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Optimal income crossover for a two-class model using particle swarm optimization
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Personal income distribution may exhibit a two-class structure, such that the lower income class of the
population (85–98%) is described by exponential Boltzmann-Gibbs distribution, whereas the upper income
class (2–15%) has a Pareto power-law distribution. We propose a method, based on a theoretical and numer-
ical optimization scheme, which allows us to determine the crossover income between the distributions, the
temperature of the Boltzmann-Gibbs distribution, and the Pareto index. Using this method, the Brazilian income
distribution data provided by the National Household Sample Survey was studied. The data was stratified into two
dichotomies (sex/gender and color/race), so the model was tested using different subsets along with accessing
the economic differences between these groups. Last, we analyze the temporal evolution of the parameters of
our model and the Gini coefficient discussing the implication on the Brazilian income inequality. In this paper,
we propose an optimization method to find a continuous two-class income distribution, which is able to delimit
the boundaries of the two distributions. It also gives a measure of inequality which is a function that depends
only on the Pareto index and the percentage of people in the high-income region. We found a temporal dynamics
relation, that may be general, between the Pareto and the percentage of people described by the Pareto tail.
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I. INTRODUCTION

A long time ago, the economist Vilfredo Pareto identified
a power-law behavior in the income distribution [1]. Pareto
stated that the income probability density function describing
this distribution is of the form

P(m) = bm−α−1, (1)

where m denotes the income, α is known as the Pareto index
ranging between 1 and 3, and b is a normalization constant.
Later it was found that the Pareto law is suited for representing
just the upper tail of the income distribution [2].

The Pareto power law was confirmed extensively on the
upper income data from different countries [3,4] and was also
found to describe wealth distribution [5]. In this paper this
high-income region will be defined by the top-percentage in-
dicator, which is the percentage of the population that follows
Pareto behavior.

The Boltzmann-Gibbs distribution (BGD), in the classical
kinetic theory, is the most probable energy distribution of a
gas with elastic collisions in thermal equilibrium. It was later
found to be very useful for modeling income distribution for
the low- and middle-income class, by setting energy to be the
money of the agents [6,7]. It is worth mentioning that the most
used distribution for this region is the log-normal distribution;
however, unlike the Boltzmann-Gibbs it is not a station-
ary distribution [8]. In a multiagent simulations context, its
asymptotic states were capable of displaying Boltzmann-
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Gibbs as well as Pareto statistical behaviors [9,10]. Moreover,
the two-class model arrives from a Fokker-Planck equation,
considering an additive and multiplicative processes for the
exponential and Pareto region, respectively [11]. Therefore,
for income less than the crossover income, mc, the distribution
is given by

P(m) = a

T
exp

(−m

T

)
,

m < mc, (2)

where a is a normalization parameter and T is the “tempera-
ture” of the system.

Consequently, the personal income distribution can be con-
sidered as a two-class structure, as the lower class of the
population (85–98%) is described by exponential BG distri-
bution, whereas the upper class (2–15%) follows a Pareto
power-law distribution. The most used method to determine
the crossover between these two regions is to use a fixed pro-
portion for the Pareto tail based on a log-log graph, where the
Pareto region will present a linear behavior [12–14]. However,
this choice is rather subjective, and therefore, the crossover
income determined is not optimal.

We propose in this paper a method to determine the total in-
come distribution defined by parts, thus the crossover income
can be established optimally. First, we define a measure of
goodness-of-fit statistics that will be minimized by a numeri-
cal algorithm called particle swarm optimization (PSO) with
limited-memory Broyden-Fletcher-Goldfarb-Shanno bound
(L-BFGS-B). We validate this method by studying the Brazil-
ian income distribution using data from National Household
Sample Survey (PNAD), an annual research available by the
Brazilian Institute of Geography and Statistics (IBGE).
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Among our findings, we highlight two of them, obtained
from the study of the temporal evolution of the Brazilian
income distribution. The first is the correlation between the
Gini coefficient calculated with the data and the one calculated
with the model. The second is the correlation between the
Pareto index and the percentage of people that display the
Pareto power-law behavior.

This paper is organized as follows. Section II explores
the two-class complementary cumulative distribution function
(CCDF) and its continuity. In Sec. III is derived the relation
between the parameters of our model and the Gini coefficient.
Section IV describes the L-BFGS-B particle swarm optimiza-
tion and justifies our choice. We applied in Sec. V the PSO
optimizer fitting our model into the Brazilian income distribu-

tion data of the total population and the stratified population
(sex/gender and color/race), performing a cross validation
with a re-sampling technique. Section VI explores the time
evolution of the parameters of our model by fitting our model
into the Brazilian income distribution in the years between
2001 and 2019. Conclusions are found in Sec. VII.

II. TWO-CLASS MODEL FOR INCOME DISTRIBUTION

We can define a two-class model for a country income
distribution using Eqs. (1) and (2),

P(m) =
{

a
T e−m/T m < mc,

bm−α−1 m � m,
(3)

equivalently CCDF

∫ ∞

m
P(m′)dm′ ≡ Ĉ(m) =

{
a[exp(−m/T ) − exp(−mc/T )] + λ, m < mc,

λ
(

m
mc

)−α
, m � mc,

(4)

where, by continuity, λ = b
α

m−α
c is the top percentage of

income that follows the Pareto behavior, hence λ is the top-
percentage indicator mentioned before. The normalization
gives us

λ = 1 − a(1 − e−mc/T ). (5)

Setting a = 1 makes the Pareto distribution a correction to
the exponential in the high-income tail. This makes the param-
eters of the model more interpretable and easier to optimize.
So Eqs. (4) and (5) become

Ĉ(m, λ, T, α) =
{

exp
(−m

T

)
, m < mc(λ, T ),

λ
(

m
mc (λ,T )

)−α
, m � mc(λ, T ),

(6)

and

mc(λ, T ) = T log(λ−1). (7)

The CCDF in Eq. (6) is the two-class model by Yakovenko
[12]. Two things to notice, first is the change in the parameters
of the model that now are given by (λ, T, α), the second
is the guarantee of the theoretical CCDF continuity, which
is not always the case when the two distributions are fitted
separately.

In previous methods of the two-class model, the mc is set
by taking the intersection between the exponential fit (with
T = 〈m〉) for the 85–98% poorer people and a power-law fit
in the 2–15% richer region determined by the Pareto income
threshold, sometimes needing an extrapolation as shown in
Fig. 1. Notice that the mc will not always be equal to this
threshold, and, as stated before, CCDF will not be continuous
in all cases. The most commonly used method to determine
the power-law income threshold is to plot the CCDF in a
log-log scale and see where the behavior is linear. A more
robust option is to use a goodness-of-fit function to optimize
the threshold income [15].

In this paper we are going to determine the model parame-
ters in Eq. (6) with a hybrid version of a numerical optimizer
called particle swarm optimizer. To achieve this, starting with
a given set of income values {mi}, our method will predict a

vector of parameters {λp, Tp, αp}, of the income distribution
Ĉ(m, λp, Tp, αp) given by Eq. (6). With this function we are
going to be able to minimize the root-mean-squared logarith-
mic error (RMSLE) applying a hybrid approach of PSO. This
method will display continuity and the equality between the
Pareto income threshold and mc.

III. GINI COEFFICIENT

The Gini coefficient, the most popular measure of income
inequality, is derived from the Lorenz curve.

The Lorenz curve shows the percentage of total income
earned by the cumulative percentage of the population. In a
perfect income equality, the 25% lowest income of the pop-
ulation would earn 25% of the total income, the 50% lowest
income of the population would earn 50% of the total income,

FIG. 1. Cumulative probability distribution of income on a log-
log scale. The black points represent the cumulative distribution of
the data and the solid lines correspond to the fitted model described
in Eq. (6). The red curve obeys Boltzmann-Gibbs distribution, the
power-law distribution is characterized by the blue curve and the
dashed blue line is its extrapolation. The income crossover is rep-
resented by the vertical dashed line, whereas the Pareto threshold by
the vertical solid line.

034313-2



OPTIMAL INCOME CROSSOVER FOR A TWO-CLASS … PHYSICAL REVIEW E 106, 034313 (2022)

FIG. 2. The Lorenz curve framework (hypothetical data).

hence the Lorenz curve would follow a 45◦ line. As inequality
increases, the Lorenz curve deviates from the line of equality
as shown in Fig. 2.

The Gini coefficient is defined by the area between the
equality line and the Lorenz curve divided by the total area
below the equality line, that is, G = A/(A + B). It is also equal
to 1 − 2B due to the fact that A + B = 0.5.

We are interested in calculating the Gini coefficient given
by the regression fit. In this study, we will call this indicator as
the theoretical Gini coefficient, since it was calculated using
the two-class model fit. Therefore, for a continuous income
probability the Lorenz curve L(F ) can be represented as a
parametric function in L(m) and F (m), where F is the cumu-
lative distribution and m is the income. The value of the area
B can be found by integration:

B =
∫ 1

0
L(m)dF (m) =

∫ ∞

0
L(m)P(m)dm, (8)

where P(m) is the probability density function, μ is the aver-
age income, and

L(m) = 1

μ

∫ m

0
xP(x)dx (9)

is the percentage of total income by the population with up to
income m. Simplifying Eq. (8) using integration by parts, the
Gini coefficient becomes

G(C) = 1 − 1

μ

∫ ∞

0
C(m)2dm, (10)

where μ is the average income of the P(m) distribution and
C(m) = 1 − F (m) is the complementary cumulative distribu-
tion.

Using the formula above, an exponential distribution has
a Gini coefficient of 0.5. Therefore, for the two-class model,
the Gini coefficient is a good indicator of how much the Pareto
correction affects inequality. Other important property of Gini
coefficient in this context is that it can be written as

G(λ, α) = 1 − (1 − λ2)/2 − (λ2 log λ)/(2α − 1)

(1 − λ) − λ log λ/(α − 1)
, (11)

and expanding previous equation around λ = 0, we arrive at

G(λ, α) = 1

2
+

[
log (λ−1)

(α − 1)
− 1

]
λ

2
+ O(λ2 log λ). (12)

Hence, the Gini coefficient only depends on the Pareto index
and the percentage of people that belong to the Pareto distri-
bution.

Our model parameters and this theoretical Gini coefficient
will be the set of indicators for analysis of inequality.

IV. OPTIMIZATION OF THE TWO-CLASS MODEL
WITH HYBRID-PSO

In this section we are going to detail the procedures to
perform the particle swarm optimization to fit the empirical
CCDF by the two-class model. To better differentiate the
theoretical and empirical variables or statistic, we will use the
following notation:

x −→ for empirical variables or statistic,

x̂ −→ for theoretical variables or statistic.

First, we are going to calculate the empirical CCDF. Taking
a sample m1, m2..., mN of income drawn from a population, in
this case Brazilian income, thus m(1) � m(2) � ...m(N ) is the
income order statistic. Accordingly, the empirical CCDF of
the PNAD income data is defined as

C(mn) = 1

N

N∑
i=1

1m(i)�mn , (13)

1m(i)�mn =
{

1, m(i) � mn,

0, m(i) < mn,
(14)

where N is the total number of people in the data and I[(m >

mi )] is the indicator function.
After finding the cumulative distribution of the data we

need to define our loss function (quality measure). In the
literature this is done separately for exponential and Pareto
regions, fitted by minimizing a goodness-of-fit function af-
ter passing through a logarithmic transform [12,13]. Before
specifying our loss function we will define two regularization
terms to ensure meaningful values of T and λ. So taking the
theoretical income average for the exponential regime

〈m̂〉exp = T − mc

[
exp

(mc

T

)
− 1

]−1
(15)

then the regularization being added to the loss function to
ensure the equality between the theoretical and empirical av-
erage for the exponential region is of the form

l1
def=

∣∣∣∣∣
T − mc

[
exp

(mc
T

) − 1
]−1

1
Ne

∑Ne
i=1 m(i)

− 1

∣∣∣∣∣, (16)

where Ne is the greatest rank statistic (index of the ordered
income) belonging to the exponential region. Therefore, the
parameter T that comes out of the process of optimization
with this regularization can be interpreted as the estimation
of the average income of the data, in the hypothetical case of
an exponential distribution without any Pareto tail.

In parallel, note that can be a difference between the λ =
Ĉ(mc) and C(mc), which are the model top percentage and the
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data percentage of people gaining more than mc, respectively.
This is addressed by the second regularization term

l2
def=

∣∣∣∣ λ

C(mc)
− 1

∣∣∣∣. (17)

Thus, the parameter λ will always be equivalent to the per-
centage of people that have the power-law behavior given by
the data.

Let ηn � ηn−1... � η1 be an order statistic that follows
ηn = m(	n N

k 
), where n = 1, 2, ..., k and k < N . This will be
called class statistic and it divides the data into k income
points. The notation 	.
 denotes the floor function, which can
be formally define as 	x
 = max{m ∈ Z : m � x}.

Now we can define the measure of quality as a RMSLE
between the data and the model using the ηn statistics

RMSLE[C(ηn), Ĉ(ηn, x)]

=
√√√√ 1

k − 1

k−1∑
n=1

{log[C(ηn)] − log[Ĉ(ηn, x)]}2, (18)

where C(ηn) is the empirical complementary cumulative dis-
tribution, Ĉ(ηn, x) is the CCDF of the model and x is the
parameter vector. Using the class statistic not only helps with
the computational load, but also gives consistency to the
CCDF precision used in the loss function. With m(n) statistics
the precision of the CCDF was tied to the number of the pop-
ulation, having N points. The set ηn instead has k − 1 points,
which is independent on the population number. Note that
the ηk was excluded from the loss function since log[C(ηk )]
diverges. In this paper k = 10 000.

Therefore using Eqs. (16)–(18) we define the loss function

Loss(x) = RMSLE[C(ηn), Ĉ(ηn, x)] + l1 + l2. (19)

Now, a defined search space is needed, for the PSO to find
a solution. To properly determine the crossover region, we are
going to use the empirical crossover percentage p = C(mc),
that is the empirical CCDF evaluated in the income mc. Note
that the income variable is not suited to separate the data since
it has a lot of repeated values. With this percentage we calcu-
late the crossover income mc from a linear interpolation of
the empirical CCDF [Eq. (13)]. The interpolation transforms
the empirical cumulative distribution into a continuous dis-
tribution, thus a solution mc = C−1(p) will not have discrete
values. Therefore, given a T with Eq. (7) we can determine
λ, then for a vector of parameters x = [C(mc), α, T ] we can
define a theoretical CCDF [Ĉ(m)] using Eq. (6), allowing us
to derive a goodness-of-fit function.

Another information that needs to be provided, to define
the search space, is its range. For our case T ∈ [ 〈m〉

2 , 2〈m〉],
α ∈ [1, 3] and C(mc) ∈ (0, 0.2]. Therefore, the search space
is a cuboid T in the parameter coordinates. The next step is to
define the optimizer that will minimize the loss function (19).

The PSO is a computational method that optimizes a prob-
lem by iteratively trying to improve a set of candidates in the
parameter space (in our case {C(mc), α, T }) with regard to
a given measure of quality [16]. Let {xi

t = (C(mc)i
t , α

i
t , T i

t )}
with i = 1, 2, ...Nc, where Nc is the number of candidates of
parameters, be our set of candidate vectors in the tth PSO step.

Each candidate is treated as a solution of the problem. Thus
the optimization will be derived by the search of the parameter
space with Nc candidates. The best solution will minimize the
quality measure. In the first iteration each candidate index
is part of K randomly chosen sets S0 ∈ {Si

0}i∈{1,2...,Nc}, this
process defines the set of neighbors of all candidates. Si

t−1
is the neighbors set of the ith candidate in the tth step and
it contains the neighbors index and its own index (i). One
candidate index can randomly choose to participate in a set
repeatedly times and duplicated indexes are removed, thus Si

size may vary. These neighbors sets are redefined by the same
random process in each step that the algorithm didn’t improve
the best solution between the history of all the candidates.

This sets Si
t containing randomly chosen candidates in-

dexes are used to inform a specific property of those to the
ith candidate. The exploration will use these sets to compose
the next step of each candidate and it will be clarified in the
next subsection. The 2007 standard PSO (SPSO2007) value
of K = 3 and will be used for this paper.

The exploration is done by each candidate making steps
that are influenced by the direction to the best neighbors
position (the best position between its set of neighbors and
itself), the candidate best position in its step history and its last
step direction. For each candidate i, the step t is determined
by

vi
t = W vi

t−1 + c1�1
(
Pi

t−1 − xi
t−1

)
+ c2�2(Gi

t−1 − xi
t−1), (20)

xi
t = xi

t−1 + vi
t , (21)

where x is the vector position, v is analog to the velocity,

Pi
t =

{
x ∈ {

xi
ν

}
: Loss(x) = min

z∈{xi
ν }

Loss(z)

}
, (22)

with ν = 0, 1, ..., t is the personal best in regard to the quality
measure,

Gi
t =

{
x ∈ Ci

t : Loss(x) = min
z∈Ci

t

Loss(z)

}
, (23)

where Ci
t ≡ {P j

t } j∈{Si
t } is the set of personal best of neigh-

bors set of the ith candidate in the tth step and Gi
t is the

best position in the Ci
t set. The parameters �1 and �2 are

uniformly random with range [0,1]. The W , c1, and c2 are
considered hyperparameters, so they will have a fixed value
(or a behavior predetermined). In this paper c1 = c2 = 1.7
and W fall linearly in [0.7,0.4]. The initialization is done as
follows:

xi
0 = UT ,

vi
0 = UT − xi

0

2
,

Pi
0 = xi

0,

Gi
0 =

{
x ∈ {P j

0} j∈{Si
0} : Loss(x) = min

z∈{P j
0}

Loss(z)

}
, (24)

where UT is a random vector inside the search space cuboid
drawn according to the uniform distribution.
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TABLE I. Mean, standard deviation, 95% confidence interval, and coefficient of variation of the model parameters, Gini coefficient, and
RMSLE of the training and test sets.

2019 Data Mean σ 95% CI CV

Crossover Income (R$) 3977 42 3900 // 4000 1.06 × 10−2

Top-percentage (%) 10.64 0.26 10.42 // 11.17 2.45 × 10−2

Temperature (R$) 1775 3.40 1769 // 1782 1.92 × 10−3

Pareto index 1.789 0.011 1.767 // 1.782 6.04 × 10−3

Gini coefficient 0.578 0.001 0.576 // 0.581 2.31 × 10−3

Train set RMLSE 0.1486 0.0008 0.1470 // 0.1501 5.31 × 10−3

Test set RMLSE 0.1489 0.0017 0.1458 // 0.1525 1.12 × 10−2

PSO was chosen for being able to work with nondif-
ferentiable error function and discrete variables [17], which
is needed since the two-class loss function is not differen-
tiable. The standard PSO does not always converge to a good
solution, so a hybrid approach was used [18]. This hybrid
approach utilizes L-BFGS-B steps to improve the candidates
local search ability (exploitation). Even though BFGS is a
quasi-Newton method it can be used for nonsmooth optimiza-
tion [19,20].

In short, to find the model parameters of Sec. II, first we
need to calculate the cumulative probability distribution of
income for the Brazilian population (13) and then use hybrid-
PSO to fit the model by minimizing the value of the function
(19). The results from these procedures will be displayed in
the next section.

V. RESULTS AND CROSS-VALIDATION

In this section, we are going to perform cross validation
with the bootstrap method to test the accuracy of the model
[21]. As mentioned above, the bootstrap sampling is per-
formed before calculating the cumulative distribution, that

is, picking a random sample of the income data, with re-
placement, then calculating the cumulative distribution. This
approach not only will give us the ability to estimate model
parameters errors as well as will allow us to do an out of the
bootstrap cross-validation (BCV) [22]. On average, random
sampling with replacement includes (1 − e−1)% ≈ 63.2% of
the original data in each bootstrap set of samples and hence
the rest allow us to define out-of-sample test sets.

In this context, first, we define a pair of sets by bootstrap
sampling: training set and test set. Then, with the CCDF of
the training set, we use the hybrid-PSO to find the optimal pa-
rameters. Last, using the optimal parameters evaluated above,
we calculate the RMSLE of each set. Last, we calculate the
RMSLE of each set using the optimal parameters evaluated
above. Repeat this process for R pairs of training and test sets,
in this study, we have chosen R = 1000. This procedure gives
us the ability to see how well our model can fit the CCDF of
an income data set, which came from the same distribution of
the training set but was not in the training process.

In this section, we used from the data of the 2019 Contin-
uous National Household Sample Survey (PNADc) available
by the IBGE since 2012. The PNADc is a research that col-

FIG. 3. Cumulative probability distribution of income on a log-log scale. The black points represent the cumulative distribution of the data
from 2019 PNAD and the solid lines correspond to the fitted model described in Eq. (6). The red curve obeys Boltzmann-Gibbs distribution and
the power-law distribution is characterized by the blue curve. The temperature is highlighted by the dashed vertical line, at value R$1775 ± 3,
and the crossover income is represented by the solid vertical line at mc = R$3977 ± 42, which separates the Boltzmann-Gibbs and Pareto
regions of income. Therefore λ = (10.64 ± 0.26)% is the top income percentage of people which obeys a Pareto power law with index
α = 1.789 ± 0.011. Also, the RMSLE of the original data set calculated in each part of the distribution and total can be found in the top right
table.
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TABLE II. Inequality indicators and RMSLE for a stratified data.

Stratified 2019 Data
Categories Sex/Gender Race/Color

Subgroup Man Woman WY BBI

Crossover Income (R$) 4930 ± 13 3503 ± 25 4987 ± 55 3995 ± 26
Top-percentage (%) 8.97 ± 0.59 9.93 ± 0.16 11.76 ± 0.30 6.42 ± 0.12
Temperature (R$) 2047 ± 6 1517 ± 4 2329 ± 7 1455 ± 3
Pareto index 1.72 ± 0.02 1.89 ± 0.02 1.74 ± 0.01 2.01 ± 0.02
Gini coefficient 0.584 ± 0.002 0.565 ± 0.002 0.588 ± 0.002 0.547 ± 0.001
Train set RMLSE 0.155 ± 0.001 0.155 ± 0.001 0.137 ± 0.001 0.177 ± 0.001
Test set RMLSE 0.156 ± 0.002 0.155 ± 0.002 0.138 ± 0.002 0.178 ± 0.002

lects data from a multitude of Brazilian social characteristics
including labor, income and education. From PNADc data,
we extracted the total monthly income, gender and color/race
of each person in the year 2019. We neglected people with-
out income and missing values. PNADc microdata variables
are organized with codes, the prefix V is for a pure vari-
able that is extracted directly from the survey and the VD
is for the composed variable, usually a linear equation of
pure variables. For the total monthly income we use the vari-
able VD4022, which is the total income from all sources,
including aid programs among others. This variable is only
present in the first annual interview of PNADc. For addi-
tional information one can visit the site [23]. After training
the parameters of our model, to complete our set of indica-
tors, we calculate the theoretical Gini coefficient following
Sec. III.

As shown in Table I the mean RMSLE of the test set
is close to the training set RMSLE, so the model has little
bias. The parameters of the model have small coefficients of
variation (CV), and the highest is that of the Top-percentage.
This is due to the discontinuity of the empirical income data
at the crossover.

Figure 3 displays the cumulative distribution fitted with
our model with the parameters shown in Table I. These re-
sults were estimated by bootstrapping the data, calculating
the cumulative distribution for each bootstrap set, and then
fitting the model numerically with PSO. Analyzing the RM-
SLE between the model with estimates of the parameters and
the original data set in parts, we can identify that the Pareto
region have a greater error, which is expected since Pareto
part does not capture the top 0.01% very well, and since the
error [Eq. (19)] is logarithmic, outliers whose C(m) values are

101.6

101.8

10-0.4 10-0.2

101

100.2 100.4 100.6

101

102

100 101

2001
2002
2003
2004
2005
2006
2007
2008
2009
2011
2012
2013
2014
2015
2016
2017
2018
2019

FIG. 4. Cumulative probability distribution of Income/T (income normalized by temperature) on a log-log scale. The colored points
represent the cumulative distribution of the data from 2001 to 2019 PNAD and the solid lines correspond to the fitted model described in
Eq. (6). The red curve obeys Boltzmann-Gibbs distribution and the power-law distribution is characterized by the blue curve.
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FIG. 5. Cumulative distribution functions constructed from the
PNAD data from 2001 to 2019 and their fits with the theoretical
distribution described in Eq. (6), shown in the log-log scale versus
the normalized annual income Income/T (income normalized by
temperature). Plots for different years are shifted vertically.

close to 0 are amplified. In the exponential part, a fraction
of the error is due to the minimum wage effect (low income
discontinuity at m = R$998) as can be seen in Fig. 3.

Comparing this method with a crossover income being
determined with a fixed proportion for the Pareto tail, λ = 5%,
as seen in Ref. [13], we get a temperature equal to the mean,
T = 2067 ± 7, a Pareto index of 1.816 ± 0.006, and a mc =
6192 ± 21. This approach displays discontinuity between BG
and Pareto regions, its training set error is 0.2257 ± 0.002 and
the test set error is 0.2258 ± 0.002, which are significantly
higher than with an optimal crossover (Table I).

We applied our model to the data of 2019 stratified into
two dichotomies of the population allowing us to compare
each indicator and test our model in different data distri-
butions. The first dichotomy is the division by gender(man
and woman) and the second is the division by race/color

(a)

(b)

(c)

(d)

FIG. 6. Time series of the inequality indicators. (a) Deflated
Temperature series; (b) Pareto index series; (c) top-percentage series;
(d) Gini coefficient series. The black points are the theoretical Gini,
Eq. (11), and the red points are the empirical Gini.

(black/brown/indigenous, BBI; white/yellow, WY) [24]. The
results and validation can be seen in the Table II.

Looking at the gender dichotomy, there is a significant
difference between the theoretical Gini coefficient. Man’s in-
come “temperature” is considerably higher than the woman’s,
but their Pareto and top-percentage indicators are lower,
meaning that there is a less percentage of men in the Pareto
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(a)

(b)

FIG. 7. Correlation and affine regression between indicators. (a) Correlation and affine regression with the Pareto index as a function of
the top-percentage; (b) correlation and affine regression with theoretical Gini as a function of the empirical Gini.

Region, but their inequality in this region is higher. Remember
that, for the two-class model, the temperature does not affect
the theoretical Gini coefficient, so the properties of the Pareto
region completely define the inequality.

Analyzing the color/race dichotomy, we get a higher con-
trast in their inequality indicators compared to the gender
dichotomy. WY has top-percentage and Temperature consid-
erably higher than BBI. BBI has the lowest top-percentage
value, λ = 6.42 ± 0.12, and the highest Pareto index, α =
2.01 ± 0.02, compared to all subsets. These results gives BBI
the lowest Gini coefficient, indicating the highest equality
within the subgroup.

VI. TEMPORAL EVOLUTION OF INEQUALITY
INDICATORS

The time evolution of inequality indicators, in the context
of the two-class model or the lognormal-Pareto model, is a
subject of interest in the literature [13,25,26]. However, the

crossover income is usually fixed or determined by a log-log
graph. In this paper, we introduce a formal approach to deter-
mine the temporal evolution of the optimal crossover income.

To be able to analyze the Brazilian inequality over the
years, we applied our model to describe the income distribu-
tion between 2001 and 2019. For our empirical data we used
the National Household Sample Survey (PNAD) for the years
2001 to 2011, and for 2012 to 2019 we used the PNADc. The
PNAD is the predecessor of the PNADc and was discontin-
ued in 2015. We gave priority to PNADc in the years that
the two survey programs were running since PNADc gives a
broader territorial coverage and larger population sample. We
choose the first annual interview of PNADc since it contains
the income of all sources. Following the same data cleaning
procedure, we neglected people without income and missing
values.

Last, we applied the optimization to fit the two-class
model, Eq. (6), to the data of each year. We can access the
temporal evolution of each indicator in the Figs. 6(a)–6(d). We
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(a)

(b) (c)

(d) (e)

FIG. 8. Time series of the inequality indicators for the stratified data. (a) Deflated temperature series; (b) Pareto index series; (c) top-
percentage series; (d) theoretical Gini coefficient series, Eq. (11); (e) empirical Gini coefficient series.

can see that every parameter of our model has an interpretable
evolutionary trend. The CCDF and their fits can be seen in
Figs. 4 and 5.

Compared to the temporal analysis from the U.S. [12] our
results have less temporal stationary in the exponential part.
This is mainly due to the effect of the minimum wage and can
be seen more clearly on the top right subplot of Fig. 4. On
the same figure in the bottom left subplot, corroborating with
U.S. results, the Pareto region is shown to have more temporal
variability than the exponential region.

The temperature reflects the income power of the lower
to middle class. This parameter was deflated to the 2019
currency using the Broad Consumer Price Indices (IPCA),
available by IBGE. According to the Fig. 6(a) there is trend
of an increase in the temperature.

The Pareto index and the top-percentage have a strong anti-
correlation as can be seen in the Fig. 7(a). From 2002 to 2015,
there is an increase in the Pareto index and a decrease in the
top-percentage. This means that, according to our survey data,
we are in the presence of an income redistribution process.

And it is corroborated by the decrease of the Gini coefficient
in this time range, see Fig. 6(d).

As discussed above, the model does not capture the
minimum wage effect on the distribution as well as the
extreme high income, top 0.01%, where the Pareto behav-
ior breaks down. These observations coupled with the fact
that the empirical estimator suffers from a downward bias
when the distribution used is fat-tailed [27], explains why the
theoretical Gini coefficient is higher than the empirical one.
Although Fig. 6(d) shows an apparent big difference between
theoretical and empirical Gini coefficients, it can be shown
that they are very strongly correlated as can be seen in the
Fig. 7(b).

Figure 7(b) also shows the affine relation between the
theoretical and the empirical Gini coefficients, as well as
the Pearson correlation. The correlation is ρ = 0.994 with
a p value 2.20 × 10−16, which means that there is high
evidence of the strong correlation between the two coeffi-
cients. The affine regression Ge = (−0.07 ± 0.02) + (1.01 ±
0.03)Gt between theoretical and empirical Gini has a residual
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TABLE III. Anticorrelation of Pareto index with top-percentage
and correlation of the theoretical and empirical Gini coefficients for
the stratified data.

Pearson Correlation

Pareto X Top % Empirical X Theoretical Gini

Man −0.858 ± 0.128 0.995 ± 0.025
Woman −0.922 ± 0.097 0.985 ± 0.043
WY −0.902 ± 0.108 0.996 ± 0.024
BBI −0.861 ± 0.127 0.983 ± 0.046

standard error of 0.0029. Since the theoretical and empirical
Gini coefficients have a strong correlation, we can conclude
that the theoretical Gini can also be used as a measure of
inequality, if the data can be well explained by the two-class
model.

Like the previous section, we also did the same time se-
ries analysis with a stratified data using the two dichotomies
described in that section. The stratified data time series has
similar behavior between each subgroup. These time series
of the subgroup data also present a similar behavior to the
complete data set, as can be seen comparing the stratified data
Figs. 8(a)–8(e) with the complete data Figs. 6(a)–6(d).

Now one can draw the same correlations using the stratified
data. This will give us if these correlations are likely to be
general or a specific correlation of the Brazilian time series
data. The results of the Pearson correlation are shown in the
Table III.

According to our results, the Empirical and Theoretical
Gini coefficients correlation is a really stable correlation, not
varying much when switching the subgroup. The anticorre-
lation between the Pareto index and the top-percentage has
more variance and, with exception of the woman subgroup, is
weaker for the stratified data when compared to the original
data.

VII. CONCLUSIONS

The two-class model is a well-tested hypothesis for
the income distribution, being built-on around two famous
distributions: the exponential BG and the Pareto power
law. It is important to remember that the exponential has

stability in a multiagent system, which the log-normal distri-
bution lacks.

Some previous studies have proposed the method to deter-
mine the crossover between the two distributions by using a
log-log graph and manually trying to spot a discontinuity or a
linear behavior. To our knowledge this paper provides for the
first time a method to establish an optimal crossover income.

The optimal crossover method presented in this paper not
only displays continuity, but also has a significantly lower
RMSLE when comparing to a fixed proportion (5%) for the
Pareto region. The optimization was cross validated by a boot-
strap out-of-the-bag method, which had a good performance
in the test sets.

Analyzing stratified data and comparing the dichotomies
revealed a greater inequality in the privileged groups
(male/white and yellow) compared with their respective
counterparts. The black/brown group exhibited the most
equality and the least proportion participating in the Pareto
region, having only 6.42%.

Last, we analyze the temporal evolution of all indicators
and draw two strong correlations. The first is the correlation
between the theoretical Gini coefficient and the empirical
Gini. The second is between the Top-percentage and Pareto
index, which was found for the first time. These two corre-
lations were also found in the stratified data, with the first
having a strong correlation with low variance the second have
an anticorrelation with more variance when we compare each
subgroup. Further investigation in other countries is needed to
generalize our findings using the Brazilian data.

The next step would be to implement this novel approach
to other countries. Making simulations of a two-class model
(define an empirical CCDF given a predetermined model),
to determine a loss function that gives the best estimation
of true value of the simulated model, is another step that
would further validate an end-to-end method of fitting this
model. The end goal would be to add a sample weighting and
expansion, thus the distribution will have the correct sampling
treatment. The sample weighting and expansion is a rather
advanced topic of sampling statistics and usually dismissed
in model regression.
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