
PHYSICAL REVIEW E 106, 034315 (2022)

Universal framework for reconstructing complex networks and node dynamics
from discrete or continuous dynamics data

Yan Zhang *

School of Systems Science, Beijing Normal University, Beijing 100875, China

Yu Guo *

Software Institute, Nanjing University, Nanjing 210093, China

Zhang Zhang
School of Systems Science, Beijing Normal University, Beijing 100875, China

Mengyuan Chen
China TravelSky Mobile Technology Co., Ltd, Beijing 100029, China

Shuo Wang
School of Systems Science, Beijing Normal University, Beijing 100875, China

Jiang Zhang †

School of Systems Science, Beijing Normal University, Beijing 100875, China;
Swarma Research, Beijing 102308, China

(Received 20 November 2021; accepted 15 June 2022; published 16 September 2022)

Many dynamical processes of complex systems can be understood as the dynamics of a group of nodes
interacting on a given network structure. However, finding such interaction structure and node dynamics from
time series of node behaviors is tough. Conventional methods focus on either network structure inference task
or dynamics reconstruction problem, very few of them can work well on both. This paper proposes a universal
framework for reconstructing network structure and node dynamics at the same time from observed time-series
data of nodes. We use a differentiable Bernoulli sampling process to generate a candidate network structure,
and we use neural networks to simulate the node dynamics based on the candidate network. We then adjust all
the parameters with a stochastic gradient descent algorithm to maximize the likelihood function defined on the
data. The experiments show that our model can recover various network structures and node dynamics at the
same time with high accuracy. It can also work well on binary, discrete, and continuous time-series data, and
the reconstruction results are robust against noise and missing information.

DOI: 10.1103/PhysRevE.106.034315

I. INTRODUCTION

Living cells, brains, human society, stock markets, global
climate systems, and so forth are complex systems composed
of many nonlinear interactive units [1–3]. By decompos-
ing a complex system into a static network with dynamics
on nodes, networked dynamical system models are power-
ful tools to describe complex systems, playing a paramount
role in understanding their collective behaviors and control-
ling their functions [1,4]. However, building such models
requires professional prior knowledge and modeling experi-
ence, which hinders the wide application of these methods.
The reconstruction of such networked dynamical systems in
a data-driven way remains a fundamental problem, i.e., to re-
trieve the interaction network structure and the node dynamics

*These authors contributed equally to this work.
†zhangjiang@bnu.edu.cn

from time-series data of complex system behaviors without
any subjective biases [5,6].

Historically, recovering network structure, and predicting
node dynamical behaviors reconstruction or simulation for
predictions for future states are different tasks that are studied
separately. First, revealing network structure from time-series
data is of great importance because the inferred network can
not only help us to understand the behaviors of the system
but also can provide information on inner causal structure
of interactions within a complex system [3,7–10]. The in-
terdependence relations or causal structure can be obtained
by directly calculating some statistical measures [11], per-
turbing the system [12], optimizing a score function [13,14],
or expanding the complex interaction dynamics on a set of
basal functions [5,15,16], and other methods [17]. For exam-
ple, ARNI (the algorithm for revealing network interactions)
method can not only infer a network with high accuracy but
also be adopted for various nonlinear dynamics. However, one
disadvantage is that the performance of the model strongly

2470-0045/2022/106(3)/034315(12) 034315-1 ©2022 American Physical Society

https://orcid.org/0000-0001-9028-7495
https://orcid.org/0000-0003-2696-1603
https://orcid.org/0000-0001-7851-3824
https://orcid.org/0000-0001-7402-7482
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.034315&domain=pdf&date_stamp=2022-09-16
https://doi.org/10.1103/PhysRevE.106.034315

YAN ZHANG et al. PHYSICAL REVIEW E 106, 034315 (2022)

depends on the choice of the basal functions. If the prior biases
on basal functions are missing, then this approach becomes
very time-consuming, limiting its application to larger sys-
tems.

Another branch of study is dynamics reconstruction from
time series data. According to Taken’s theorem, any dynam-
ical behaviors of a nonlinear system can be reconstructed
from the time series data, once the observed sequence is
long enough [18]. Thereafter, various techniques have been
developed to build models to simulate the dynamical behav-
iors behind data and to predict future states of the system
[19–21]. However, the techniques of conventional time series
forecasting can hardly extend to complex systems because the
task becomes very difficult as the number of variables to be
predicted become very large and the long-range correlations
between nodes widely exist. The problem can be alleviated
when the interaction network structure between nodes are
provided as inductive bias, graph (neural) network (GNN)
models [22–28] are designed particularly on this task. By
learning complex functions of information aggregation and
propagation on a given network, GNNs can simulate any
complex dynamics on such networks. However, a complete
graph is always required for most GNN models, which hinders
their wider applications [6,26,29–31].

Very few studies have been proposed to perform both net-
work reconstruction and node dynamics reconstruction tasks
together at the same time, although some network inference
algorithms are capable of forecasting node states and the
implicit and time-variant network structures can also be ob-
tained from deep learning models for forecasting based on an
attention mechanism [6,31–34]. The first framework to derive
an explicit network is NRI (neural relation inference) [26], in
which an encoder–decoder framework is used. However, the
complicated encoding process to infer the connections from
time series data has limited its scalability and accuracy on
larger networks [29,30,35].

This paper proposes a unified framework for automated in-
teractions and dynamics discovery (AIDD). This is a universal
framework for learning both the interaction structure and dy-
namics of a complex system from time series data. The design
of a lightweight network generator and a universal dynamics
learning component based on Markov dynamics makes AIDD
not only be applicable to various networks and dynamics,
but also enables it to reconstruct very large networks with
high accuracy and robustness. The entire framework is dif-
ferentiable so that it can be optimized directly by automatic
differentiation and machine learning techniques [36]. Beyond
tasks of network inference and time series forecasting, we
propose a new method to test a learned data-driven model
based on control experiments. Finally, we test the validity of
our framework on real gene regulatory networks under noisy,
incomplete, and interrupted data, which is close to realistic
situations. The results demonstrate that high performance can
be obtained.

II. METHODS

A. Problem formulation

Suppose the complex system to be considered evolves un-
der discrete time steps. Thus, the dynamics to be reconstructed

can be described by

Xt+1 = f (Xt , A) + ζ t , (1)

where Xt = [X t
1, X t

2, . . . , X t
N] ∈ RN×D is the state of the sys-

tem at time t , N is the number of nodes, D is the dimension of
the state space of every single node, A is the adjacency matrix
of the interaction network to be reconstructed, and ζ t ∈ RN×D

is the noise imposed on nodes. However, Eq. (1) can only
describe the dynamical processes with explicit mathematical
forms and cannot be applied to those defined by rule tables or
transitional probabilities, such as cellular automata, Boolean
dynamics, or Markov chains. Therefore, instead of Eq. (1), we
use a more general form, a Markov chain {Xt }, to describe the
dynamics,

f (Xt+1 = xt+1|xt , A) ≡ P(Xt+1 = xt+1|xt , A), (2)

where f is the dynamics to be discovered, xt =
(x1

t , x2
t , . . . , xn

t) ∈ V N is the observed time series, where V
is the state space of each single node and can be either RD

for continuous values or {0, 1}D for discrete values. Here,
we use D-dimensional one-hot vector to represent a finite
set with D elements. A one-hot vector is a vector with all
0s except one position taking 1, and if the position that 1
appears is p, then the vector represents the pth element. For
example, (0, 0, 1), (0, 1, 0) can represent a, b, respectively,
which are the first and second elements in set {a, b, c}. P is
the conditional probability. Equation (2) is compatible with
Eq. (1) but more general [37]. It can even be extended to
non-Markov random processes with finite histories by adding
more hidden auxiliary variable variables [38].

However, it is difficult to infer the probabilities in Eq. (2),
particularly when N is large. Fortunately, the interactions
of complex systems are always localized, which means that
P(Xt+1 = xt+1|xt , A) can be factorized into local transitional
probabilities [39]:

P(Xt+1 = xt+1|xt , A) =
N∏

i=1

P
(
X t+1

i = xt+1
i |xt � A·i

)
, (3)

where � is the elementwise product, and A·i represents the ith
column of matrix A, and xt � A·i is a vector representing the
state combination of all neighbor nodes of i. Then

fi
(
X t+1

i = xt+1
i |xt � A·i

) ≡ P
(
X t+1

i = xt+1
i |xt � A·i

)
(4)

represents the local dynamics of node i, which is also called
a causal mechanism in the literature [39]. Where �A·i can be
regarded as a filter on all nodes’ states xt , so xt � A·i is the
combination of the states of i’s neighbors.

Notice, for most network dynamics, nodes always share a
same node dynamic, that is, fi ≡ f for any i. Therefore, the
dependence of f on xt � A·i need be a set function. That is,
for any node, f is permutation invariant on all its neighbors
such that f can be applied on neighborhoods with different
number of nodes [40,41].

Therefore, our task becomes the reconstruction of the net-
work A and learning the local dynamics fi according to the
observed time series x = (x1, x2, . . . , xT) with T time steps
on multiple samples.

034315-2

UNIVERSAL FRAMEWORK FOR RECONSTRUCTING … PHYSICAL REVIEW E 106, 034315 (2022)

FIG. 1. The architecture of the framework automated interaction and dynamics discovery (AIDD). The upper row outlines how the network
generator samples a column of the adjacency matrix for node i, and reconstructs the entire network according to a N × N dimensional parameter
matrix � with ith N rows column vector representing the probabilities of Â·i taking value 1 for node i; and the bottom row shows how the
dynamics learner predicts the log-probability of node i’s state at the next time step. We also show all the input and output vectors (matrices)
and their sizes beside each unit. The first step of the dynamics learner converts the input data of all nodes into their node representations h(1),
the second step multiplies the ith column of the adjacency matrix Â·i and the representations of all nodes h(1) to feed into the second neural
network NN (2) to generate a new representation h(2)

i with aggregated information of all neighbors of i; and the third step will concatenate
h(2)

i and xt
i to feed into the third neural network NN (3) to generate h(3)

i which represents the predicted state of i at the next step; after that,
the log-likelihood will be calculated according to h(3)

i and xt+1
i . Finally, the back-propagation algorithm will be automatically executed by the

deep-learning framework(e.g., PyTorch). Each neural network NN (1,2) is a three-layered feed-forward network with F = 256 hidden units and
ReLU activate function, while NN (3) has two layers.

B. Model

To finish the task, we build a parameterized model with
neural networks to represent the reconstructed network struc-
ture and node dynamics.

Our model consists of two parts, as shown in Fig. 1. The
first part is a network generator that can output a candidate
network adjacency matrix Â according to the parameters � =
{θi j}. The second part then attempts to simulate the node
dynamics fi by using a set of neural networks f̂φi for any node
i, which is parameterized by � = (φ1, . . . φN) to predict the
future state X̂ t+1

i according to the candidate matrix Â and the
observed state of the previous time step xt .

1. Network generation

Instead of using the complicated neural network archi-
tecture to generate the candidate network as described in
Ref. [26], we directly sample each element in the adjacency
matrix Âi j ∼ Bernoulli(θi j), where θi j ∈ [0, 1] represents the
probability that the entry of the ith row and the jth column
in Â takes the value 1. To make the sampling process dif-
ferentiable, we use the Gumbel-softmax technique [26,42] to

generate the adjacency matrix [30]:

Âi j = g(θi j, ξi j, τ)

g(θi j, ξi j, τ) + g(1 − θi j, ξ
′
i j, τ)

, (5)

where

g(θ, ξ , τ) = exp

[
log (θ) + ξ

τ

]
, (6)

and ξi j, ξ
′
i j ∼ Gumbel(0, 1) are random numbers following

the standard Gumbel distribution, and τ is the parameter of
temperature to adjust the evenness of distribution of the sam-
pling results which is always 1 in this paper. The random
numbers generated by Eq. (5) have a similar distribution as
Bernoulli(θi j), especially when τ is small. The simulated sam-
pling process is differentiable such that the gradients can be
passed by. When τ → 0, Âi j exactly equals 1 with probability
θi j , or 0 with probability 1 − θi j .

In this way, our framework has a large improvement
in flexibility and computational efficiency compared to the
encoder-decoder frameworks such as Ref. [26] and can be
applied to very large networks. Further, the introduction of
noise ξi j can push the network generator to jump out of local
minimums during optimization.

034315-3

YAN ZHANG et al. PHYSICAL REVIEW E 106, 034315 (2022)

2. Node dynamics simulation

According to Eq. (3), the dynamics learning part can also
be decomposed into local dynamics node by node. Each local
node dynamics can be modeled by a feed-forward neural
network.

To simulate very complex nonlinear node dynamics in
various types for each node, we adopt graph neural network
framework. Graph neural network (GNN) is a special kind of
neural networks that act on graph-structured data [22]. It con-
structs a parameterized message passing process on a given
graph structure, compares it with the real network dynamic
process, and adjust the parameters by the back-propagation
algorithm to simulate the real network dynamics process [26].

In our GNN framework, we decompose the message pass-
ing process into three steps as shown in Fig. 1. For any node
i, the first step is to encode its interaction with any other node
j ∈ [0, N] to form an abstract representation vector:

h(1)
i j = NN (1)(xt

i , xt
j

)
, (7)

with dimension F (in this paper, we set F = 128). By iterating
this computation for all j, we obtain a matrix:

h(1)
i· = (

h(1)
1 , h(1)

2 , . . . , h(1)
N

)
, (8)

with dimension F × N . This hidden variable represents all
possible interactions with i.

The second step is to filter out the irrelevant information
of nonadjacent nodes of node i according to the candidate
adjacency matrix generated in the previous step Â.,i:

h(2)
i = NN (2)

(
h(1)

i· · Â.,i
)
, (9)

where h(2)
i with dimension F is also the abstract representation

vector of i after aggregating the information of all i’s neigh-
bors. The last step is to generate a new hidden representation
vector prepared for output:

h(3)
i = NN (3)

(
xt

i , h(2)
i

)
. (10)

Here, we also feed xt
i into NN (3) to promote prediction

accuracy. In Eqs. (8), (9), and (10), NN (k) for k = 1, 2, 3 are
feed-forward neural networks with parameters {φ(k)} in the
nearly identical structures (with F hidden units and ReLU
activate function. NN (1,2) have three layers, NN (3) has two
layers). Notice that, the parameters φ(k) are shared for all
nodes (φ(k)

i = φ(k) for any node i and step k) which can re-
duce the number of parameters in a large sense. As shown in
Refs. [40,41], Eqs. (8), (9), and (10) can simulate any network
dynamics with the form of Eq. (3).

Finally, we will map the hidden representation of i: h(3)
i

into the logarithm of the probability (log-likelihood) that the
node state X̂ t+1

i taking the value x:

σ
(
x; h(3)

i

) ≡ log f̂i ≡ log P
(
X̂ t+1

i = x|xt � Â·i
)
, (11)

where σ is the function to map h(3)
i and xi to the log-

probability, and the functional form depends on the value
range V of node state.

If V = RD where D is the dimension of values, then σ

has the form of logarithm of the standard normal distribution
logN (μ, 1) with the mean vector μ = h(3)

i as the output of
NN (3), and the variance as the value one (or we can also

consider log-laplacian form logL(μ, 1), and different distri-
butions will affect the form of objective function as discussed
in the next subsection).

If V = {0, 1}D, h(3)
i is a one-hot vector representing for

discrete values, then σ is a log-softmax function: σ (x; h(3)
i) =

log[exp(h(3)
i)/

∑D
j=1 exp(h(3)

j)] and the output h(3)
i of NN (3)

represents the logarithms of the probabilities that X̂ t+1
i taking

each possible value.
To generate node states at time step t + 1, we can sample

values according to the probability P(X̂i) for node i indepen-
dently. In this way, we can simulate one step dynamics of all
nodes.

In general, the first step is to encode input information of
each node and possible neighbors into representations, the
second step is to aggregate the information from neighbors,
and the last step is to generate output. This design has been
verified to be suitable for learning various complex network
dynamics [30].

C. Objective function

With the model which can generate candidate network
and node dynamics, we can convert the network and node
dynamics reconstruction problem as an optimization problem
by minimising the following objective function:

L(�,�)

= EÂ∼B(�)

[
−

T∑
t=1

log P(X̂t+1 = xt+1|xt , Â,�)

]
+ λ

∑
i j

Âi j

≈ − 1

K

K∑
k=1

T −1∑
t=1

N∑
i=1

Li + λ
∑

i j

Âi j, (12)

where

Li = log f̂i(x
t+1
i) ≡ log P

(
X̂ t+1

i = xt+1
i |xt � Âk

·i; φ
)

(13)

is the local log-likelihood, and K is the number of samples
for matrix Â under a given �, Âk is the kth sample of ad-
jacency matrix, and xt

i is the observational vector of state
of node i at time t . B represents Bernoulli distribution. We
sample K candidate networks under the same parameters �

to evaluate dynamics simulator to improve accuracy. Thus,
the objective function contains two terms, the former being
the log-likelihood, which can be decomposed into local log-
likelihood. The latter is the structural loss to conform the
network to be sparse while avoiding over-fitting. The parame-
ter λ can adjust the relative importance of the structural loss.

It can be easily derived that if the state space V = RD, and
σ takes form of Normal or Laplacian distribution, then the
local log-likelihood (13) is

Li = ∥∥xt+1
i − h(3)

i

∥∥
p, (14)

where p = 2 if Gaussian distribution is adopted and Li is
mean-squared error (MSE), and p = 1 if Laplacian distribu-
tion is used and Li is mean-absolute error (MAE). And h(3)

i is
the output of the last layer which represents the mean vector
μ of the Gaussian (Laplacian) distribution.

Then, the network dynamics to fit the observational data
can be obtained by tuning the parameters of θ·i in candidate

034315-4

UNIVERSAL FRAMEWORK FOR RECONSTRUCTING … PHYSICAL REVIEW E 106, 034315 (2022)

adjacency matrix and φ in dynamics simulators to optimize
the objective functions (14) node by node [43]. We use the
stochastic gradient descent algorithm to optimize.

D. Training

To train the model, we separate the time series data into
data pairs with the following format (xt , xt+1) for any time
step t . We feed xt into the neural network model of any node i
(selected one by one) to get the prediction of i’s node state at
next time x̂t+1

i , and this will be compared with the target xt+1
i .

The objective function will be evaluate and to train all the
parameters. The computation can be parallel in batches, we
group data pairs (xt , xt+1) into batches. In the experiments,
we sample the candidate network at each train epoch, that
is equivalent to set K as the total number of training steps.
After forward computation, the parameters in the model will
be updated according to stochastic gradient decent algorithm.
We do not need to derive the explicit expression of the gradi-
ents, the platforms like PyTorch or Tensorflow can calculate
the gradients automatically by using automatic differentiation
technique. See Sec. 1 of the Supplemental Material (SM) [44]
for more details about training algorithm.

E. Performance metrics

We separate all the time series data into training, val-
idation, and test for training the model, selecting the
hyper-parameters, and testing the performance of the model,
respectively. See Sec. 4 of the Supplemental Material [44] for
the ratios of these three data sets are various for dynamics.

To evaluate the effectiveness of our model in network
inference problem and dynamics prediction task, we use the
following indicators on the test set.

AUC (area under curve). It evaluates the accuracy of the
reconstructed network. It is defined as the area under the ROC
curve and is an index for comprehensive evaluation of accu-
racy and recall. We also use AUC to evaluate the performance
of the dynamics reconstruction for binary dynamics.

MSE (mean-squared error). It measures the performance
of the node dynamics reconstruction. It is the expectation of
the square of the difference between the true value and the
predicted value (estimated value).

MAE (mean-absolute error). It measures the performance
of the node dynamics reconstruction. It is the expectation of
the absolute of the difference between the true value and the
predicted value (estimated value).

III. RESULTS

A. Experimental design

To test our method on various network structures and dy-
namics, we use different well-known dynamics on both real
and modeled networks to generate time series data.

1. Networks

The networks we used are shown in Table I. These graphs
are either generated by well-known models (ER [45] for Erdos
Renyi, WS [2] for Watts-Strogatz, and BA [46] for Barabasi-
Albert) or from empirical data including a gene network (for

TABLE I. Network parameter of real network. For each net-
work, N, E , 〈k〉, and 〈c〉 represent the number of nodes, the
number of edges, average degree, and average clustering coefficient,
respectively.

Network N E 〈k〉 〈c〉 Directed

Email 1133 10 902 4 0.220 No
Road 1174 2834 2 0.078 No
Blog 1224 19 025 15 0.210 Yes
Dorm 217 2672 24 0.399 Yes
City 371 2752 7 0.485 Yes
Gene 100 195 2 0.070 Yes

Saccharomyces cerevisiae, Gene) [47], an intercity traffic net-
work (City) of China, three social networks (Email, Dorm,
and Blog), and a road network (Road) [48]. See Sec. 3 of
the Supplemental Material [44] for more details for empirical
networks. In the experiments where the number of nodes is
less than 1000, the weight λ [see Eq. (12)] is set to 0.0001,
while λ is set to 0.001 for larger networks.

2. Test dynamics

We generate time series data by a set of network dynam-
ics including continuous, discrete, and binary dynamics. As
shown in Table II, Spring (spring dynamics) [26], SIR (an
inter-city meta-population SIR epidemic model) [49,50], and
Michaelis–Menten kinetics [51] all are examples of contin-
uous dynamics. The coupled map network (CMN) [52] and
the voter model [53] are representatives of discrete and binary
dynamics, respectively. The equations for describing these dy-
namics are reported in Table II, and more details are referred
to Sec. 4 of the Supplemental Material [44]. Notice that all the
dynamics listed in the table can be converted into a Markovian
dynamics.

B. Experimental results

To generate time series data, we ran the simulation for
several time steps for each dynamical model and network. All
the reported results are on the testing dataset. We compare
our model to a series of baseline methods for both network
inference and single step forecasting tasks. ARNI [15] and
NRI [26] are both the state-of-the-art models for network
inference and time series forecasting. The former is based
on the block-orthogonal regression method, and the latter is
based on deep learning and graph networks. Two other fre-
quently used statistical metrics, partial correlation and mutual
information, are also compared on the network inference task.
In addition, the classic time series forecasting model, long
short-term memory (LSTM) [38], is compared on the predic-
tion task. See Sec. 2 of the Supplemental Material [44] for
the details of compared methods. The comparison results on
various networks and dynamics are shown in Table III.

The model can also work well on dynamics simulation. As
shown in Table III, the MSE errors for continuous and discrete
time series are always smaller than 10−3 for single step predic-
tion. The AUC accuracy for binary state dynamics can also get
high values. The model can also output multistep prediction
results by feeding the result of the one-step prediction output

034315-5

YAN ZHANG et al. PHYSICAL REVIEW E 106, 034315 (2022)

TABLE II. Functions for various dynamical rules, where Xi is the state of i and Ni represents the neighbors of i.

Type Model Dynamics Description

Continuous Spring dri
dt = vi where Xi ≡ {ri, vi}, ri, vi ∈ R2

dvi
dt = −k

∑
j∈Ni

(ri − r j) k = 0.1

Continuous Michaelis–Menten kinetics dXi
dt = −Xi + 1

|Ni |
∑

j∈Ni

Xj

1+Xj
+ ξi Xi ∈ R, ξi ∼ N (0, 0.01)

Continuous SIR dsn
dt = −asnin + ω

∑
m �=n

Pnm(sm − sn) where Xn ≡ {sn, in, rn} ∈ [0, 1]3

din
dt = asnin − bin + ω

∑
m �=n

Pnm(im − in) a = 0.27, b = 0.12, ω = 0.02

drn
dt = bin + ω

∑
m �=n

Pnm(rm − rn) Pnm ∈ [0, 1] (see Sec. 4 of SM)

Discrete Coupled map network X t+1
i = (1 − ε) f (X t

i) + ε

|Ni |
N∑

j=1
f (X t

j) where Xi ∈ [0, 1]

f (X t
i) = ηX t

i (1 − X t
i), η = 3.5, ε = 0.2

Binary Voter P(X t+1
i = 1|X t

j∈Ni
) =

∑
j∈Ni

Xt
j

|Ni | Xj ∈ {0, 1}

back to the model as the input. Figure 2 shows the results for
the selected dynamics.

C. Performance under different network parameters

In general, our model works very well on the large sparse
networks, and the performance on both tasks decreases as the
edge density increases, as shown in Fig. 3(b).

We can improve the accuracy by increasing the amount
of data. Figure 3(a) shows how the AUC depends on both
network size and data volume to be fed into the model system-
atically. There is a trade-off between network size and data
volume under a given accuracy, as shown in Fig. 3(a). It is
interesting to observe that data volume is sensitive to network
size only when the number of nodes is between 300 and

FIG. 2. Multistep prediction results of AIDD on CMN dynamics
data in a 10-node ER network. In panel (a), we show the time series
data of multistep predictions and the ground truths for two selected
nodes. In panel (b), we show how the mean-squared error (MSE)
increases with time for CMN dynamics. The parameters are the same
as in Table III.

500, and beyond that, a minimum amount of data volume is
sufficient to obtain an acceptable accuracy (e.g., AUC = 0.7),
and this almost does not depend on how large the network is.
We suppose that the given total number of epochs is sufficient
for training the model only for networks smaller than 300,
which is the reason why a sudden increase in data volume
is observed. When the size is larger than 500, the model can
converge quickly when sufficient data volume is provided;
therefore, the curves become insensitive again.

D. More experiments

To further test our method on different conditions, we
design more experiments including network and dynamics
reconstruction on incomplete networks, under the real sce-
nario, and control experiment with learned network and node
dynamics.

1. Robustness against noise and hidden nodes

A good data-driven model must be robust against noise
and unobservable nodes such that it can be applied to the real
world. To show the robustness against noise of AIDD, we plot
changes in AUC with the magnitude of noise on Michaelis–
Menten kinetics [51], which can describe the dynamics of
Gene regulatory networks, as shown in Fig. 4. Our model can
recover the network structure with 0.85 AUC when the mean
magnitude of noise is 0.3.

In real applications, we can only obtain partial information
of the entire system owing to the limitations of observation.
Thus, a certain proportion of nodes are unobservable or hid-
den. This requires the inference algorithm to be robust to
hidden nodes. Thus, we test the AIDD on an incomplete net-
work. To generate the incomplete network data as the ground
truth, we randomly select a certain percentage of nodes as
the hidden nodes [Fig. 4(a)], and the time series data of these
nodes are removed. AUC decreases and MSE increases as the
fraction of the number of unobserved nodes increases on both
spring and voice dynamics, as shown in Fig. 4(c); however, the
sensitivity depends on various types of dynamics. It is found
that when the proportion of missing nodes reaches 50%, the
inference accuracy is still above 95%, which proves that our

034315-6

UNIVERSAL FRAMEWORK FOR RECONSTRUCTING … PHYSICAL REVIEW E 106, 034315 (2022)

TA
B

L
E

II
I.

C
om

pa
ri

so
ns

of
pe

rf
or

m
an

ce
on

ne
tw

or
k

in
fe

re
nc

e
an

d
dy

na
m

ic
s

pr
ed

ic
tio

n
ta

sk
s

be
tw

ee
n

A
ID

D
an

d
ot

he
r

se
le

ct
ed

m
et

ho
ds

(c
ol

um
ns

)
on

di
ff

er
en

td
yn

am
ic

s
an

d
ne

tw
or

ks
(r

ow
s)

.I
n

th
e

ne
tw

or
k

co
lu

m
n,

w
e

us
e

ne
tw

or
k-

si
ze

fo
rm

at
.T

he
ne

tw
or

ks
m

ar
ke

d
w

ith
“D

”
re

pr
es

en
td

ir
ec

te
d

gr
ap

hs
.T

he
sa

m
e

da
ta

vo
lu

m
e

is
sh

ar
ed

fo
rd

if
fe

re
nt

m
et

ho
ds

in
on

e
ro

w
.T

he
ite

m
s

m
ar

ke
d

by
a

da
sh

(—
)

in
di

ca
te

th
at

va
lid

re
su

lts
of

th
e

m
od

el
ca

nn
ot

be
ob

ta
in

ed
du

e
to

th
e

lim
ita

tio
ns

of
th

e
sp

ec
ifi

c
m

et
ho

d
on

dy
na

m
ic

s,
m

em
or

y,
or

tim
e

co
ns

um
pt

io
n.

T
he

be
st

re
su

lts
am

on
g

al
lt

he
co

m
pa

re
d

al
go

ri
th

m
s

in
th

e
sa

m
e

ro
w

ar
e

bo
ld

fa
ce

d,
an

d
th

e
se

co
nd

-b
es

tr
es

ul
ts

ar
e

m
ar

ke
d

by
an

as
te

ri
sk

(*
).

A
ll

ne
tw

or
ks

ge
ne

ra
te

d
by

m
od

el
s

sh
ar

e
th

e
sa

m
e

ed
ge

de
ns

ity
va

lu
e,

w
hi

ch
is

1%
fo

r
la

rg
e

ne
tw

or
ks

(s
iz

e
>

10
),

an
d

it
is

20
%

an
d

3%
fo

r
sm

al
ln

et
w

or
ks

w
ith

si
ze

s
sm

al
le

r
th

an
10

,a
nd

E
R

ne
tw

or
ks

w
ith

si
ze

=
20

0,
re

sp
ec

tiv
el

y,
to

av
oi

d
is

ol
at

ed
no

de
s.

A
ll

th
e

re
su

lts
ar

e
th

e
av

er
ag

es
of

fiv
e

re
pe

at
ed

ex
pe

ri
m

en
ts

.

A
R

N
I

M
I

PC
N

R
I

L
ST

M
O

U
R

S

Ty
pe

M
od

el
N

et
w

or
k

A
U

C
M

SE
A

U
C

A
U

C
M

SE
/
A

U
C

_D
yn

A
U

C
M

SE
/
A

U
C

_D
yn

M
SE

/
A

U
C

_D
yn

A
U

C

C
on

tin
uo

us
Sp

ri
ng

E
R

-1
0

0.
58

53
1.

33
×

10
−3

0.
75

00
0.

82
50

2.
60

×
10

−8
0.

99
98

*
2.

98
×

10
−4

2.
70

×
10

−4
*

1.
0

W
S-

10
0.

51
25

1.
58

×
10

−3
0.

68
75

0.
78

75
8.

40
×

10
−8

0.
99

97
*

3.
35

×
10

−4
3.

31
×

10
−4

*
1.

0
B

A
-1

0
0.

51
69

1.
10

×
10

−3
0.

64
22

0.
65

71
7.

00
×

10
−1

0
0.

99
99

*
2.

14
×

10
−4

2.
90

×
10

−5
*

1.
0

E
R

-2
00

0
—

—
0.

49
97

—
—

—
2.

25
×

10
−3

1.
18

×
10

−5
0.

98
86

W
S-

20
00

—
—

0.
50

02
—

—
—

5.
89

×
10

−3
8.

51
×

10
−6

0.
99

33
B

A
-2

00
0

—
—

0.
50

10
—

—
—

4.
54

×
10

−3
2.

09
×

10
−3

0.
95

23
SI

R
C

ity
-3

71
(D

)
0.

54
24

*
8.

25
×

10
−3

0.
50

27
0.

51
19

—
—

2.
28

×
10

−3
*

2.
98

×
10

−5
0.

91
56

M
en

te
n

G
en

e-
10

0(
D

)
1.

0
9.

71
×

10
−3

0.
54

16
0.

65
74

—
—

2.
29

×
10

−3
*

4.
37

×
10

−5
0.

99
60

*
D

is
cr

et
e

C
M

N
E

R
-1

0
1.

0
2.

33
×

10
−9

0.
57

45
0.

78
04

1.
40

×
10

−5
0.

88
50

2.
60

×
10

−4
5.

60
×

10
−6

*
1.

0
W

S-
10

1.
0

2.
35

×
10

−9
0.

68
75

0.
83

75
9.

40
×

10
−6

0.
93

31
2.

40
×

10
−4

2.
80

×
10

−6
*

1.
0

B
A

-1
0

1.
0

2.
40

×
10

−9
0.

43
90

0.
74

39
1.

30
×

10
−5

0.
67

53
9.

21
×

10
−5

6.
90

×
10

−6
*

1.
0

E
R

-2
00

0.
84

41
*

4.
17

×
10

−2
0.

57
74

0.
76

48
—

—
5.

91
×

10
−5

*
2.

04
×

10
−6

0.
99

87
W

S-
20

0
1.

0
2.

36
×

10
−9

0.
69

69
0.

75
06

—
—

1.
63

×
10

−4
1.

95
×

10
−6

*
0.

99
87

*
B

A
-2

00
0.

88
40

*
2.

45
×

10
−2

0.
55

33
0.

74
93

—
—

1.
46

×
10

−4
*

2.
57

×
10

−6
0.

98
74

W
S-

10
00

—
—

0.
56

70
—

—
—

3.
54

×
10

−5
2.

92
×

10
−6

0.
97

95
B

A
-1

00
0

—
—

0.
52

90
—

—
—

3.
46

×
10

−5
5.

48
×

10
−5

0.
91

05
B

in
ar

y
V

ot
er

E
R

-1
0

—
—

0.
43

90
0.

45
52

0.
91

56
*

0.
53

05
*

0.
54

13
0.

96
64

1.
0

W
S-

10
—

—
0.

43
75

0.
52

50
*

0.
83

01
*

0.
51

96
0.

69
66

0.
94

52
1.

0
B

A
-1

0
—

—
0.

43
90

0.
46

07
0.

95
10

*
0.

51
92

*
0.

54
26

0.
98

53
1.

0
W

S-
10

00
—

—
0.

54
70

—
—

—
0.

53
01

0.
65

67
0.

99
84

B
A

-1
00

0
—

—
0.

50
30

—
—

—
0.

52
36

0.
67

46
0.

95
73

E
m

ai
l-

11
33

—
—

0.
49

99
—

—
—

0.
53

29
0.

72
86

0.
97

37
R

oa
d-

11
74

—
—

0.
50

04
—

—
—

0.
54

48
0.

88
29

0.
99

99
D

or
m

-2
17

(D
)

—
—

0.
52

19
—

—
—

0.
56

88
0.

69
18

0.
99

20
B

lo
g-

12
24

(D
)

—
—

0.
49

95
—

—
—

0.
53

00
0.

63
66

0.
84

01

034315-7

YAN ZHANG et al. PHYSICAL REVIEW E 106, 034315 (2022)

FIG. 3. The performance of AIDD under different factors in network inference and dynamics learning. Panel (a) shows how the number
of nodes and the volume of data (the number of samples× the number of time steps, which was fixed to 100) jointly influence the network
inference accuracy on WS networks under CMN dynamics. With the exception of 100 nodes with a 4% edge density, all nodes shared the same
edge density value, which was 1%. Panel (b) shows how performance decreases with edge density. For the experiments in panel (b), we set the
number of nodes to 100, and the sparse matrix parameter λ was set to 0.

FIG. 4. The robustness evaluation of our model against noise and missing nodes. Panel (a) shows a schematic ground-truth network with
missing information on the unobserved nodes (grey nodes). Panel (b) shows the influence of proportion of unobserved nodes on the accuracy of
interaction inference on the partial network with observed nodes measured by AUC, and the accuracy of dynamic predictions (inset) measured
by the MSE of the observable nodes on Spring, CMN, and the AUC of the observable nodes on Voter dynamics. All the experiments were
conducted on an ER network with 100 nodes, and all networks generated by models share the same edge density value, which is 4%. Panel
(c) shows the dependence of AUC and MSE on the mean of noise added on each node for the Michaelis–Menten kinetics (Gene dynamics)
on the yeast S. cerevisiae gene network with 100 nodes. Panel (d) shows the ability to infer interactions on the entire network (the light color
bars) and the unobserved partial networks (the dark color bars). All the experiments are conducted on CMN and Voter dynamics with ER, WS,
and BA networks, and all networks contain 100 nodes with 10% unobservable nodes selected randomly, and all networks generated by models
share the same edge density value, which is 4%.

034315-8

UNIVERSAL FRAMEWORK FOR RECONSTRUCTING … PHYSICAL REVIEW E 106, 034315 (2022)

FIG. 5. Performances of AIDD and other compared methods on network and dynamics reconstruction for the gene regulatory network
of yeast S. cerevisiae with 100 nodes. (a) ROC curves of different network inference methods. True positive rate (y axis) means the fraction
of the actual links are classified correctly by our model, and the false positive rate (x axis) represents the fraction of the node pairs without
actual link are classified as links by our model. The comparison methods include Bayesian network (BN), partial correlation (PC), mutual
information (MI), and AIDD. The AUC for different methods is marked in the legend. (b) shows the comparison between the observed time
series of the expression data (real) and the predicted data on selected genes. In this plot, the solid lines represent the predictions and the dotted
lines represent the observed data.

model can achieve superior results in the absence of normally
sufficient amounts of data.

Furthermore, we test the ability of AIDD to reveal un-
known network structures of unobservable nodes on CMN
and Voter dynamics, with only the number of hidden nodes
available. We completed this task by performing the same in-
teraction inference task, setting the states for unknown nodes
to random values. Figure 4(d) shows the AUCs of the link
structures of unknown networks on Voter and CMN dynam-
ics. The results reveal that the network inference accuracy is
robust for missing nodes. The algorithm can recover the inter-
actions even for unobservable nodes with over 80% accuracy.
See Ref. [54] and Sec. 5 of the Supplemental Material [44] for
more details of the algorithm.

2. Reconstruction performance in actual scenarios

To verify that our algorithm can be applied to actual sce-
narios and not only on toy models, we attempt to infer the real
subnetwork structure from the known transcriptional network
of yeast S. cerevisiae according to the time series data of
mRNA concentrations generated by GeneNetWeaver (GNW)
[47], a famous simulator for gene dynamics.

The networks used by GNWs are extracted from known bi-
ological interaction networks (Escherichia coli, S. cerevisiae,
etc.). On these networks, GNW uses a set of dynamical equa-
tions to simulate the transcription and translation processes,
and it has considered many factors close to real situations.
Therefore, GNW is a famous platform for benchmarking and
performance assessment of network inference methods.

In the experiment, we used yeast S. cerevisiae gene net-
work with 100 nodes as the benchmark gene network, and
we used the default parameters of DREAM4_In-Silico in
GeneNetWeaver software to generate data. For the dynamics
simulator, we use different neural networks for each node be-
cause of the heterogeneity of node dynamics and the existence
of latent variables, noise, and perturbations [47]. We com-
pare our method with partial correlation, Bayesian network
inference, and mutual information algorithms. Our method
outperforms others on network inference [Fig. 5(a)] on the

AUC(0.82). It can also predict the dynamics with a relatively
high accuracy [the mean-absolute error (MAE) is 0.038; see
Fig. 5]. This indicates that our method can perform well
realistic gene regulatory dynamics.

3. Control experiments

To further verify that AIDD has the ability to learn the
ground-truth dynamics and that the well trained adjacency
matrix Â and node dynamics model f̂i(X̂ t+1

i |xt , Â) for all i
can replace the original system (A and fi), we design control
experiments. The reasons why we choose the control problem
as the test bed for our model include (1) the control problem
in complex network is very important, and it has relevance to
many engineering fields [4]; (2) the control problem is more
difficult than predictions. This is true because to control a
system means to intervene in it. As a result, we have stood
at least on the second level of the causal hierarchy [55].

Here, our control problem is to find a control law based on
the well trained system (learned network Â and node dynamics
f̂i) such that some control objective can be achieved. And after
the optimized control law is found, we can further apply it
on the ground-truth system (real network structure A and real
node dynamics fi). We hope that the same control objective on
the ground-truth system can also be achieved. It is obvious that
only if the learned network Â and node dynamics f̂i are very
closed to the ground-truth system, the same control target can
be realized. In this way, we can test if the learned system can
reproduce the causal mechanisms of the ground-truth system
but not merely the pseudocausal laws based on correlations.

For example, suppose the ground-truth system is a spring-
mass dynamical system with 10 nodes (masses) and 18
edges(springs) to form the network A as shown in Fig. 6(a),
and the node dynamic fi is the spring-mass dynamics. We
can train an AIDD model (Â, f̂i) to reconstruct this network
and node dynamics. After a large number of steps of training,
we can do the control experiment under the trained system
(Â, f̂i). Suppose our control objective is to make all nodes
to move in the same direction. However, we can only exert
forces on the three driver nodes (0,1,3) as shown in Fig. 6(a).

034315-9

YAN ZHANG et al. PHYSICAL REVIEW E 106, 034315 (2022)

FIG. 6. The control experiments on learned models. Panel (a) shows the spring network that we studied for the first experiment. Three large
nodes are driver nodes, and the others are target nodes. The control objective is to request all masses to have the same movement direction.
Panel (b) shows the final movement states of all the target nodes under the controls. X and Y represents the two-dimensional coordinates of
positions for all masses. Panel (c) shows two loss curves for evaluating goal achievement versus time steps of the controls. One represents the
results of learned model, and the other is the ground truth. Panel (d) is a coupled mapping network that we studied in the second experiment.
Two large nodes were selected as driver nodes. The control objective is to ask all oscillators to have the same value of 0.6, which is the mean of
the value range for all nodes. Panel (e) shows the oscillations of all target nodes during control. Panel (f) shows two loss curves for evaluating
goal achievement versus time steps of the controls. One is for the trained model, and the other for the ground truth.

We can train another neural network (the controller) to learn
the control law, i.e., how to exert forces on drivers to let all
nodes move in the same direction. The inputs to the controller
are the states of all nodes on the learned system at each time,
the outputs are the forces (including the magnitude and the
direction) that will exert on the three drivers at that time,
and the training loss function is the error in achieving the
control objective. After training enough time steps, when the
controller converges, we can transfer the controller optimized
on the learned system (Â, f̂i) onto the ground-truth system to
achieve the same objective. Figures 6(b) and 6(c) show the tra-
jectories of nodes and the errors in achieving the objectives on
the ground-truth system and the learned system at each time
step after the controller has exerted forces onto the drivers.
The two curves collapse together after about six time steps of
controls which means the learned system and the ground truth
have similar behaviors under the control law. And the fact that
the errors tend to zero means the control objectives have been
realized.

The second example is a similar control experiment on
CMN dynamics. In which the nodes are oscillators, the links
are the connections, the network is a small world network
generated by the WS model, and the node dynamic is the
CMN dynamics. The control objective is to synchronize all
nodes by exerting forces on the driver nodes (2 and 8). From
Figs. 6(e) and 6(f), the controls are not well achieved for
all nodes because the error curves do not converge to zeros.
However, the two error curves overlap very well, indicat-

ing that the surrogate behaves identically to the ground-truth
model.

These experiments show that the AIDD model can learn
the mechanism of causality such that we can apply the control
law optimized on the learned system onto the real system.

IV. CONCLUSION

In this paper, we propose a unified framework for network
structure reconstruction and node dynamics simulation in the
same time. We also propose a new standard based on control
tasks to evaluate whether the true network dynamics can be
learned.

Compared to our previous work in Ref. [30], we formulate
our problem in a more rigor mathematical form which is
based on Markov dynamics and localized networked interac-
tions. We also propose a new mathematical framework for our
model. A unified objective function based on log-likelihood
is provided which is the theoretical foundation of why the
model can be applied on different dynamics. We also describe
how the optimization objective function can be decomposed
into single nodes which is the basis for a new deep learning
based node by node network reconstruction method. From
experimental aspect, the main highlights of the model include
scalability, universality, and robustness. The high scalability
is reflected by the fact that the model can be applied to large
networks with more than thousands of nodes with more than
90% accuracy because the training procedure can be taken

034315-10

UNIVERSAL FRAMEWORK FOR RECONSTRUCTING … PHYSICAL REVIEW E 106, 034315 (2022)

node by node. It is a universal framework because it can be
applied to various types of dynamics, including continuous,
discrete, and binary. Our model is robust not only on noisy
input signals, but also on unobservable nodes. It can recover
an entire network even when time series data is missing with
more than 90% accuracy. It was also shown to work well on
datasets generated by GeneNetWeaver, which emulates the
real environment of gene regulatory network dynamics.

Furthermore, we propose a new method based on controls
to test the validity of the learned model. Control experiments
on spring and CMN dynamics of small networks have proved
that well-trained models can replace the real systems.

This framework has many potential applications. For
example, our method can be used to infer missing links ac-
cording to the dynamics information. It can also be used in
time series forecasting. In contrast to other forecasting mod-
els, a clear binary network can be output by the model, which
can provide deeper insights into element interactions and po-
tential causal links, increasing the explanability of the model.

However, some drawbacks are present in the current frame-
work. First, a large amount of training data, especially the time
series in diverse initial conditions, is required to obtain a good
model. Nevertheless, it is difficult to obtain time series data
in many cases. Hence, we may develop new models that are
suitable for small data.

Second, all the dynamics considered in this paper are
Markovian, but this property is hardly satisfied in real cases.
New extensions and experiments on non-Markovian dynamics
should be conducted. For example, we can use a recurrent neu-
ral network instead of a feed-forward network as the dynamics
simulating component.

ACKNOWLEDGMENTS

We acknowledge Prof. Qinghua Chen, Dr. Lifei Wang, and
the workshops in Swarma Club for the helpful discussion.
We acknowledge the support of the National Natural Science
Foundation of China (NSFC) under Grant No. 61673070.

[1] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-
U. Hwang, Complex networks: Structure and dynamics,
Phys. Rep. 424, 175 (2006).

[2] D. J. Watts and S. H. Strogatz, Collective dynamics of “small-
world” networks, Nature (London) 393, 440 (1998).

[3] J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, and D.
Sejdinovic, Detecting and quantifying causal associations in
large nonlinear time series datasets, Sci. Adv. 5, eaau4996
(2019).

[4] Y.-Y. Liu and A.-L. Barabási, Control principles of complex
systems, Rev. Mod. Phys. 88, 035006 (2016).

[5] W.-X. Wang, Y.-C. Lai, and C. Grebogi, Data based identi-
fication and prediction of nonlinear and complex dynamical
systems, Phys. Rep. 644, 1 (2016).

[6] S. Ha and H. Jeong, Deep learning reveals hidden interactions
in complex systems, arXiv:2001.02539

[7] J. Pearl, Causality (Cambridge University Press, Cambridge,
UK, 2009).

[8] A. Tank, I. Covert, N. Foti, A. Shojaie, and E. Fox, Neu-
ral Granger causality for nonlinear time series, Stat 1050, 16
(2018).

[9] S. Löwe, D. Madras, R. Zemel, and M. Welling, Amortized
causal discovery: Learning to infer causal graphs from time-
series data, Proc. Mach. Learn. Res. 177, 509 (2022).

[10] C. Glymour, K. Zhang, and P. Spirtes, Review of causal discov-
ery methods based on graphical models, Front. Genet. 10, 524
(2019).

[11] J. Peng, P. Wang, N. Zhou, and J. Zhu, Partial correlation esti-
mation by joint sparse regression models, J. Am. Stat. Assoc.
104, 735 (2009).

[12] M. Nitzan, J. Casadiego, and M. Timme, Revealing physi-
cal interaction networks from statistics of collective dynamics,
Sci. Adv. 3, e1600396 (2017).

[13] H. Liu, J. Kim, and E. Shlizerman, Functional connectomics
from neural dynamics: Probabilistic graphical models for neu-
ronal network of caenorhabditis elegans, Philos. Trans. Roy.
Soc. B: Biol. Sci. 373, 20170377 (2018).

[14] J. Runge, Causal network reconstruction from time series:
From theoretical assumptions to practical estimation, Chaos 28,
075310 (2018).

[15] J. Casadiego, M. Nitzan, S. Hallerberg, and M. Timme,
Model-free inference of direct network interactions from
nonlinear collective dynamics, Nat. Commun. 8, 2192
(2017).

[16] L. Li, D. Xu, H. Peng, J. Kurths, and Y. Yang, Reconstruction
of complex network based on the noise via QR decomposition
and compressed sensing, Sci. Rep. 7, 15036 (2017).

[17] C. W. Granger, Investigating causal relations by economet-
ric models and cross-spectral methods, Econometrica 37, 424
(1969).

[18] F. Takens, Detecting strange attractors in turbulence, in Dynam-
ical Systems and Turbulence, Warwick 1980 (Springer, Berlin,
1981), pp. 366–381.

[19] P. J. Brockwell, R. A. Davis, and S. E. Fienberg, Time Series:
Theory and Methods (Springer Science & Business Media,
Cham, 1991).

[20] H. Jaeger, The “echo state” approach to analysing and train-
ing recurrent neural networks-with an erratum note, Bonn,
Germany: German National Research Center for Information
Technology GMD Technical Report 148, 13 (2001).

[21] B. Schrauwen, D. Verstraeten, and J. Van Campenhout, An
overview of reservoir computing: Theory, applications and im-
plementations, in Proceedings of the 15th European Symposium
on Artificial Neural Networks (2007), pp. 471–482.

[22] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G.
Monfardini, The graph neural network model, IEEE Trans.
Neural Netw. 20, 61 (2008).

[23] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A.
Santoro, R. Faulkner et al., Relational inductive biases, deep
learning, and graph networks, arXiv:1806.01261.

[24] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu,
A comprehensive survey on graph neural networks,
IEEE Trans. Neural Netw. Learn. Syst. 32, 4 (2021).

034315-11

https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1038/30918
https://doi.org/10.1126/sciadv.aau4996
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1016/j.physrep.2016.06.004
http://arxiv.org/abs/arXiv:2001.02539
https://proceedings.mlr.press/v177/lowe22a.html
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.1198/jasa.2009.0126
https://doi.org/10.1126/sciadv.1600396
https://doi.org/10.1098/rstb.2017.0377
https://doi.org/10.1063/1.5025050
https://doi.org/10.1038/s41467-017-02288-4
https://doi.org/10.1038/s41598-017-15181-3
https://doi.org/10.2307/1912791
https://doi.org/10.1109/TNN.2008.2005605
http://arxiv.org/abs/arXiv:1806.01261
https://doi.org/10.1109/TNNLS.2020.2978386

YAN ZHANG et al. PHYSICAL REVIEW E 106, 034315 (2022)

[25] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel,
M. Riedmiller, R. Hadsell, and P. Battaglia, Graph networks
as learnable physics engines for inference and control, in Pro-
ceedings of the International Conference on Machine Learning
(PMLR, 2018), pp. 4470–4479.

[26] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, Neu-
ral relational inference for interacting systems, in Proceedings
of the International Conference on Machine Learning (PMLR,
2018), pp. 2688–2697.

[27] Z. Zhang, L. Wang, S. Wang, R. Tao, J. Xiao, M. Mou, J. Cai,
and J. Zhang, Neural gene network constructor: A neural based
model for reconstructing gene regulatory network, bioRxiv,
842369 (2019).

[28] C. Zheng, X. Fan, C. Wang, and J. Qi, Gman: A graph multi-
attention network for traffic prediction, in Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI Press, Menlo
Park, CA, 2020), Vol. 34, pp. 1234–1241.

[29] F. Alet, E. Weng, T. Lozano-Pérez, and L. P. Kaelbling,
Neural relational inference with fast modular meta-learning,
Adv. Neural Info. Process. Syst. 32, 11827 (2019).

[30] Z. Zhang, Y. Zhao, J. Liu, S. Wang, R. Tao, R. Xin, and J.
Zhang, A general deep learning framework for network re-
construction and dynamics learning, Appl. Netw. Sci. 4, 110
(2019).

[31] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H.
Kanezashi, T. Kaler, T. Schardl, and C. Leiserson, Evolvegcn:
Evolving graph convolutional networks for dynamic graphs,
in Proceedings of the AAAI Conference on Artificial In-
telligence (AAAI Press, Menlo Park, CA, 2020), Vol. 34,
pp. 5363–5370.

[32] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
and Y. Bengio, Graph attention networks, in Proceedings of the
International Conference on Learning Representations (Open-
Review.net, 2018).

[33] D. Wang, Z. Zhang, Y. Ma, T. Zhao, T. Jiang, N. V. Chawla, and
M. Jiang, Learning attribute-structure co-evolutions in dynamic
graphs, arXiv:2007.13004.

[34] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, Graph wavenet
for deep spatial-temporal graph modeling, in Proceedings of the
28th International Joint Conference on Artificial Intelligence
(IJCAI’19) (International Joint Conferences on Artificial Intel-
ligence Organization, 2019), pp. 1907–1913.

[35] I. Ayed, E. de Bézenac, A. Pajot, J. Brajard, and P.
Gallinari, Learning dynamical systems from partial observa-
tions, arXiv:1902.11136.

[36] A. G. Baydin, P. Barak, A. A. Radul, and J. Siskind, Automatic
differentiation in machine learning: A survey, J. Mach. Learn.
Res. 18, 1 (2018).

[37] C. W. Gardiner et al., Handbook of Stochastic Methods, Vol. 3
(Springer, Berlin, 1985).

[38] S. Hochreiter and J. Schmidhuber, Long short-term memory,
Neural Comput. 9, 1735 (1997).

[39] B. Schölkopf, Causality for machine learning,
arXiv:1911.10500.

[40] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R.
Salakhutdinov, and A. J. Smola, Deep sets, Adv. Neural Info.
Process. Syst. 30 (2017).

[41] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, How powerful are
graph neural networks? in Proceedings of the 7th International
Conference on Learning Representations (ICLR, New Orleans,
LA, 2019).

[42] E. Jang, S. Gu, and B. Poole, Categorical reparameterization
with Gumbel-Softmax, in Proceedings of the 5th International
Conference on Learning Representations (ICLR’17) (OpenRe-
view.net, 2017).

[43] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and
J. Sohl-Dickstein, Deep neural networks as gaussian processes,
in Proceedings of the 6th International Conference on Learning
Representations (ICLR’18) (OpenReview.net, 2018).

[44] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.106.034315 for more details about the
training algorithm, compared methods, empirical networks, dy-
namics, and network inference under incomplete information.

[45] P. Erdős and A. Rényi, On the evolution of random graphs,
Publ. Math. Inst. Hung. Acad. Sci 5, 17 (1960).

[46] A.-L. Barabási and R. Albert, Emergence of scaling in random
networks, Science 286, 509 (1999).

[47] T. Schaffter, D. Marbach, and D. Floreano, Genenetweaver:
In silico benchmark generation and performance profiling of
network inference methods, Bioinformatics 27, 2263 (2011).

[48] R. Rossi and N. Ahmed, The network data repository with
interactive graph analytics and visualization, in Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI Press,
Palo Alto, CA, 2015), Vol. 29, pp. 4292–4293.

[49] D. Brockmann and D. Helbing, The hidden geometry of com-
plex, network-driven contagion phenomena, Science 342, 1337
(2013).

[50] J. Zhang, L. Dong, Y. Zhang, X. Chen, G. Yao, and Z.
Han, Investigating time, strength, and duration of measures in
controlling the spread of Covid-19 using a networked meta-
population model, Nonlinear Dyn. 101, 1789 (2020).

[51] G. Karlebach and R. Shamir, Modelling and analysis of gene
regulatory networks, Nat. Rev. Mol. Cell Biol. 9, 770 (2008).

[52] P. García, A. Parravano, M. G. Cosenza, J. Jiménez, and A.
Marcano, Coupled map networks as communication schemes,
Phys. Rev. E 65, 045201(R) (2002).

[53] A. Campbell, G. Gurin, and W. E. Miller, The Voter Decides
(Row, Peterson, and Co., New York, NY, 1954).

[54] M. Chen, J. Zhang, Z. Zhang, L. Du, Q. Hu, S. Wang, and J.
Zhu, Inferring network structure with unobservable nodes from
time series data, Chaos: An Interdis, J. Nonlin. Sci. 32, 013126
(2022).

[55] J. Pearl and D. Mackenzie, The Book of Why: The New Science
of Cause and Effect (Basic Books, New York, NY, 2018).

034315-12

https://doi.org/10.1007/s41109-019-0194-4
http://arxiv.org/abs/arXiv:2007.13004
http://arxiv.org/abs/arXiv:1902.11136
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/arXiv:1911.10500
http://link.aps.org/supplemental/10.1103/PhysRevE.106.034315
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1093/bioinformatics/btr373
https://doi.org/10.1126/science.1245200
https://doi.org/10.1007/s11071-020-05769-2
https://doi.org/10.1038/nrm2503
https://doi.org/10.1103/PhysRevE.65.045201

