I), infectious
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FIG. 1. Illustration of the calculation of probabilities c1 and c2 in
terms of the rates of infection transmission σ , γ , and ω between indi-
viduals in susceptible (S), exposed (E), infectious (I), and recovered
(R) states. Consider a pair of individuals i, j who become I or E as
a result of infection transmission between them. (a) shows the rates
of transition between states E, I, R, and S. (b) shows the processes
required for a newly exposed individual i to recover and become
susceptible again before the original infectious individual j recovers.
The probability of each process is shown on the right-hand side
of the corresponding arrow. The product of the three probabilities
gives probability c1 in Eq. (12). (c) shows the processes required
for the original infectious individual i to recover and become sus-
ceptible again before a newly exposed individual j recovers. There
are multiple possible paths, and summing their probabilities yields
probability c2 in Eq. (16). The lightly shaded arrows indicate the
process by which the I-S pair becomes I-E (i.e., infection occurs),
and the probability that this occurs is given by Eq. (11) if there are
no other infectious individuals adjacent to individual i. In the main
text, we calculate the average number of secondary infections from
individual j, indicated by the shaded circles.

individuals recover at the rate γ (moving to R), and recov-
ered individuals lose immunity at the rate ω (moving to S).
Although several studies have used β/N (where N is the
total population) instead of β in Eq. (1) [3–6], we adopt this
form to facilitate the introduction of the network structure,
setting β to be the rate at which an infectious individual
infects a neighboring susceptible individual. Here, we as-
sume that the outbreak occurs on a short timescale (i.e., that
the epidemic dynamics is substantially faster than the demo-
graphic dynamics). Thus, births and deaths are neglected, and
therefore the total population N = S(t ) + E (t ) + I (t ) + R(t )
remains constant. As summarized in Table I, the model repre-
sented as Eq. (1) includes various commonly used models as
limits.

TABLE I. Several popular models expressed as parameter limits
of Eq. (1). c1 and c2 are the probability coefficients derived in this
paper.

Model σ ω c1 c2

SIS → ∞ → ∞ 1/2 1/2

SEIS (0,∞) → ∞ 1
2

σ

σ+γ
1 − 1

2
σ

σ+γ

SIRS → ∞ (0,∞) 1
2

ω

ω+γ

1
2

ω

ω+γ

SIR → ∞ → 0 0 0
SEIR (0,∞) → 0 0 0

For the model in Eq. (1), the basic reproduction number
is [4]

R0 = β

γ
N. (2)

This is because the average length of the infectious period
is 1/γ , and the rate of new infections during the infectious
period is βN . A more rigorous method for calculating R0

uses the next-generation matrix [3,14,15]. Note that Eq. (2)
is independent of σ and ω. If the population is well mixed, the
above statement is adequate. In reality, however, individuals
are in contact with only a very small portion of the entire
population. A simple way to model such a situation is to
describe human interactions as a network that is relatively
sparse [16]. Given a population of N individuals, the network
is represented using the N × N adjacency matrix in which
entry (i, j) represents the link between individuals i and j,
as follows:

Ai j =
{

1 if there is a link between i and j,
0 otherwise. (3)

Here, we assume that the network is undirected (Ai j = Aji)
and that the weights of the connections are uniform. In this
case, the degree of individual i is defined as

ki =
N∑

j=1

Ai j, (4)

and the average degree of the network is given as

〈k〉 = 1

N

N∑
i=1

N∑
j=1

Ai j . (5)

When the SEIRS model given by Eq. (1) is extended to a
population network of size N , the 4N -state Markov process
should be considered [17]. This is because each individual is
in one of the four compartments (S, E, I, R). Individuals in
compartments E, I, and R independently transition to com-
partments I, R, and S at rates σ , γ , and ω, respectively, as
shown in Fig. 1(a).

III. APPROXIMATION THEORY

By applying the conventional individual-based mean-field
approximation [7,17], we obtain approximated differential
equations instead of Eq. (1),

d pS (i, t )

dt
= −β

N∑
j=1

Ai j pS (i, t )pI ( j, t ) + ωpR(i, t ),

d pE (i, t )

dt
= β

N∑
j=1

Ai j pS (i, t )pI ( j, t ) − σ pE (i, t ),

d pI (i, t )

dt
= σ pE (i, t ) − γ pI (i, t ),

d pR(i, t )

dt
= γ pI (i, t ) − ωpR(i, t ), (6)

where pS (i, t ), pE (i, t ), pI (i, t ), and pR(i, t ) are the probabil-
ities that individual i is in states S, E, I, and R, respectively.
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FIG. 2. Comparison of theoretical and numerical calculations for the following networks: (a) two regular graphs with k = 4 (solid lines)
and k = 20 (dotted lines); (b) random networks with 5000 nodes having degree 2 and 5000 nodes having degree 6, where the degree correlation
is r = 0.2 (dotted lines), 0 (solid lines), and −0.2 (dashed lines); (c) Barabási-Albert network with 〈k〉 = 4. We set N = 10 000 and γ = 1.
The graphs in the top row plot the theoretical calculated value of R0 as a function of β/γ . Here, the black curve corresponds to R0 = kβ/γ

as obtained by Eq. (10). The purple, green, blue, and orange curves represent Eq. (21) or (20) for SIS, SEIS, SIRS 1, and SIRS 2, respectively,
where the values of c1 and c2 are as listed in Table II. The graphs in the middle row plot the relative frequency of infectious individuals (〈I〉/N)
as a function of β/γ by numerical simulation. The graphs in the bottom row plot the coefficient of variation Std(I )/〈I〉, the maximum of which
corresponds to the epidemic threshold. Here, the long downward arrows represent the epidemic thresholds βc given by Eq. (22), and the short
downward arrows represent those given by Eq. (25); these values are likewise shown in Table II. Note that in the middle graph of (a), the results
for SEIS and SIRS 1 with k = 20 nearly overlap.

By performing a stability analysis of the disease-free state, the
2N-dimensional Jacobi matrix of Eq. (6) can be obtained,

J =
(−σ I βA

σ I −γ I

)
. (7)

where I is the N-dimensional unit matrix. Then, by dividing
the Jacobi matrix into the parts related to infections and the
rest of the transitions

J = T − � =
(

0 βA
0 0

)
−

(
σ I 0

−σ I γ I

)
, (8)

the next-generation matrix can be constructed [7,17],

T �−1 = β

γ

(
A A
0 0

)
. (9)

Thus, the basic reproduction number would be calculated as
follows,

R0 = β

γ
�1,A, (10)

where �1,A is the largest eigenvalue of the adjacency matrix
A. For a complete graph (Ai j = 1 for all i, j), Eq. (10) is
equivalent to Eq. (2). In what follows, we derive a deviation
from this approximation for the infection-spreading process
in sparse networks. Consider a pair consisting of neighboring
individuals i and j who are susceptible and infectious, re-
spectively. The probability that individual i becomes exposed
before individual j recovers is

p�1 = β

β + γ
. (11)

Immediately after this infection occurs, the pair is in the state
shown at the top of Fig. 1(b). The probability that individual
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i recovers and becomes susceptible again before individual j
recovers is

c1 = 1

2

σ

σ + γ

ω

ω + γ
, (12)

because three independent events must occur, as shown in
Fig. 1(b). The values of c1 for some well-known models are
summarized in Table I. Assuming that individual i has no
other infectious neighbors, it is possible for individual j to
infect individual i again with a probability of

p�2 = c1

(
β

β + γ

)2

. (13)

In the generalized form, the probability that individual i is
repeatedly infected at least h times is

p�h = ch−1
1

(
β

β + γ

)h

. (14)

Thus, we can compute the average number of times a neighbor
is infected by a focal node as follows:

h̄ =
∞∑

h=1

h(p�h − p�h−1) =
∞∑

h=1

p�h

= β

β(1 − c1) + γ
. (15)

Conversely, consider the case of infection from individual
i to j. As the exposed individual j can cause infection in
k j − 1 individuals other than individual i, the average num-
ber of secondary infections is (k j − 1)h̄. In addition, there
is a possibility of reinfection if individual i has recovered.
If we approximate that individual i has no other infectious
neighbors, the probability that this neighbor recovers before
individual i can be calculated as follows:

c2 = 1

2

σ

σ + γ

ω

ω + γ
+ γ

σ + γ

(
σ

σ + ω

ω

ω + γ
+ ω

σ + ω

)
.

(16)

The derivation of Eq. (16) is illustrated in Fig. 1(c), and the
values of c2 for some well-known models are given in Table I.
Clearly, c1 � c2. If there is no recovery stage (ω → ∞), c1 +
c2 = 1, and if there is no exposure stage (σ → ∞), c1 = c2.
The average number of times the infection is transferred back
to the source neighbor is c2h̄. By summing the above results,
we obtain the average number of infections from individual j
as

n j
infection = (k j − 1 + c2)

β

β(1 − c1) + γ
. (17)

Now, to calculate the basic reproduction number, we de-
velop a new individual-based mean-field approximation using
Eq. (17). The average number of times that infectious individ-
ual j infects one of its neighbors is approximated by dividing
Eq. (17) by k j :

n j
infection

k j
� β[1 − (1 − c2)/k j]

β(1 − c1) + γ
. (18)

Here, we do not specify which neighbor is the original source
of infection but approximate it by a uniform distribution.

Thus, the average number of infections from individual j to
individual i can be approximated by

Bi j = β[1 − (1 − c2)/k j]

β(1 − c1) + γ
Ai j, (19)

which provides the next-generation matrix. Clearly, Bi j �
(β/γ )Ai j , and Bi j = (β/γ )Ai j if c1 = c2 = 1. Thus, the basic
reproduction number is given by

R0 = β

γ
�1,B, (20)

where �1,B is the largest eigenvalue of Bi j .

IV. EXAMPLES

A. Regular graph

As a simple example, we consider the case of a regular
graph in which all nodes are of the same degree, ki = k. In
this case, it is apparent that (1, 1, . . . , 1)T is an eigenvector of
Bi j , and according to the Perron-Frobenius theorem, it gives
the largest eigenvalue. Thus, the basic reproduction number is
given as

R0 = β(k − 1 + c2)

β(1 − c1) + γ
, (21)

and the epidemic threshold (i.e., β satisfying R0 = 1) is
therefore given as

βc = γ

k − 2 + c1 + c2
. (22)

In the limit of large k, we obtain R0 = kβ/γ , which is con-
sistent with the result from Eq. (10). If k is finite, R0 and
βc depend on c1 and c2. In the case of k = 2, for SIR and
SEIR (c1 = c2 = 0), βc diverges to infinity, which implies that
the infection cannot spread. This is consistent with the fact
that a disease cannot spread when k < 2. The top graph in
Fig. 2(a) shows plots of Eq. (21) for four cases: SIS, SEIS,
and two types of SIRS (short and long immunity duration),
as summarized in Table II. The results for k = 20 show that
the difference between models is small for large k; thus,
Eq. (10) is acceptable when the network is not sparse. SIS
and SEIS have the same epidemic threshold βc = γ /(k − 1)
because c1 + c2 = 1, but they have different values of R0,
in contrast to the results from the deterministic model. For
SIRS, c1 = c2, and this value increases with ω. Thus, the
longer the period of R, the smaller R0 becomes, and the
larger βc becomes. To validate the above theoretical results,
we performed numerical calculations of the Markov process
on a network with N = 10 000 [the middle graph in Fig. 2(a)].
Here, the network was built using a configuration model that
is designed to eliminate self-loops and multilinks [18]. The
Gillespie algorithm was used for the infection simulation [19],
and the average was taken over 1010 Monte Carlo steps, where
a new infection was introduced every time all infections be-
came extinct. To estimate the epidemic threshold numerically,
we plotted the coefficient of variation Std(I )/〈I〉, which is
the standard deviation of the number of individuals infected
divided by the average [bottom graph in Fig. 2(a)]. The maxi-
mum of Std(I )/〈I〉 is considered to correspond to the epidemic
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TABLE II. Parameters (σ , ω, c1, c2) and epidemic threshold (βc) for the four types of compartment models shown in Table I. N = 10 000
and γ = 1. Here, β (RG4)

c and β (RG20)
c represent βc values for a regular graph with k = 4 and k = 20, respectively; β (2,6+ )

c , β (2,6)
c , and β (2,6− )

c

are those for networks having two degrees (k = 2 and k = 6), where r = 0.2, r = 0, and r = −0.2, respectively; and β (BA)
c is that for the

Barabási-Albert network with 〈k〉 = 4. The upper rows show the theoretically determined threshold [Eq. (20) or (22)] and the lower rows show
the numerically estimated value based on the maximum of coefficient of variation Std(I )/〈I〉. The figures in parentheses are calculated by
Eq. (25). The bottom line shows the results using the conventional formula, Eq. (10).

Model σ ω c1 c2 Threshold β (RG4)
c β (RG20)

c β (2,6+ )
c β (2,6)

c β (2,6− )
c β (BA)

c

SIS → ∞ → ∞ 1/2 1/2 Theoretical 0.333 0.053 0.224 0.230 (0.250) 0.237 0.065 (0.077)
Numerical 0.343 0.052 0.228 0.238 0.245 0.078

SEIS 1 → ∞ 1/4 3/4 Theoretical 0.333 0.053 0.224 0.231 (0.250) 0.238 0.064 (0.077)
Numerical 0.350 0.052 0.230 0.238 0.246 0.071

SIRS 1 → ∞ 1 1/4 1/4 Theoretical 0.400 0.054 0.251 0.260 (0.286) 0.269 0.069 (0.080)
Numerical 0.405 0.053 0.258 0.269 0.279 0.093

SIRS 2 → ∞ 1/10 1/22 1/22 Theoretical 0.478 0.055 0.280 0.290 (0.324) 0.301 0.072 (0.083)
Numerical 0.477 0.054 0.289 0.300 0.314 0.116

Eq. (10) 1 1 0.250 0.050 0.184 0.188 (0.200) 0.193 0.059 (0.072)

threshold. It can be seen that the present theory agrees well
with the numerical calculations.

B. Network with two types of nodes

Next, as an example of a case where the degree is dis-
tributed, we consider the case of a network in which half of
the nodes have degree 2 and the other half have degree 6.
Here, we also consider the effect of degree correlation, which
is measured by the assortativity coefficient r [20]. We created
three networks (r = 0.2, 0, and −0.2) using the configuration
model method [18], where the probability of connection be-
tween tips emerging from a node changes to match the degree
correlation. Figure 2(b) shows the results of calculations sim-
ilar to those described in Sec. IV A. The top graph shows the
basic reproduction number, as given by Eq. (20). Owing to
the degree fluctuations, R0 is smaller than in the case of a
regular graph and increases with the degree correlation. These
trends are consistent with those in previous reports [20,21].
We find that βc for SIS is slightly smaller than that for SEIS
(see also Table II). The bottom graph shows that the epidemic
thresholds obtained from Eq. (20) are a little smaller than
the numerical results, but considerably better than the results
from Eq. (10) in Table II. In particular, the effect of degree
correlation is qualitatively well reproduced.

C. Barabási-Albert model

A final example is the Barabási-Albert model [22],
in which the degree distribution follows a power law,
ρ(k) ∼ k−3. For this case, the epidemic threshold βc is known
to converge to zero when N → ∞ [23]. Figure 2(c) shows the
results of calculations similar to those described in Secs. IV A
and IV B. The discrepancy between the theoretical and nu-
merical results appears to be larger than in the previous two
cases. In addition, βc in SEIS is slightly smaller than βc in
SIS, indicating that the incubation period can increase the
likelihood of the spread of infection. This may be because c2

is larger for SEIS than for SIS, and its effect outweighs that of
the smaller c1 value.

V. DISCUSSION

The epidemic threshold βc was obtained from the basic
reproduction number given by Eq. (20). Although the numer-
ical calculations do not give exact values of βc because of the
finite size of the population (N = 10 000), it is clear that these
results are an improvement over those given by Eq. (10). How-
ever, the theoretical values of βc tend to be underestimated.
This is because the calculations in Eqs. (15) and (17) ignore
the possibility that after becoming susceptible, individual i
may be infected by a neighbor other than individual j [bottom
graphs in Figs. 1(b) and 1(c)]. As this effect is large for hubs
in the Barabási-Albert network, it would explain the large
discrepancy seen in that example. The above approximation
theory can be coarse-grained by using the degree-based mean-
field approximation [7,11,23,24]. For the case with no degree
correlation (r = 0), the average number of secondary infected
individuals with degree k′ transmitted from an infectious indi-
vidual with degree k is

Bk′k = β(k − 1 + c2)

β(1 − c1) + γ

k′ p(k′)
〈k〉 , (23)

which gives the next-generation matrix by classifying the
individuals by degree [24]. Calculating its largest eigenvalue
according to Ref. [24], the basic reproduction number is given
by

R0 = β

β(1 − c1) + γ 〈k〉
( 〈k2〉

〈k〉 − 1 + c2

)
. (24)

Thus, the epidemic threshold for R0 = 1 is given as

βc = γ 〈k〉
〈k2〉 − (2 − c1 − c2)〈k〉 . (25)

For a regular graph, 〈k2〉 = k2; thus, Eq. (25) becomes
Eq. (22). The numbers in parentheses in Table II are the
epidemic threshold values calculated by Eq. (25) and shown
by the short arrows in Figs. 2(b) and 2(c). These numbers
tend to be larger than those given by Eq. (20); this is due to
the fact that there are fluctuations in the probability of infec-
tion for individuals of the same degree. βc = γ 〈k〉/〈k2〉 and
βc = γ 〈k〉/(〈k2〉 − 〈k〉) are well-known theoretical formulas
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for SIS and SIR [7,16], respectively, but Eq. (25) indicates
that

βc = γ 〈k〉
〈k2〉 − 〈k〉 for SIS and SEIS,

βc = γ 〈k〉
〈k2〉 − 2〈k〉 for SIR and SEIR, (26)

because c1 + c2 = 1 for SIS and SEIS, and c1 = c2 = 0 for
SIR and SEIR. These equations deviate from the well-known
degree-based mean-field approximation results [7,11,23] by
the amount of −〈k〉 in the denominator. For SIS, the same
equation as that in Eq. (26) was obtained by approximations
that consider dynamical correlation [25,26]. Note, however,
that such degree-based approximations are not always accu-
rate because they do not reproduce the vanishing threshold
even when γ > 3 [27].

Note that our derivation of the theoretical equation takes
into account the effect of reinfection between the same pair
but ignores the effect of dynamical correlations between ad-
jacent pairs and network loops. In other words, even without
considering the effects of such higher-order correlations, our
results are more accurate than those of the conventional
mean-field theory. The next-generation matrix in Eq. (19)
generally differs from those obtained using heterogeneous
pair approximation [28]; however, oddly, they coincide in the
case of regular graphs. Furthermore, we performed numerical
calculations on networks with larger clustering coefficients,

which have many loops, and the epidemic threshold increased
with the clustering coefficient as expected (not shown in this
paper). Theoretical formulation of R0 by higher-order approx-
imation is a subject for future study.

In summary, we derived a unified formula for R0 for
epidemic models of networks. The next-generation matrix
is represented by Eq. (19), which contains two theoretically
calculated probability values, c1 and c2. In reality, reinfection
may be much less frequent, and therefore c1 and c2 may be
considered to have smaller values. Recently, Markov process
models that consider dynamical correlations among the states
of two or more nodes have been used to study infectious
disease transmission [29,30]. Although such models can more
accurately determine the epidemic threshold, the computa-
tional cost is enormous. By contrast, the formula derived in
this paper for the basic reproduction number is simple and
easy to use. For complex models that can be attributed to the
Markov process, we expect that our formula can be used if
c1 and c2 can be estimated. With the increasing availability of
high-resolution data on human contacts, this result for R0 can
be used as a reference quantity for controlling the spread of
infectious diseases.
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