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The role of waning immunity in basic epidemic models on networks has been undervalued while being
noticeably fundamental for real epidemic outbreaks. One central question is which mean-field approach is more
accurate in describing the epidemic dynamics. We tackled this problem considering the susceptible-infected-
recovered-susceptible (SIRS) epidemic model on networks. Two pairwise mean-field theories, one based on
recurrent dynamical message-passing (rDMP) theory and the other on the pair quenched mean-field (PQMF)
theory, are compared with extensive stochastic simulations on large networks of different levels of heterogeneity.
For waning immunity times longer than or comparable with the recovering time, rDMP outperforms PQMF
theory on power-law networks with degree distribution P(k) ∼ k−γ . In particular, for γ > 3, the epidemic
threshold observed in simulations is finite, in qualitative agreement with rDMP, while PQMF leads to an
asymptotically null threshold. The critical epidemic prevalence for γ > 3 is localized in a finite set of vertices
in the case of the PQMF theory. In contrast, the localization happens in a subextensive fraction of the network in
rDMP theory. Simulations, however, indicate that localization patterns of the actual epidemic lay between the two
mean-field theories, and improved theoretical approaches are necessary to understanding the SIRS dynamics.
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I. INTRODUCTION

Several epidemic outbreaks threaten humanity by spread-
ing throughout the globe, such as avian influenza in Southeast
Asia and Western Europe [1], Ebola in West Africa [2], Zika
virus in the Americas [3], and, more recently, the ongo-
ing COVID-19 pandemic [4–6]. Understanding the immune
response is essential to identify vulnerable groups [7–9],
develop vaccines with high efficacy, and construct optimal
distribution strategies [10]. The role of waning immunity
in epidemic models is essential to understand the long-term
evolution of an infectious disease. Aside from shedding light
on the dynamics of spreading pathogens, the development
of accurate theoretical frameworks may lead to improved
forecasting. Perfect immunity response is assumed in the
susceptible-infected-removed (SIR) model [11], in which sus-
ceptible individuals are infected with rate λ upon each contact
with a contagious individual and infected individuals heal
spontaneously with the rate μ remaining in a recovered state
where she or he cannot be reinfected. Conversely, if no
immunity is conferred and an infected individual becomes
susceptible again immediately after healing, the susceptible-
infected-susceptible (SIS) [11] epidemic model is essential.
In the case of waning immunity with an average time 1/α af-
ter recovering, the susceptible-infected-recovered-susceptible
(SIRS) [11] dynamics is the fundamental process.

From a theoretical perspective, dynamical message-
passing (DMP) theory suits very well the SIR model [12]
where the transmission events are described by “messages”

that do not backtrack in consonance with the permanent
immunity. When applied to dynamics on top of treelike net-
works, it gives an exact description, while DMP theory yields
upper bounds to the outbreak sizes in nontreelike networks.
The DMP theory, such as other theoretical frameworks, allows
us to describe the importance of spreaders in the underlying
dynamics [13,14].

The nature of the activation process in the SIS dynamics on
random power-law networks involves a feedback mechanism
where the epidemic activity within subextensive subgraphs
is self-sustained and spreads the activity to the rest of the
network [15–17]. The quenched mean-field theory (QMF)
[18–23], in which the full network structure is explicitly con-
sidered, describes qualitatively the vanishing of the epidemic
threshold in random networks presenting power-law degree
distribution P(k) ∼ k−γ , regardless the value of γ [18,19].
The accuracy of such predictions can be improved by adding
dynamical correlation in a pairwise level [24,25], the pair
quenched mean-field (PQMF) theory, especially in the regime
of high epidemic prevalence [26]. This theory can also be
extended to address other relevant epidemic features such
as the extinction times and the most likely dynamical path-
ways leading from endemic states to extinction in networks
[27]. Shrestha et al. [28] proposed a modified version of
the DMP theory for dynamic processes with an active (fluc-
tuating) steady state in the now called recurrent dynamical
message-passing (rDMP) theory. However, Castellano and
Pastor-Satorras [29] argued that, by construction, the back-
tracking mechanism absent in rDMP theory is essential to
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the activation of the SIS dynamics in heterogeneous networks
[15,16,30,31]. So, rDMP theory is not a suitable approach
and notably worse for degree exponents γ > 2.5 when the
dynamics is ruled by self-sustained activation of hubs [15].

The SIS and SIR dynamics are limit cases of the SIRS
model when α → ∞ and α → 0, respectively. The SIRS
and SIS dynamics share the same symmetries on lattices and
belong to the directed percolation universality class [32,33].
In power-law networks, standard mean-field theories predict
the same epidemic threshold and critical behavior as the
SIS [34,35]. However, the waning immunity is capable of
modifying the epidemic activity in isolated hubs, implying
that the activation mechanism of the SIS model, based on
long-range mutual infection of hubs, is depleted [34] and
altered. The epidemic threshold above which an outbreak can
reach a finite fraction of the population in the thermodynamic
limit is a fundamental epidemiological parameter. In random
scale-free networks with degree exponent γ < 5

2 the three
aforementioned models (SIR, SIS, and SIRS) behave very
similarly with the epidemic threshold very well described
by the QMF theory [34]. However, remarkable differences
emerge for γ > 5

2 and especially for γ > 3. For example, the
asymptotic epidemic threshold of the SIS models is null for
any value of γ [15,31,36], while the threshold is finite for
γ > 3 and a phase transition is observed in SIR and SIRS with
finite α [34].

The QMF theory and its improved PQMF version for
SIS dynamics also deviate from simulations very near to the
epidemic threshold [25,26]. The accuracy of these theories
is related to spectral localization of the Jacobian matrices
obtained in stability analysis of the absorbing state [13,25,37].
However, PQMF theory for SIS has shown to be very accurate
if the analysis is not too close of the epidemic threshold [26].

Despite its natural relevance for applications, the SIRS
dynamics has attracted much less attention than its SIR and
SIS limits, and an efficient theoretical approximation for SIRS
dynamics on networks remains an open question. In this
work, the role of immunity is investigated using interme-
diate values of the waning immunity rate α. We compared
extensive stochastic simulations with rDMP and PQMF the-
ories, establishing which theory performs better. In the case
of power-law networks, the rDMP theory correctly predicts
the epidemic threshold behavior (vanishing or not) at the limit
of asymptotically large networks, while the PQMF theory is
ruled by localization on a finite set of vertices which leads
to a vanishing threshold for γ > 3, in contrast with stochas-
tic simulations that indicate a finite threshold. However, we
also report evidence that the rDMP theory underestimates
while PQMF overestimates the epidemic localization leading,
respectively, to upper and lower bounds for the epidemic
thresholds of the actual SIRS dynamics. Our results indicate
that an improved theoretical approach is necessary to accu-
rately describe the critical behavior of the SIRS dynamics on
networks.

The remainder of this paper is organized as follows. In
Sec. II, the theoretical approaches for the SIRS model are
presented. The epidemic thresholds obtained with stochas-
tic simulations are compared with the theoretical predictions
for different complex networks in Sec. III. Finally, in
Sec. IV, we present our conclusions and prospects. Two

Appendixes with technical details of the work complement
the paper.

II. THEORETICAL APPROACHES FOR
THE SIRS MODEL ON NETWORKS

Since SIRS dynamics has some features that resemble
the SIS model and others that are similar to SIR dynamics,
processes of distinct nature and better suited within different
theoretical approaches, the choice of the most suitable mean-
field theory calls for a comparison with stochastic simulations.
So, we have chosen two theories where pairwise interaction
is explicitly reckoned. On the one hand, the PQMF theory is
efficient for SIS since localization around hubs of the critical
density is similar to activation driven by hubs of the actual
SIS Markovian dynamics [15]. On the other hand, the rDMP
theory explicitly forbids the nonbacktracking reinfection, re-
ducing the so-called echo chamber effect of mutual reinfection
among hubs and its neighbors, that is similar to the immunity
conferred after healing. Both theories are presented in the cur-
rent section, including some particular cases, and compared
with simulation in the sequence.

A. PQMF theory

In the PQMF theory, the whole network structure is con-
sidered and the dynamical correlations are partially taken into
account in a pairwise level. We extend the analysis performed
to the SIS dynamics in Ref. [24] to the SIRS model. The
state of every node i is presented by σi = 0 (susceptible), 1
(infected), or 2 (recovered). We define the variables si = [0i],
ρi = [1i], ri = [2i], representing the marginal probabilities of
finding a node i in the susceptible, infected, and recovered
states, respectively, for an ensemble of dynamic realizations
considering the same initial condition. We also represent
the probabilities that a pair (i, j) assumes states [σi, σ j]
by θi j = [2i, 1 j], χi j = [2i, 0 j], φi j = [0i, 1 j], ψi j = [1i, 1 j],
ωi j = [0i, 0 j], υi j = [2i, 2 j], θ i j = [1i, 2 j], χ i j = [0i, 2 j], and
φi j = [1i, 0 j]. They represent the joint probabilities of finding
two neighbor nodes i and j in combinations of states allowed
by the model. The following closure relations hold for any pair
of nodes:

si = ωi j + χ i j + φi j, ρi = ψi j + φi j + θ i j,

ri = υi j + θi j + χi j . (1)

The set of equations describing the temporal evolution of
the infected and recovered populations are given by

dρi

dt
= −μρi + λ

∑
j

Ai jφi j (2)

and

dri

dt
= −αri + μρi, (3)

respectively, where the adjacency matrix given by Ai j = 1
if i and j are connected and Ai j = 0, otherwise, while the
susceptible population is given by si = 1 − ρi − ri, in which
a constant total population is assumed. If pairwise dynamical
correlations are disregarded, we approximate φi j ≈ siρi to
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obtain the QMF equations
dρi

dt
= −μρi + λsi

∑
j

Ai jρ j . (4)

As in the HMF theory [34,35], the epidemic threshold of
the SIRS model is the same of the SIS dynamics (see
Appendix B), given by the inverse of the largest eigenvalue
(LEV) (1) of the adjacency matrix [19] associated to its
principal eigenvector (PEV) [13,37]:

λc = μ

(1)
. (5)

Consequently, in random networks presenting power-law de-
gree distributions, this epidemic threshold is null in the
thermodynamic limit when the LEV diverges [18,19]. As
shown in Appendix B, the fraction of infected nodes near to
the epidemic threshold in SIRS dynamics is proportional to
the SIS limit and given by

ρSIRS =
(

α

α + μ

)
ρSIS, (6)

implying that ρ ∼ (λ − λc)β where βSIRS = βSIS ≡ 1 [20,37].
Back to Eqs. (2) and (3), the evolution of φi j for connected

nodes (Ai j = 1) is given by

dφi j

dt
= −(μ + λ)φi j + αθi j + λ

∑
l �=i

[0i, 0 j, 1l ]Al j

−λ
∑
l �= j

[1l , 0i, 1 j]Ali. (7)

The interpretation of each term is straightforward. The first
term includes both the infection of node i by j and the sponta-
neous healing of j. The second term is due to the spontaneous
waning of immunity of node i. The last two terms reckon the
infection due to remaining neighbors of j and i, respectively.
The remaining pairwise equations can be computed as

dθi j

dt
= μψi j − (α + μ)θi j + λ

∑
l �=i

[2i, 0 j, 1l ]Al j, (8)

dχi j

dt
= μφi j − αχi j + αυi j − λ

∑
l �=i

[2i, 0 j, 1l ]Al j, (9)

while dynamical equations for φi j = φ ji, χ i j = χ ji, and
θ i j = θ ji can be obtained by switching i and j in Eqs. (7)–(9).
Finally, the remaining pair variables ωi j , ψi j , and υi j can be
obtained using relations given in Eq. (1). To produce a closed
system, we approximate the triplets using a pair approxima-
tion [38]

[AiBjCk] ≈ [AiBj][BjCk]

[Bj]
. (10)

The closed set of pairwise equations is obtained with
Eqs. (1)–(3) joined to

dφi j

dt
= −(μ + λ)φi j + αθi j + λ

∑
l �=i

ωi jφ jl

s j
Al j

−λ
∑
l �= j

φi jφil

si
Ali, (11)

dθi j

dt
= μψi j − (α + μ)θi j + λ

∑
l �=i

χi jφ jl

s j
Al j, (12)

and

dχi j

dt
= μφi j − αχi j + αυi j − λ

∑
l �=i

χi jφ jl

s j
. (13)

We can assume that ρi � 1 for long times and near to
the epidemic threshold, and so do the other variables which
depend on infected or recovered nodes (ri, ψi j , φi j , ...), and
consequently si ≈ ωi j ≈ 1. After algebraic handling to lead-
ing order, we obtain the following relation valid for the steady
state:

φi j = ϒρ j − �ρi, (14)

in which

ϒ(μ, λ, α) = 2μ(μ + λ + α) + λα

2λ(μ + α) + 2μ(μ + λ + α)
(15)

and

�(μ, λ, α) = λ(α + 2μ)

2λ(α + μ) + 2μ(μ + λ + α)
. (16)

We can now assume a quasistatic approximation where
Eq. (14) is plugged in Eq. (2) to produce a linear equation with
the Jacobian matrix given by

Li j = −[μ + λk j�(μ, λ, α)]δi j + λϒ(μ, λ, α)Ai j, (17)

where δi j is the Kronecker delta. Thus, using standard linear
stability analysis, the absorbing state loses stability and an
active steady state emerges when the largest eigenvalue of Li j

is null. Equation (17) converges to the SIS Jacobian obtained
in Ref. [24] for α → ∞.

Before analyzing the PQMF theory on general networks,
we consider two particular cases: star graph and random reg-
ular (RR) networks.

1. Particular case: Star graph

A star graph is defined as a center i = 0 connected to
K neighbors, i = 1, 2, 3 . . . K , of degree k = 1, represented
by the adjacency A0 j = Ai0 = 1 and Ai j = 0 otherwise. The
eigenvalues of the Jacobian matrix given by Eq. (17) for the
star graph can be computed directly using

∑
j Li jv j = vi

such that the LEV becomes null, providing the epidemic
threshold, when(

λc

μ

)2

K
[
�2

c − ϒ2
c

] + λc

μ
�c(K + 1) + 1 = 0, (18)

where �c and ϒc are given by Eqs (15) and (16) with λ = λc,
which are inserted in Eq. (18) to obtain the epidemic threshold
for K 	 1:

λc

μ



√
2(α + μ)

αK
. (19)

When α 	 μ, the SIS limit for the PQMF theory is recovered
[24]: λc/μ 
 √

2/K . On the other hand, when α � μ, the
epidemic threshold becomes

λc

μ



√
2μ

αK
. (20)

The PQMF theory predicts a vanishing epidemic threshold for
any nonzero value of the waning immunity rate α. This result
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is in odds with stochastic theory presented in Ref. [34] and
recent rigorous probabilistic analysis of Ref. [39] where the
epidemic lifespan increases algebraically with the graph size
τK ∼ Kα/μ instead of exponentially.

2. Particular case: RR network

In RR networks, all nodes present the same degree m,
P(k) = δk,m, and the connections are random. It is direct to
check that vi = 1 is an eigenvector of Eq. (17) with eigenvalue

 = (μ + λm�) + λmϒ. (21)

Since vi > 0 and Ai j is positive definite, application of the
Perron-Frobenius theorem ensures that it corresponds to the
PEV v

(1)
i . So, the epidemic threshold is obtained when (1) =

 = 0:

λc = μ(μ + α)

(m − 1)(μ + α) − μ
, (22)

which is the the same result obtained with the homogeneous
pair approximation for SIRS dynamics [33]. The epidemic
thresholds of SIS and SIR, λSIS

c = μ/(m − 1) [24] and λSIR
c =

μ/(m − 2) [40], are obtained in the limits α 	 μ and α � μ,
respectively.

B. The rDMP theory

In the rDMP approach [28], an infectious node that was
infected by a given neighbor can not reinfect him or herself,
which can be encoded by a message variable ρ j→i defined as
the probability that an infectious node j was infected by any
of its neighbors except node i, such that node j can infect i,
but cannot infect the node which transmitted the contagion
to j. Assuming a mean-field hypothesis that neglects nearest-
neighbor dynamical correlations, this variable evolves as [28]

dρ j→i

dt
= −μρ j→i + λs j

∑
k �=i

ρk→ j . (23)

The remaining compartments of the SIRS dynamics are given
by [28]

dρi

dt
= −μρi + λsi

∑
j

ρ j→i, (24)

dri

dt
= −αri + μρi, (25)

and si + ri + ρi = 1. Performing again a quasistatic ap-
proximation with dri

dt ≈ 0 and linearizing the rDMP equa-
tions around the absorbing state ρ∗

j→i = 0 = ρ∗
j , we obtain the

Jacobian matrix

Jj→i,k→l = −μδk jδi j′ + λBj→i,k→l (26)

in which

Bj→i,k→l = δ jl (1 − δik ) (27)

is the nonbacktracking or Hashimoto matrix [41,42]. The epi-
demic threshold is then given by the inverse of the LEV of the
Hashimoto matrix [28].

1. Particular case: Star graph

Exploiting the definition of message, ρ j→i, if j > 0 is a
leaf, it would be infected only by the center such that ρ j→0 =
0. Thus, Eq. (23) with j = 0 becomes

dρ0→i

dt
= −μρ0→i + λs0

K∑
k=i

ρk→0 = −μρ0→i, (28)

implying in exponential decay with time, independently of
infection rate and that rDMP does not predict an active phase
for the SIRS model in a star graph as well as it does not for
the SIS dynamics, in odds with both the algebraic and ex-
ponential increases of SIRS [34,39] and SIS [15,31] models,
respectively.

2. Particular case: RR networks

For homogeneous networks we have that ρ j→i = η and
Eq. (23) becomes

dη

dt
= −μη + λs(m − 1)η, (29)

that provides the epidemic threshold

λc = μ

m − 1
(30)

and corresponds to the same result of the SIS model and is
independent of the rate of waning immunity. One can show
that

ρSIRS =
(

α

α + μ

)
ρSIS =

(
α

α + μ

)
λ − λc

λ
, (31)

in agreement with Eq. (6) derived for the QMF theory.

III. THEORY VERSUS SIMULATION

To compare the performance of theoretical frameworks,
we performed stochastic simulations of the SIRS model fol-
lowing the Gillespie algorithm described in Appendix A. We
deal with absorbing state using the quasistationary method
[43,44] explained in Appendix A. The epidemic threshold
is determined using the infection rate corresponding to the
largest value of the dynamical susceptibility defined as χ =
N (〈ρ2〉 − 〈ρ〉2)/〈ρ〉 [36], where the averages are computed in
the quasistationary regime. We investigate the rate of waning
immunity α � μ, which corresponds to a time of conferred
immunity longer than that of infectiousness.

Considering star graphs, we have shown that PQMF the-
ory predicts an active state while rDMP does not. Indeed, a
stochastic approximation and numerical simulations for SIRS
dynamics on a star of size K + 1 lead to an algebraic increase
of the epidemic lifespan given by τK ∼ Kα/μ [16] in contrast
with the exponential law τK ∼ exp(−λ2K/μ2) of SIS the dy-
namics [15]. However, this metastable activity in star graphs
can introduce localization effects on hubs within the networks.
In mean-field theories, localization can be investigated com-
puting the inverse participation ratio (IPR) of the PEV as
a function of network size, associated with the Jacobian of
the corresponding mean-field theory: adjacency matrix Ai j for
QMF [37], Hashimoto matrix Bj→,k→l for rDMP [45], and
Eq. (17) for PQMF [25]. If {v(1)

j } are the Nc components of
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FIG. 1. Susceptibility as a function of λ for RR networks with
m = 6 and different sizes indicated in the legend. Black, red, and blue
dashed arrows correspond to QMF, rDMP, and PQMF predictions
of the epidemic threshold, respectively. Inset compares the epidemic
threshold as a function of the network size in simulations (symbols)
and mean-field theories (dashed lines).

the normalized PEV, the IPR is defined as [37]

Y4 =
Nc∑
j=1

[
v

(1)
j

]4
. (32)

The IPR scales as Y4 ∼ N−1
c for a delocalized PEV and be-

comes a constant larger than zero for localization on a finite
subset [37]. Some systems can present intermediary localiza-
tion in a subextensive part of the PEV such that Y4 ∼ N−ν

c with
0 < ν < 1 [46]. The localization analysis can be extended to
stochastic simulations by means of the normalized activity
vector (NAV) {xi} [47] defined in terms of the probability that
a node is active (infected) ρi as

xi = ρi√∑N
j=1 ρ2

j

, (33)

and the corresponding IPR can be calculated replacing the
PEV by the NAV components in Eq. (32).

A. RR networks without and with an outlier

We start with RR networks since, in principle, these
networks present no relevant localization effects. In the ther-
modynamic limit, the epidemic threshold converges to a finite
value as predicted by all theoretical frameworks, for all values
of α studied. The PQMF theory outperforms significantly both
QMF and rDMP in determining the epidemic threshold in
comparison with stochastic simulations, as shown in Fig. 1
for α/μ = 0.2. This result holds for other values of α/μ. The
partial reckoning of dynamical correlation in rDMP leads to
an improvement of the QMF theory, but still substantially
below the accuracy of the PQMF theory. The results shown
in Fig. 1 correspond to a degree m = 6. The relative accuracy
of all theories is reduced for lower degrees, and the relative
improvement of the PQMF with respect to the other theories
is increased.

FIG. 2. (a)–(c) Epidemic threshold and (d)–(f) IPR as functions
of the network size for the mean-field theories and simulations of the
SIRS model with (a), (d) α/μ = 0.1, (b), (e) 0.5, and (c), (f) 1.0. The
system is a RR network with m = 6 plus a single vertex of fixed size
k = 103. The threshold for a pure RR network is also shown for sake
of comparison. Error bars are smaller than symbols.

We tackle the effects of localization by introducing a single
hub with fixed degree k = 103 in a RR network where all
the remaining N − 1 nodes have degree m = 6. In the SIS
model two activation processes, expressed as a double peak
at susceptibility curves [36], take place: one at the subgraph
composed of the hub plus its nearest neighbors and another
at the rest of network coinciding at the epidemic threshold
of the pure RR network [47]. The multiple activation is not
detected in quasistationary simulations of the SIRS dynamics
with α/μ � 1. Top panels of Fig. 2 present the estimated
epidemic thresholds as functions of the network size for three
values of α/μ considering quasistationary simulation, PQMF,
and rDMP mean-field theories. The corresponding thresholds
for a pure RR network are also presented. Since the hub size
is fixed, epidemic thresholds of quasistationary simulations
converge to the value obtained in the pure RR network in
the thermodynamic limit. However, localization remains rel-
evant at finite-size systems altering the convergence to the
asymptotic limit: While the pure RR presents a monotonic
decay towards the asymptotic value, the presence of the hub
lowers the threshold and inverts the finite-size dependence.
In contrast with the pure RR networks shown in Fig. 1, the
PQMF theory deviates significantly from the simulation out-
comes, the more for higher rate of waning immunity, being
thus outperformed by rDMP.

The localization associated with the mean-field theories
and simulations characterized with the IPR of the Jacobian’s
PEV and NAV at the threshold, respectively, are shown in
Figs. 2(d)–2(f). The hub of fixed size is expected to produce
a localization which becomes lesser relevant as the network
size becomes larger, implying in a IPR decaying with size.
However, the PQMF theory presents a finite IPR due to the
localization in the hub, while the NAV obtained in simulation
becomes delocalized, decreasing with size, as the network
size increases. Notice, however, that the IPR decays slower
with size than predicted by the Jacobian of PEV (Hashimoto

034317-5



SILVA, SILVA, RODRIGUES, AND FERREIRA PHYSICAL REVIEW E 106, 034317 (2022)

FIG. 3. (a)–(c) Epidemic threshold and (d)–(f) IPR as functions
of the network size for the SIRS dynamics on UCM networks with
γ = 2.3 using (a), (d) α/μ = 0.1, (b), (e) 0.5, and (c), (f) 1.0.
Stochastic simulations (black line) are compared to PQMF (blue
diamonds) and rDMP (red squares). Dashed line is a guide to eyes
indicating the scaling Y4 ∼ N (3−γ )/2, expected for IPR of vector local-
ized in maximum K-core [46]. Error bars are smaller than symbols.

matrix) in the rDMP theory, being differences more evident
for larger α, showing that the actual stochastic dynamics is
more localized than that of the rDMP. Indeed, the PEV of
the Hashimoto matrix for the RR network with an integrated
hub is localized only if K 	 (N/〈n〉)1/2, that can be derived
directly from the approximation vi→ j ∼ ki − 1 for the PVE of
the Hashimoto matrix [45].

B. Power-law networks

We investigated SIRS dynamics on synthetic uncorrelated
networks presenting a power-law degree distribution P(k) ∼
k−γ generated through the uncorrelated configuration model
(UCM) model [48] with a structural cutoff kc = 2

√
N . The

threshold and IPR analyses for power-law networks with
γ < 5

2 are presented in Fig. 3. For all investigated values
of α, the same behavior is observed: the epidemic threshold
goes to zero in simulations as well as PQMF and rDMP
theories, the last two being indistinguishable from each other
in the presented scales. Simulations asymptotically agree
with mean-field theories being the convergence faster for
higher waning of immunity. The localization analyses indicate
the agreement between simulations and mean-field theories,
whose IPR scales consistently with an epidemic localization
in the maximum K-core, as conjectured for SIRS dynamics in
this range of degree exponent γ [34]. The maximum K-core is
a strongly connected subgraph obtained by means of a K-core
decomposition [49]. Thus, our results for SIRS support that
the outbreak is triggered as does the SIS dynamics for γ < 2

5
[17].

For γ > 5
2 , the PEV of the PQMF’s Jacobian is localized

in the largest hub and its neighbors [25], as does the adjacency
matrix [46], differently from the Hashimoto matrix whose
PEV vi ∼ ki − 1 [45] leads to a different type of localization.
In both cases, the respective LEVs diverge for 5

2 < γ < 3, but
following different scaling laws. When γ > 3, the LEV of the

FIG. 4. (a)–(c) Epidemic threshold and (d)–(f) IPR as functions
of the network size for a SIRS dynamics on UCM networks with
γ = 3.5 using (a), (d) α = 0.1, (b), (e) 0.5, and (c), (f) 1.0. Stochastic
simulations (black line) are compared to PQMF (blue diamonds) and
rDMP (red squares).

PQMF’s Jacobian still diverges in the thermodynamic limit
[24] and remains finite for the Hashimoto matrix [45]. Thus,
rDMP and PQMF theories predict, respectively, finite and null
epidemic thresholds for γ > 3. For this reason, we analyze the
case γ = 3.5 where differences are more noticeable.

The finite-size scaling of the epidemic threshold of
stochastic simulations depends on the rate of waning of im-
munity while the asymptotic threshold decreases only slightly
on α, as shown at the top panels of Fig. 4. In the range
of network sizes investigated (up to N = 107), the epidemic
threshold seems to converge to a finite value, which is quali-
tatively described by rDMP theory. The PEV associated to the
PQMF’s Jacobian matrix is strongly localized in some nodes
represented by an asymptotically finite IPR, the stronger for
larger α. Conversely, the PEV of the Hashimoto matrix does
not depend on α, being localized in a subextensive fraction
of nodes manifested as a scaling law Y4 ∼ N−a, with a < 1.
Stochastic simulations present a localization pattern which de-
pends on α, becoming slightly more localized as the immunity
time 1/α decreases. The PQMF is clearly outperformed by
the rDMP theory. Simulations show that rDMP theory yields
an epidemic activity less localized than the actual simula-
tions and overestimates the asymptotic epidemic threshold for
larger α. However, asymptotically (sizes even larger than 107

nodes currently investigated) we expect the same dependence
for all ranges of finite waning immunity: rDMP underesti-
mates while PQMF overestimates the localization pattern and
the converse for the epidemic threshold.

IV. CONCLUSIONS

The development of theoretical frameworks capable of re-
producing with accuracy epidemic models is crucial to the
progress of forecasting and controlling epidemic outbreaks.
Basic models such as SIS and SIR present different natures of
epidemic activation and are better suited into different theo-
retical approaches. Waning immunity with the rate α, where
a recovered individual becomes susceptible again after an
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average time 1/α, introduces the generalized SIRS dynamics,
which interpolates between SIR (α → 0) and SIS (α → ∞)
epidemic models. While some aspects of SIRS dynamics are
akin to the SIS model (existence of a active steady state and
universality class in regular lattices [32,33]), others resemble
the SIR dynamics (the finite epidemic threshold for degree
exponent γ > 3 and activation mechanism in complex net-
works [34]). So, the mean-field theory that better describes the
SIRS dynamics is not completely ascertained. This work in-
vestigates the SIRS model within two theoretical frameworks,
namely rDMP or PQMF theories, and stochastic simulations.
Both theories are pairwise approaches, while in rDMP does
not permit backtracking reinfection, in which an infected
node can infect the neighbor that infected itself, while PQMF
does. We tackle the problem of which mean-field theory more
accurately reproduces the epidemic threshold and epidemic
localization patterns of the SIRS dynamics on different types
of complex networks.

In the case of the homogeneous degree distribution, where
no relevant localization is present, PQMF theory outperforms
rDMP. However, the introduction of an immersed single node
of a large, but size-independent, degree promotes strong local-
ization effects and the PQMF performance becomes worse.
The rDMP for SIRS dynamics on star graphs, which plays
the role of isolated hubs immersed into a network, indeed
predicts a finite epidemic lifespan independently of the star
size, while an exponential divergence with size is obtained for
the PQMF theory. Neither rDMP or PQMF theories predict
the algebraic increase with the star size reported in Ref. [34],
indicating that these theories under or overestimate, respec-
tively, the localization of the epidemic activity around hubs in
the networks. The SIRS dynamics on networks with power-
law degree distribution confirms this conjecture. Indeed, a
finite epidemic threshold observed in simulations of the SIRS
dynamics on networks with degree exponent γ > 3 is in
qualitative agreement with rDMP theory and contrasts with
the vanishing epidemic threshold obtained with the PQMF
theory. However, the localization analysis also points out that
rDMP underestimates the actual epidemic localization ob-
served in simulations, occurring in a subextensive fraction of
the network that is asymptotically much larger than the subset
corresponding to the localization of the PEV of the Hashimoto
matrix predicted by the rDMP theory.

Our results call for modified versions of the rDMP theory,
which softens the strict prohibition of backtracking reinfec-
tion to predict more accurately the localization pattern and
thus the epidemic threshold of SIRS dynamics in networks.
We also expect the results presented here to be applied to more
complex dynamical models on networks.
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APPENDIX A: STOCHASTIC SIMULATION
OF THE SIRS MODEL

We performed stochastic simulations of the SIRS model
using an optimized Gillespie algorithm [50]. Let us define the
number of recovered Nrec and infected Ninf nodes as well as
the total number of edges emanating from the latter NSI. At
each time step, with probability

PI→R = μNinf

μNinf + λNSI + αNrec
, (A1)

an infected node is chosen at random and recovered. With
probability

PR→S = αNrec

μNinf + λNSI + αNrec
, (A2)

a recovered node is chosen at random and becomes suscepti-
ble. Finally, with probability

PI→S = λNSI

μNinf + λNSI + αNrec
, (A3)

an infected node i is selected with probability proportional to
its degree ki. Then, a neighbor of i is chosen at random and
becomes infected if it is susceptible; otherwise, the simulation
goes to next step without changing the configuration. Finally,
time is incremented by

δt = − ln(u)

μNinf + λNSI + αNrec
, (A4)

where u is a pseudorandom number uniformly distributed in
the interval (0,1).

A finite system always falls into the absorbing state if the
simulation runs for a time long enough [44]. This feature can
be handled using a scheme known as standard quasistation-
ary method [16,43,44]. A list of M configurations is built
and constantly updated replacing one of its configurations,
selected at random, by the current one with probability Prep by
unit time. We used M = 50 and Prep = 0.01 in this work. The
quasistationary averages were computed over a time window
varying from tav = 105 to 2×106, after a relaxation time of
trlx = 105 time units. The longest time intervals were used for
the lowest densities, where fluctuations are more relevant.

APPENDIX B: QMF THEORY FOR THE SIRS DYNAMICS

To determine the critical quantities in the QMF theory we
perform a linear stability analysis around the absorbing state
ρi = 0. In the steady state, Eq. (3) leads to

si = 1 −
(

1 + μ

α

)
ρi. (B1)
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We perform a quasistatic approximation, plugging this result
into Eq. (4) to obtain

dρi

dt
≈ −μρi + λ

[
1 −

(
1 + μ

α

)
ρi

] ∑
j

Ai jρ j, (B2)

which, in leading order in ρi, becomes

dρi

dt
=

∑
j

Li jρ j, (B3)

where Li j is the Jacobian matrix given by

Li j = −μδi j + λ
∑

j

Ai j . (B4)

The absorbing state loses stability when the largest eigenvalue
of the Jacobian is null and, therefore, the threshold of SIRS
model assumes the form

λSIRS
c = μ

(1)
(B5)

in which (1) is the LEV of the adjacency matrix. The steady
state of Eq. (B2) yields

ρi = λ
∑

j Ai jρ j

μ + λ
(
1 + μ

α

) ∑
j Ai jρ j

. (B6)

The epidemic prevalence ρi can be expanded in terms of
eigenvectors {v(l )

i } of Ai j [37],
∑

j Ai jv
(l )
j = (l )v

(l )
i , where

v
(1)
i corresponds to the PEV, v

(2)
i to the eigenvector with sec-

ond LEV, and so on. Assuming a spectral gap (1) 	 (l ),

l > 1, near the epidemic threshold where ρi � 1, we obtain

ρi ≈ c(1)v
(1)
i (B7)

to the leading order in ρi. Plugging Eqs. (B7) and (B6) leads
to

λ

μ
(1)

N∑
i

[
v

(1)
i

]2

1 + λ
μ

(
1 + μ

α

)
(1)c(1)v

(1)
i


 1. (B8)

Expanding Eq. (B8) for ρi ≈ c(1)v
(1)
i � 1, noting that λ

μ
(1)

is O(1), we obtain

c(1) 

λ
μ
(1) − 1(

1 + μ

α

)∑
i

[
v

(1)
i

]3 , (B9)

which is used to compute the epidemic prevalence as

ρ = 1

N

∑
i

ρi 
 α

μ + α
a(N )

λ(1) − μ

μ
, (B10)

where the prefactor a(N ) is a function of N given by

a(N ) =
∑

i v
(1)
i

N
∑

i

[
v

(1)
i

]3 , (B11)

implying that ρ ∼ (λ − λc)β with critical exponent β = 1.
Comparing Eq. (B10) with the QMF solution of the SIS model
presented in Ref. [37], we obtain a proportionality relation
between SIRS and SIS prevalences given by

ρSIRS 

(

α

μ + α

)
ρSIS, (B12)

implying that QMF theory predicts the same critical properties
for SIRS and SIS models.
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