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Gromov centrality: A multiscale measure of network centrality using triangle inequality excess
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Centrality measures quantify the importance of a node in a network based on different geometric or diffusive
properties, and focus on different scales. Here, we adopt a geometrical viewpoint to define a multiscale centrality
in networks. Given a metric distance between the nodes, we measure the centrality of a node by its tendency to be
close to geodesics between nodes in its neighborhood, via the concept of triangle inequality excess. Depending
on the size of the neighborhood, the resulting Gromov centrality defines the importance of a node at different
scales in the graph, and it recovers as limits well-known concepts such as the clustering coefficient and closeness
centrality. We argue that Gromov centrality is affected by the geometric and boundary constraints of the network,
and illustrate how it can help distinguish different types of nodes in random geometric graphs and empirical
transportation networks.
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I. INTRODUCTION

Network science provides a powerful framework to rep-
resent complex systems, by identifying their components as
nodes and their interactions as pair-wise edges [1]. Networks
are capable of describing systems from a vast array of disci-
plines, including epidemiology, the social sciences, and urban
design, and a variety of methods have been designed to extract
information from their myriad of connections. Among those,
the identification of important, central nodes in a network is
particularly critical in different contexts, allowing us to deter-
mine, for example, which individuals to vaccinate to hinder a
contagion dynamics [2], who to contact to trigger a market-
ing campaign [3], or which subway stations are essential for
connecting areas of a city [4]. Various notions of centrality
have been proposed to quantitatively compare the importance
of nodes in a given network, each based on a different no-
tion of importance [5]. For example, betweenness centrality
gives greater importance to nodes that stand on many of the
shortest paths between other nodes. In a social network where
information is flowing between people, a member with high
betweenness centrality is highly influential, best positioned
for passing information between other people. Other measures
of centrality have been built on the notion of shortest paths,
such as closeness centrality, or on properties of the nodes,
such as their degree or the number of (not necessarily shortest)
walks going through them.
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Most centrality measures focus on either the local or global
properties of the node within a network. At the local level,
a good example is degree centrality, defining the importance
of a node solely based on the size of its direct neighborhood.
Relatedly, the clustering coefficient is a local measure of cohe-
sion, and defined as the fraction of closed triangles that exist
between the neighbors of a given node. At the global level,
closeness centrality measures the mean distance between a
node and all other nodes in the graph, typically using the
shortest-path (geodesic) distance. Similarly, betweenness cen-
trality focuses on shortest paths between any pair of nodes
in the network. Recent work [6] has shown the relationship
between degree and closeness centralities, linking the local
and global scales. Yet, it has been argued in the literature
that revealing the centrality of a node, or other patterns, at
intermediate scales is sometimes more instructive or more
efficient [7,8]. Take a large social network like Facebook as a
motivating example. Measuring the betweenness of a node is
neither practical, as calculating the shortest path between all
pairs of nodes is computationally prohibitive, nor insightful,
as the shortest paths between nodes at a far away distance
do not have a clear meaning. For this reason, different ap-
proaches have been proposed to capture centrality within a
given neighborhood of a node or within its community. Multi-
scale centrality measures include the k-betweenness measure
[9], which was used to reveal scale-dependent structures in
transportation road networks [10]. A localized closeness cen-
trality was also proposed to analyze street networks [11].
Relatedly, classical measures like Katz centrality or Pagerank
give more or less importance to longer walks, depending on a
parameter [12]. In relation with community detection, these
ideas also appear when defining the importance of a node
inside or between communities for instance [13]. Introduced
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more recently, the diffusion multiscale centrality counts tri-
angle inequality violations computed over the set of nodes
reachable within a certain dynamical timescale τ [7].

In this article, we adopt a geometrical viewpoint to define a
multiscale centrality in networks and, more generally, in met-
ric spaces. After choosing a metric distance on the network,
e.g., the shortest-path distance, we define the Gromov central-
ity of a target node by considering all pairs of nodes within a
given distance of this target, and by measuring the size of the
triangle inequality for each corresponding triplet. As we show,
at the local level, Gromov centrality depends on the proportion
of triangles formed by the neighbors of a node, and a central
node exhibits a starlike structure locally; geometrically, this
relates to discrete curvature where the presence (absence) of
triangles around a node is indicative of a positive (negative)
curvature [14,15]. At the global level, in contrast, Gromov
centrality is equivalent to closeness, and a node with a high
Gromov centrality can essentially be understood as being at
the “center of mass” of the whole network. In addition to
providing a novel interpretation for these two quantities in
terms of triangle inequalities, Gromov centrality shows that
they can be seen as two extremes of a family of centrality
measures, opening the possibility to define centrality at inter-
mediate scales. Through a series of illustrations and numerical
experiments, we show that the measure is sensitive to the
geometric and boundary constraints of the network, as well
as to the connectivity of the node.

This article is organized as follows. In Sec. II, we give the
definition of our centrality measure, and discuss its relation-
ship to other common measures of node centrality. We then
examine the relationship between the structure of the graph
and our Gromov centrality measure, across various scales,
using synthetic and empirical graphs. In Sec. III, we propose
an application of our measure; a method of clustering nodes
based on their relative structural importance across various
scales, and evaluate the method using both random geometric
graphs and empirical transportation networks.

II. MULTISCALE GROMOV CENTRALITY

A. Preliminary definitions

We consider an undirected single connected network com-
posed of N nodes, denoted by the set V , described by its
symmetric adjacency matrix A. We will consider unweighted
networks for the sake of simplicity, even if most of the results
can be generalised to the weighted case, so that each entry
Ai j = 1 (Ai j = 0) encodes the presence (absence) of an edge
between nodes i and j. The degree of node i is denoted by ki =∑

j Ai j . There exist different ways to define a metric distance
on the nodes of a graph, i.e., a function d : V × V → [0,∞)
that is symmetric d (i, j) = d ( j, i), such that d (i, j) = 0 if
and only if i = j, and that satisfies the triangle inequality.
Some popular examples are the shortest-path distance and the
effective resistance; see Ref. [16], Ch. 15 for more examples.
In this paper, we will always consider the shortest-path dis-
tance, unless stated otherwise. The triangle inequality can be
formulated as the condition

�i( j, k) � d ( j, k) − d (i, j) − d (i, k) � 0 (1)

FIG. 1. In this ring network, if you consider the shortest path be-
tween nodes j and k, then imposing to go through node i significantly
increases their distance, and �i( j, k) = −3 < 0. If the red edge is
removed from the graph, then node i is now on the geodesic between
these nodes, and we get �i( j, k) = 0.

for any triplet of nodes i, j, k, which intuitively means that the
distance between two nodes j and k is always smaller or equal
to the length of the shortest path between j and k that passes
through an intermediary node i. For a target node i, and two
nodes j and k, we call the value of �i( j, k) the triangle in-
equality excess between j and k at i. In general metric spaces,
the quantity − 1

2�i( j, k) is also known as the Gromov product,
named after Mikhail Gromov who used triangle excesses in
his definition of δ-hyperbolic metric spaces [17]. �i( j, k) is
equal to zero if and only if node i lies on a geodesic between
nodes j and k in the network. Very negative values mean
instead that going through node i induces a long detour on
the way between j and k. As an illustration, consider Fig. 1,
where the red path is the geodesic between j and k, while the
blue path is the shortest path going through node i. In that
case, �i( j, k) would be negative and node i would not play an
important role in connecting j and k. If the red edge was to be
removed from the graph, in contrast, then node i would now
lie on the geodesic between j and k, and �i( j, k) = 0.

The Gromov centrality of a node i is constructed by con-
sidering the triangle excess between all pairs of nodes in an
l-neighborhood of node i

�l
i = { j ∈ V | 0 < d (i, j) � l}. (2)

By construction, when l is the diameter D of the graph the D-
neighborhood is the full graph excluding node i, and |�l=D

i | =
N − 1. Changing the value of l thus allows to tune the size of
the neighborhood, from the direct neighborhood to the whole
network. The Gromov centrality of node i at scale l is then
defined as

Gl
i = 1∣∣T (

�l
i

)∣∣
∑

( j,k)∈T (�l
i )

�i( j, k), (3)
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where the sum is taken over the set T (�l
i ) of pairs of l-

neighbors

T
(
�l

i

) = {
( j, k)| j, k ∈ �l

i and j �= k
}
. (4)

Note that this set does not contain repeats such as ( j, j), nor
does it contain tuples that include node i, such as (i, j). For
l = D the size of the set is then |T (�D

i )| = (N − 1)(N − 2).
Gromov centrality is thus defined as the mean triangle

excess over all pairs of l-neighbors of a node i. From the
triangle inequality Eq.(1), it is clear that Gl

i � 0, and that the
equality holds only if node i is on a geodesic between all pairs.
As an example, consider a star graph, with a central node
i with its ki neighbors. The central node i has the maximal
possible value Gl

i = 0, making it the most central node from
our perspective, while all leaf nodes of the star have Gromov
centrality Gl = −2. Following these arguments, our proposed
centrality characterizes how far a node is from lying ‘between’
all other pairs of nodes in �l

i , thus quantifying the importance
of the given node at connecting other nodes at scale l .

The Gromov centrality Gl
i for any node i at scale l can

be calculated directly from the shortest-path distance matrix
of the network [18]. In practice, the matrix was computed
using the classical Dijkstra’s algorithm, known to have a
O(N3) computational complexity [19,20]. The shortest-path
distance matrix directly gives the members and size of the l-
neighborhood. As a next step, we generate all tuples in T (�l

i )
via the permutations of its elements, an operation bounded by
O[�l

i (�l
i − 1)] [21]. Depending on the scale and correspond-

ing size of the l-neighborhood, this can prove inefficient, since
the l-neighborhood size can be as a large as N . Note that
the primary purpose of the computation was not to achieve
computational efficiency, but to explore a new method, and
our code can certainly be optimized in the future.

B. Relation to other centrality measures

1. Arnaudon et al. diffusion dynamics centrality

In Ref. [7], Arnaudon et al. considered the discrete version
of the heat equation, often used to model consensus dynamics
or continuous-time random walks,

dx
dt

= −Qx,

where the Laplacian matrix is defined as Q = diag(k) − A.
They observed that the local state x j (t ) of a node j in the net-
work can reach a “peak” at a certain time t� > 0. In particular,
if we consider a diffusion process starting with all mass at
a single node i, i.e., with x(0) = ei (for unit vector ei), then
the system states can be found from the matrix exponential
x(t ) = e−Qt ei. One then defines t̃�(xi, x j ) = argmaxt>0 x j (t ),
interpreted as the time when the response on j from an im-
pulse on i reaches its maximum, and the peak-time with time
horizon τ is then defined as

t�
τ (xi, x j ) =

{
t̃�(xi, x j ) if this is smaller than τ ,

∞ otherwise.

It is observed in Ref. [7] that these peak times contain some in-
formation about the “surroundings” of a node in the graph and
that t�

τ (xi, x j ) can be understood as a measure of dissimilarity
between the two nodes. In particular, the measure contains

information about whether a node is close to a boundary in
the graph or whether it is more central instead. By varying the
time horizon τ , this information can be captured over different
scales.

To describe the location of a node in the network based
on the peak times t�

τ , Arnaudon et al. propose to count the
triangle-inequality violations in which a node is involved.
More precisely, for a node i the multiscale centrality is defined
as

Mτ
i =

∑
j,k �=i

1{t�
τ ( j, i) + t�

τ (i, k) − t�
τ ( j, k) � 0}, (5)

where 1{S} is an indicator function of statement S. This multi-
scale centrality is shown to do very well in identifying central
nodes and capturing structural features at different scales [7].

Gromov centrality (3) is reminiscent of the multiscale cen-
trality (5) as it also uses the triangle inequality and can be
assessed over different scales to determine information about
the boundary of the graph. However, instead of counting the
triangle violations in a “binary way” using the nonlinear indi-
cator function, the Gromov centrality counts the net amount
by which the triangle inequality deviates from the equality.
Furthermore, as the peak-time t�

τ is not an actual metric on the
graph it may violate triangle inequality, so that Mτ

i counts the
number of violations, in contrast with the Gromov centrality,
based on the shortest-path metric, which by definition cannot
violate the inequality. For this reason, the Gromov coefficient
is necessarily nonpositive as it measures the deviation from
the triangle inequality.

2. Betweenness centrality

Betweenness centrality [22] is a classical centrality mea-
sure defined in terms of the number of shortest paths that pass
through node i,

bi =
∑
j,k �=i

#{ j-k shortest paths through i}
#{ j-k shortest paths} . (6)

The measure describes, for every pair of nodes, the fraction of
shortest paths passing through i. We notice that the shortest-
path distance satisfies

d ( j, k) = d ( j, i) + d (i, k)

⇔ ∃ a shortest j-k path through i,

and, furthermore, we know that the triangle excess is large
when the shortest j-k paths through i are much longer than
the shortest j-k paths. Gromov centrality indicates how close
node i is to lying on a shortest path between all pairs of
nodes j and k but, unlike betweenness centrality, it does so
without distinguishing between situations where there are one
or several different geodesics between them. Furthermore, the
Gromov centrality can be taken at different scales l , rem-
iniscent of the local betweenness coefficient introduced in
Ref. [9].

From this discussion, we conclude that a very negative
value of Gi indicates a peripheral node, far from many
geodesics, and a small negative value indicates the opposite.
To further examine the “betweenness” understanding of trian-
gle excess, we consider random geometric graphs. A random
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FIG. 2. Illustration of a nondense random geometric graph, with
parameters N = 500 nodes/unit area and r = 0.125. The colors show
the triangle excess contribution from nodes j and k, indicated in red.

geometric graph is characterized by a number of nodes N , a
domain in a d-dimensional space, and a characteristic radius
r. In its simplest setting, one places N nodes uniformly at
random within the domain. Two nodes are connected by an
edge if the Euclidean distance between them is less than the
characteristic radius r [23]. Figure 2 shows a random geomet-
ric graph on the unit disk in R2. For a fixed pair of nodes j, k
indicated in red, every other node i is colored according to the
triangle excess �i( j, k) from j to k through i. As expected,
we observe that the further this node lies from the direct path
between nodes j and k, the greater the triangle excess will be.

For a random geometric graph, the geodesic distance be-
tween nodes is bounded from below by dE (i, j)/r, where
dE is the Euclidean distance, and r is the characteristic ra-
dius of the graph. Provided the radius is larger than some
critical value, the geodesic distance will also be bounded
from above by KdE (i, j)/r, where K is some constant. For
a sufficiently dense graph, K is asymptotically equal to 1,
and we can approximate the geodesic distance between two
nodes as proportional to the Euclidean distance between them
[23,24]. Figure 3 shows the triangle excess contribution of
each node for a denser graph. The pattern of triangle excess
contributions forms ellipses of constant color, with the red
nodes j and k as the two foci. This follows by replacing the
distance metric in the triangle excess contribution formula
d ( j, k) − d (i, j) − d (i, k) by the Euclidean distance, and the
fact that all points on an ellipse have the same total distance
to the two foci.

3. Equivalence with closeness centrality at the global scale

Gromov centrality is directly related to, and provides
an alternative interpretation for, the well-known closeness

FIG. 3. Illustration of a dense random geometric graph, with
parameters N = 2000 nodes/unit area and r = 0.125. The colors
show the triangle excess contribution from nodes j and k, indicated
in red. The edges have been hidden for the sake of readability.

centrality defined, for each node i, as

ci = N − 1∑
j d (i, j)

= 1

〈di〉 , (7)

where 〈di〉 is the mean distance from node i to any other node.
We consider Gromov centrality at its largest scale, that is when
l is equal to the diameter D of the graph:

GD
i = 1

(N − 1)(N − 2)

∑
( j,k)∈T (�D

i )

d ( j, k) − d (i, j) − d (i, k).

(8)
Starting from the definition of the mean distance

〈d〉 = 1

N (N − 1)

∑
(i, j)∈T (V )

d (i, j), (9)

where T (V ) is set of all tuples of nodes in the graph, without
repeats such as (i, i), we have∑

( j,k)∈T (V )

d ( j, k) =
∑

( j,k)∈T (�D
i )

d ( j, k) + 2
∑

j∈V | j �=i

d (i, j) (10)

and ∑
( j,k)∈T (�D

i )

d (i, j) + d (i, k) = 2(N − 2)
∑

j∈V | j �=i

d (i, j). (11)

It follows that Gromov centrality at the global scale can be
rewritten as

GD
i = N

N − 2
〈d〉 − 2

N − 1

N − 2
〈di〉, (12)

which simplifies to

GD
i ≈ 〈d〉 − 2〈di〉 = 〈d〉 − 2

ci
(13)
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in the large N limit. This expression shows that nodes with a
high closeness centrality, have a high (close to zero) value of
Gromov centrality. Interestingly, it provides an interpretation
of closeness in terms of betweenness, via the notion of triangle
inequality, and also allows to generalise closeness to tuneable
neighborhoods, via Eq. (3). Note that GD

i takes its maximal
value of zero for nodes such that 2〈di〉 = 〈d〉.

4. Equivalence with clustering coefficient at the local scale

At the smallest scale l = 1, the Gromov coefficient recov-
ers (minus) the clustering coefficient. The 1-neighborhood of
a node i satisfies∣∣�1

i

∣∣ = |{ j ∈ V : 0 < d (i, j) � 1}| = ki, (14)

where we recall that ki is the node degree. Consequently, the
Gromov centrality measure at this scale is given by

G1
i = 1

ki(ki − 1)

∑
( j,k)∈T (�1

i )

�i( j, k). (15)

As with the definition of the clustering coefficient, we require
that ki > 1. The triangle excess is �i( j, k) = −1 if two neigh-
bors j, k of i are connected, and equal to zero if they are not
connected. As a result, G1

i can be written as

G1
i = − 1

ki(ki − 1)

∑
( j,k)∈T (�1

i )

1{ j, k are connected}

= − 2

ki(ki − 1)
(number of triangles with node i).

The factor of 2 arises because the set of tuples T (�1
i ) contains

repeats ( j, k) and (k, j), which represent the same triangle.
The clustering coefficient is defined in Ref. [25] as

Ci = 2

ki(ki − 1)
(number of triangles with node i). (16)

It follows that

G1
i = −Ci. (17)

Locally, the Gromov centrality is identically minus the clus-
tering coefficient for each node.

C. The effects of boundary and scale

The Gromov centrality contains information about the
structure of the graph, across different scales. From the re-
sults of the previous section, we know that central nodes
will be those with a high value of closeness centrality at
the global scale, while they will be those without triangles
(that is, locally treelike) at the local scale. In this section, we
illustrate the dependency of Gromov centrality on its scale on
computer-generated and empirical networks.

1. Random geometric graphs

For a highly homogeneous graph, like a dense random
geometric graph, the most important structural effect is the
boundary of the graph. Since the density of such a graph is
nearly uniform by construction, each node should have the

FIG. 4. Random geometric graphs with density N = 2000
nodes/unit area. The colors indicates the Gromov centrality value
at scales l = 1, l = 3, and l = 10 (from top to bottom).

same Gromov centrality at a fixed scale l by spherical sym-
metry of the l-neighborhood, provided the graph boundary is
not reachable within that scale. The graph boundary breaks the
spherical symmetry, lowering the Gromov centrality value; a
node closer to the boundary lies on fewer geodesics between
members of its l-neighborhood. The Gromov centrality, then,
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contains information about the geometric location of a node
within the random graph domain. At the smallest scale l = 1,
the Gromov centrality should be uniform across all nodes that
are more than geodesic distance 1 from the boundary of the
graph. As the scale l increases, a larger fraction of the graph
should “feel” the boundary of the graph. At large scales, the
Gromov centrality should reach a maximum at the geometric
center of the graph.

This is precisely the effect we observe in Fig. 4. At the
local scale, nodes lying within l = 1 of the boundary form
a thin annulus of lower Gromov centrality. The nodes inside
this annulus have higher Gromov centrality values, which are
not identically uniform due to local inhomogeneities created
by random fluctuations in the graph. This annulus grows as
l increases. At the larger scale l = 10, only nodes at the
geometric center of the graph are unaffected by the boundary,
and the magnitude of its effect depends continuously on the
distance from the center. Also note that fluctuations are less
and less pronounced when l increases, which is expected as
the size of the neighborhoods increases and more data points
are included when estimating the centrality for each node.

2. Modified star graphs

Here, we consider a modified star graph, shown in Fig. 5, to
illustrate situations when nodes are central at the local scale,
and not at the global scale, and vice versa. First consider
the local scale, with l = 1, where the most central nodes are
those with a vanishing clustering coefficient, so that their
local neighborhood looks like a star. In this example, these
central nodes tend to be on the periphery of the graph. When
increasing the scale to l = 2, in contrast, we observe that the
centrality of the peripheral nodes drops, and that centrality
concentrates on the nodes at the core of the graph, which,
despite a high density of triangles, are essential for the con-
nectivity of nodes at the graph periphery, and are thus part of
many geodesics.

3. k-balanced tree graphs

As a next step, we consider the relationship between the
Gromov coefficient and nodes that are treelike, at various
scales. k-balanced tree graphs are perfectly symmetric graphs
of a given height h, and branching factor k; beginning from
a root node with degree k, each node branches k times, such
that all nodes but the root and the leaves have degree k + 1.
By construction, there exist no triangles in a tree graph. In
Fig. 6, we consider the Gromov coefficient of the root node
of a k-balanced tree, with various branching values, and fixed
height h = 5. The Gromov coefficient at scale l = 1, which is
minus the clustering coefficient, is trivially 0 for all nodes,
by construction of the graph. The Gromov coefficients at
other scales converge to 0 as the branching factor increases,
due to rapid growth of the neighborhood size, which is the
normalization factor for the coefficient. These results indicate
that in addition to the importance of cycles, Gromov centrality
also depends on the size of the neighborhoods of the nodes,
and thus on their degree in particular.

FIG. 5. Modified star graph. The colors indicate the Gromov
centrality value at scale l = 1 and l = 2 (from top to bottom).

4. Zachary’s karate club

To examine the relationship between Gromov centrality
and other classical centralities, we consider Zachary’s karate

FIG. 6. Gromov coefficient of root node, for different scales l , as
a function of the branching factor k of the tree.

034312-6



GROMOV CENTRALITY: A MULTISCALE MEASURE OF … PHYSICAL REVIEW E 106, 034312 (2022)

TABLE I. Pearson correlation between canonical centrality mea-
sures and triangle violation centrality at various scales (karate club).

Canonical coeff. L = 1 L = 2 L = 3 L = 4 L = 5

Degree 0.52 0.96 0.74 0.74 0.71
Clustering −1 −0.59 −0.49 −0.61 −0.61
Closeness 0.61 0.88 0.94 0.99 0.98
Betweenness 0.48 0.87 0.69 0.67 0.63

club graph, a small but well-studied social network [26]. The
karate club network has 34 nodes, and a diameter of 5. For
each of the nodes i, we compute the degree, the clustering
coefficient, closeness coefficient, betweenness coefficient, and
the Gromov centrality for each possible scale 1 � l � 5, and
we find the Pearson correlations between the measures. The
Pearson correlation was chosen over the Spearman rank cor-
relation because nodes often have the same coefficient values,
giving a nonunique ranking. The results are given in Table I.
As expected, Gromov coefficient is exactly anticorrelated with
the clustering coefficient at the smallest scale l = 1, while it is
highly correlated with the closeness coefficient at the largest
scale l = 5.

Interestingly, we notice that the l = 2 scale is highly cor-
related with both the degree and the betweenness coefficient.
The multiscale centrality introduced in Ref. [7] applied to the
same Karate Club network also demonstrates a high corre-
lation with betweenness at small scales, which the authors
attribute to the particular structure of the network. They
provide a secondary example of a social network in which
betweenness centrality correlates most strongly with their
measure at intermediate scales. Consequently, the network-
specific structure is highly important for determining the
interpretation of the multiscale dependent centrality measure
across scales.

Table II shows the Pearson correlation between the Gro-
mov centrality measures at different scales. Unsurprisingly,
similar scales show a higher correlation. However, we also
observe that there is a large change between the l = 1 and
l = 2 scales, and that the l = 2 case actually correlates more
strongly with the global scale than it does with the local one
l = 1.

III. APPLICATIONS

A. Structural roles and node clustering

As the previous examples illustrate, Gromov centrality is
particularly adept at capturing the effects of graph structure,

TABLE II. Pearson correlation between triangle violation cen-
tralities at various scales (karate club).

L = 1 L = 2 L = 3 L = 4 L = 5

L = 1 1 0.59 0.49 0.61 0.61
L = 2 0.59 1 0.82 0.86 0.83
L = 3 0.49 0.82 1 0.94 0.94
L = 4 0.61 0.86 0.94 1 0.99
L = 5 0.61 0.83 0.94 0.99 1

and how the “centrality” of a node varies with scale. Here, we
build on this insight and propose a method of clustering nodes
defined by their role in the network, in terms of the relative
structural importance across various scales. Our methodology
draws inspiration from the work of Ref. [27], in which the
authors cluster nodes in directed networks based on the pattern
of incoming and outgoing flows across various lengths, and
belongs to the broader family of role-detection and node-
similarity methods that exploit a variety of scales [28,29].
Here, we proceed as follows. Each node is assigned a profile
vector composed of its (normalized) Gromov coefficients at
representative scales, ranging from the local, to intermediate
to global. Clustering this matrix results in groupings of nodes
that have similar relative geodesic importance across scales.
Note that the resulting clusters should not be understood as
communities, as they need not be densely connected together,
but they instead exhibit similar patterns across scales. In that
sense, the resulting groups may be associated to different
node roles, which may include disassortative communities and
more general block structures [30]. In the following, we eval-
uate the performance of our methodology on both synthetic
random geometric graphs, which are largely homogeneous,
and with more heterogeneous empirical transportation net-
works.

1. Random geometric graphs

We first use our measure to analyze dense random ge-
ometric graphs, which have a near-uniform distribution of
nodes. Recall from the previous section, that the Gromov
coefficient for such homogeneous graphs is dependent on the
chosen scale l and the distance of the node to the boundary
of the graph, as in Fig. 4. Thus, we expect that the Gromov
coefficient profile should not significantly vary between nodes
at the same distance from the boundary. Consequently, the
“role” of the node as determined by our proposed clustering
method should simply describe the distance from the center of
the graph.

The random geometric graphs in Figs. 7 and 8 have node
density of N = 700/unit area and N = 1000/unit area, re-
spectively, with characteristic radius of r = 0.125. Since these
graphs have no structural variation, save for local inhomo-
geneities arising from random fluctuations, we are free to
build the node profile from the smallest scale Gromov co-
efficients for ease of computation. Each node is assigned a
4-vector using the smallest scale Gromov coefficients:

vi =

⎡
⎢⎢⎢⎣

G1
i

G2
i

G3
i

G4
i

⎤
⎥⎥⎥⎦, (18)

where each Gl
i value has been normalized over all coefficients

at scale l to lie between −1 and 1. The matrix of Gromov
profile vectors is clustered using a spectral clustering algo-
rithm from the scikit-learn package. This algorithm constructs
an affinity matrix between the nodes using the radial basis
function kernel applied to the Gromov 4-vectors. The affinities
are used to create an associated graph, and the clustering
is performed using the eigenvectors of the graph Laplacian
[31]. The results are illustrated in Figs. 7 and 8, each color
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FIG. 7. Random geometric graph, less dense (N = 700/unit
area). Node color corresponds to cluster, assigned using 4-vector of
l = 1, 2, 3, 4 normalized Gromov coefficients.

corresponding to a different cluster. As expected, the clusters
roughly form concentric circles of nodes with the same radial
distance. The radial distance classification is more accurate
for the denser graph in Fig. 8, where the geodesic distances
between nodes is approximately proportional to the Euclidean
distance.

Varying the chosen scales and number of coefficients used
in the vector would change both the number and width of the
clusters. Indeed, for these homogeneous random geometric
graphs, it is possible to use the largest scale Gromov coef-
ficient (or closeness coefficient) to most accurately estimate
the radial distance of a node. However, larger-scale Gromov
coefficients are more computationally expensive to calculate
for dense graphs. Interestingly, as we show in the following

FIG. 8. Random geometric graph, more dense (N = 1000/unit
area). Node color corresponds to cluster, assigned using 4-vector of
l = 1, 2, 3, 4 normalized Gromov coefficients.

FIG. 9. Random geometric graph. The inner and outer groups are
identified in gray, for x = 0.2.

analysis, the radial classification is fairly accurate, even for
shorter-intermediate scale coefficients.

We analyze how effective the shorter scale Gromov coef-
ficients are at classifying nodes based on radial distance with
the following procedure. Using a random geometric graph, we
take two sets of nodes, from the “inner” area and the “outer”
area of the graph. Using the Gromov coefficient, we cluster
the nodes into two groups and examine the fraction of nodes
that are correctly identified as inner or outer, as the size of the
groups is varied.

More precisely, we fix a fraction x of the graph, where
x � 0.5. If R is the radius of the random geometric graph,
then the inner set is defined as the nodes that fall into the
inner x fraction of the graph, or the circle with radius R

√
x.

The outer set of nodes lie in the outer x fraction of the graph,
the annulus with radii R and R

√
1 − x. Figure 9 identifies the

inner and outer sets in grey, for x = 0.2. Note that for x = 0.5,
the union of the inner and outer sets is simply the whole
graph. Computing the Gromov coefficient for the nodes, we
use spectral clustering on the union of the sets, and impose
the number of clusters = 2, examining what fraction of nodes
are correctly identified as belonging to the inner and outer sets
as the x parameter is varied. As x increases, the classification
problem is more difficult, since the variation in the boundary
effect between the two sets decreases. This procedure is car-
ried out for Gromov coefficients of scale l = 1, 2, 3, 4, and
l = D, the diameter of the graph. Finally, the clustering is also
performed using the 4-vector profile. The results are displayed
in Fig. 10, for a random geometric graph with density of N =
800/unit area, and in Fig. 11, for a random geometric graph
with density of N = 1500/unit area.

As one might expect, the largest scale Gromov coefficients
(l = D) performs best at clustering nodes based on radial
distance; at this scale, the nodes have the most radial variation
in the extent to which they can feel the boundary, which is
reflected in the value of the coefficient. However, we also note
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FIG. 10. Fraction of core nodes correctly identified for different
Gromov coefficients as we vary graph percentage, averaged over 10
realizations of random geometric graphs with density N = 800/unit
area. The shaded area gives the standard error.

the effectiveness of the intermediate scale l = 4 at cluster-
ing the two groups, despite the fact that the diameter of the
graph is more than double this value. This is an important
observation because finding large scale Gromov coefficients
is computationally expensive, especially for large graphs. The
small-scale coefficients l = 1, 2 perform the worst, and also
exhibit the largest errors across iterations, due to local inho-
mogeneities that occur across the set of graphs. Consistently
across all coefficients, the success of the clustering method
decays as the parameter value x increases, increasing the dif-
ficulty of the classification problem. Comparing Figs. 10 and
11 shows that the clustering is more successful for the denser
graph, across all scales.

As the density of a random geometric graph increases, the
path length is approximately proportional to the Euclidean
distance. Thus, increasing the density decreases the local in-
homogeneities that introduce fluctuations in the coefficient
across nodes at a given radius. As a result, the clustering is
more successful, and the standard errors are smaller across all

FIG. 11. Fraction of core nodes correctly identified for different
Gromov coefficients as we vary graph percentage, averaged over 10
realizations of random geometric graphs with density N = 1500/unit
area. The shaded area give the standard error.

scales. We also note that the success of the 4-vector clustering
lies in-between that of the l = 1, 2 and l = 3, 4 scales. This
is a consequence of the local fluctuations which introduce
smaller scale coefficient variations over nodes at a given ra-
dius. This indicates that for such homogeneous graphs, using a
Gromov profile actually impedes the clustering, which would
be more successful using exclusively the larger scales.

Dense random geometric graphs are highly homogeneous,
and the different Gromov coefficients do not highlight dif-
ferent structures; instead, the different scales simply give
finer-grained understandings of the same notion—distance
from the boundary. In the next section, we will pursue our
exploration of the method to the case of heterogeneous graphs
taken from urban transportation systems.

2. Metro systems

Urban transportation systems, and particularly metro sys-
tems, have been extensively studied in network science
because they are complex networks that exhibit intermediate-
scale structure, such as core-periphery architecture [32,33].
Following the same procedure as for the random geometric
graphs, we construct a vector profile of Gromov coefficients
across different representative scales to characterize the struc-
tural “roles” of the different metro stations, clustering stations
that have similar patterns of relative geodesic importance. The
data used in the analysis of the transportation networks was
provided by the authors of Ref. [33]. The first example is
the Paris metro system, which comprises 299 stations, with
a mean degree of 2.4, and a diameter of 33. As we vary
the chosen scale, we see very different patterns in the Gro-
mov coefficients. We focus mainly on the scales l = 2, 5, 10,
which give a cross-section of the local, intermediate and
global-scale behaviors, while remaining mindful of compu-
tation time. Figure 14 in the Appendix displays the results
for l = 2. Note that these graphs are geographically embed-
ded, plotted using the latitude and longitude associated to
each station. The leftmost image is colored according to the
Gromov centrality. The middle image is a visual refinement,
picking out the ten nodes with the highest valued coefficients.
The stations in the rightmost image are colored according to
spectral clustering performed using only the l = 2 Gromov
coefficient. Examining the resulting pattern created by the
Gromov coefficient, and particularly the set of nodes with
the highest coefficient values, reveals that this local-scale
coefficient gives greater “centrality” importance to stations
lying primarily in the outer arrondissements, which serve to
connect the periphery to the center of the city. The results for
l = 5, in Fig. 15 in the Appendix, illustrate the importance of
intermediate-scale Gromov centrality. The ten nodes with the
highest centrality appear to be grouped in pairs, highlighting
five areas of the graph, outside the center. These areas could
be understood as intermediate-scale subcenters. Although the
network has a diameter of 33, the scale l = 10 is already
sufficiently large to recover the “closeness” interpretation of
large-scale Gromov coefficients, with the additional advan-
tage of a faster computation time. The l = 10 triangle excess
coefficient results shown in Fig. 16 in the Appendix, illustrates
that the centrality peaks at the geometric center of the graph,
or the center of the city, and fades as it radiates outwards. The
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FIG. 12. Parisian metro system, geographically plotted, clustered
using 3-vector of Gromov coefficients l = 2, 5, 10.

clustering performed using the l = 10 coefficient, illustrated
in the rightmost image in Fig. 16, groups the nodes into
roughly three rudimentary roles, which, as in the random
geometric graphs, appear to depend on the geodesic distance
from the center.

Returning to the role-based clustering using the Gromov
profile, each station is assigned a 3-vector given by

vi =

⎡
⎢⎣

G2
i

G5
i

G10
i

⎤
⎥⎦, (19)

where each Gl
i value is again normalized over all coefficients

at scale l to lie between −1 and 1, to ensure that the informa-
tion at each scale is weighted equally. The spectral clustering
performed on these vector representations returns eight
clusters. We note that the clustering method could be refined
to produce more consistent results. The network is shown once
again in Fig. 12, where each station is colored by cluster.

Naively, the colors appear to be laid out according to the
distance from the center. The green, yellow and pink clusters
show metro stops leading out into the periphery of the city,
with yellow and pink identifying the end of the line. Brown
and red nodes encircle the city center core, connecting it to the
periphery. Blue nodes surround the core even more closely,
and finally the purple cluster highlights nodes at the very
center of the city.

Interestingly, we note that the stations identified by the
intermediate l = 5 scale as subcenters, and stations belonging
to the main city center, as identified by the l = 10 scale, are

assigned to the same purple cluster. Figure 12 is replotted in
the Appendix as Fig. 17 with the purple cluster nodes labeled
with their station name. Many of these nodes appear to be
important train stations, including Montparnasse Bienvenue,
Gare du Nord, Gare de Lyon, Gare de l’Est, and Saint Lazare.
Some of these stations, like Montparnasse Bienvenue, have a
relatively low closeness coefficient but still function as impor-
tant intermediate hubs, a feature which is indeed captured by
our Gromov profile clustering method.

With a geographical embedding, the Parisian metro sys-
tem appears to have a core-periphery structure, with metro
lines terminating outside the dense city center. Consequently,
the geometric center of the graph is highly indicative of the
city center. As an informative example, we perform a similar
analysis on a less centralized transportation network; the New
York subway system. The data used in this analysis was also
provided by the authors of Ref. [33]. The New York metro
system comprises 433 stops, with a mean degree of 2.2, and a
diameter of 59, and the network is plotted using a geograph-
ical embedding. As before, the Gromov coefficients reveal
different patterns at different scales. We select the scales l =
2, 4, 10, 15, which give a cross-section of local, intermediate
and global-scale behaviors.

Figures 18 and 19 in the Appendix display the results for
the smaller scales, l = 2 and l = 4, respectively. We notice
that most of the 10 highest coefficient nodes are outside the
dense cluster of stations that represents Manhattan. Already,
clustering the Gromov coefficients at scale l = 2 highlights
a subcenter structure in the outer boroughs, which also ap-
pears in the 4-vector clustering. Scaling up to l = 10, the
highest valued coefficient nodes are still outside Manhattan,
but they are now grouped together in what we might iden-
tify as subcenters, as in Fig. 20. Finally, at scale l = 15 in
Fig. 21, we recover a closeness-like interpretation of the co-
efficient; the important nodes are inside Manhattan. Indeed,
8 of the 10 highest valued nodes identified by the l = 15
Gromov coefficient are the same as the 10 identified by the
closeness coefficient, despite the graph having a diameter of
59. Intuitively, it is reasonable that long journeys from one
outer borough to another are required to pass through Man-
hattan. The clustering at this scale does identify subcenters in
the outer boroughs, but we observe that most stations inside
Manhattan are placed in one large group, indicating that the
coefficient at this scale is not fine-grained enough to capture
intermediate-scale effects.

Finally, we cluster the metro stops using the vector profile
of the selected Gromov coefficients. As before, each node is
assigned a 4-vector given by

vi =

⎡
⎢⎢⎢⎣

G2
i

G4
i

G10
i

G15
i

⎤
⎥⎥⎥⎦, (20)

where again each Gl
i value has been individually nor-

malized to lie between −1 and 1. Figure 13 shows the
geographically embedded New York subway network, where
each node has been assigned to a cluster indicated by its color.
We can interpret the red nodes as central core nodes, encircled
by layers of purple and blue nodes. The yellow and green
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FIG. 13. New York metro system, geographically plotted, clus-
tered using 4-vector of Gromov coefficients l = 2, 4, 10, 15.

identify line terminations, and the stations that function as
connectors between subcenters are identified in grey. While
the concentration of central nodes inside Manhattan is not
unexpected, we also see the appearance of subcenters in the
outer boroughs: Brooklyn, Queens, and the Bronx.

Paris, which is itself is laid out in concentric circles, ex-
hibits subcenters that are within the rings of the city, as
illustrated in Fig. 12. The New York subway on the other

hand, as Fig. 13 depicts, has a more complicated configura-
tion, perhaps as a result of the bodies of water that separate
the different boroughs. The distribution of subcenters could
indicate that New York is an example of a “polycentric” city,
in the sense of Ref. [34], where the authors use commuter
flow to examine the hierarchical structure patterns that emerge
at different scales, identifying polycentric cities as ones that
have “nested urban movements” that can be divided into
subcenters. Here, we have analyzed just the stationary metro
system network, and it may indeed be interesting to compare
the subcenters identified by the Gromov coefficient on the sta-
tionary network, with the commuter flow-based subdivision
performed in Ref. [34].

IV. CONCLUSION

In this paper, we have presented Gromov centrality, a
measure of multiscale node centrality that computes the
mean triangle excess over all pairs of nodes in a given
l-neighborhood. The measure can be taken across various
scales, and captures the importance of a given node at con-
necting other nodes in its vicinity. We show that at the local
scale, Gromov centrality is precisely minus the clustering
coefficient, and at the global scale, it recovers a closeness
interpretation. Using various toy networks, we show that the
measure is sensitive to the geometric and boundary constraints
of the graph, at various scales. We propose an application of
our measure to role-based clustering of nodes, in terms of the
relative structural importance across scales. We show that on
random geometric graphs, the clustering method can identify
the distance of a node from the boundary. In experiments
on heterogeneous empirical transportation networks, the
clustering method groups together stations that play similar
roles in the flow of transportation, and identifies the various
subcenters that appear in polycentric cities. Overall, this work
contributes to the increasing efforts to characterise and to
exploit network geometry [35]. Future research perspectives
include investigating the relationship between Gromov

FIG. 14. Parisian metro system, geographically plotted, results for l = 2. The first image shows the value of the l = 2 Gromov coefficient
for the different stops. The second image highlights the 10 stops with the highest l = 2 coefficients. The third image shows the results of
spectral clustering performed using just the l = 2 coefficient. The 10 highlighted stops are Belleville, Marcadet Poissonniers, Republique,
Montparnasse Bienvenue, Odeon, Pigalle, Place d’Italie, Nation, Charles de Gaulle Etoile, and La Motte Picquet Grenelle.
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FIG. 15. Parisian metro system, geographically plotted, results for l = 5. The first image shows the value of the l = 5 Gromov coefficient
for the different stops. The second image highlights the 10 stops with the highest l = 5 coefficients. The third image shows the results of
spectral clustering performed using just the l = 5 coefficient. The 10 highlighted stops are Saint Lazare, Madeleine, Republique, Gare de
Lyon, Duroc, Chatelet, Placed’Italie, Montparnasse Bienvenue, Michel Ange Auteuil, and Michel Ange Molitor.

centrality and dynamical processes on networks, for instance,
to study how complex diffusion is affected by structures at dif-
ferent scales in the network [36], and exploring the behavior of
Gromov centrality for other metric distances between nodes.

As previously mentioned, a Gromov centrality based on
the effective resistance could highlight different properties of
a network, but there are a number of other metric distances
to consider as well, including the communicability distance
[37], or distances based on random walk properties, such as
the diffusion distance [38]. Relaxing the requirement that the
distance obeys the triangle inequality also opens the possibil-
ity to use other graph distances, or quasi-metrics such as the

effective distance defined in Ref. [39] based on dynamic flux,
which could be a rich area for future investigation.
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FIG. 16. Parisian metro system, geographically plotted, results for l = 10. The first image shows the value of the Gromov coefficients
for the different stops. The second image highlights the 10 stops with the highest coefficients. The third image shows the results of spectral
clustering performed using just the l = 10 coefficient. The 10 highlighted stops are Invalides, Champs Elysees Clemenceau, Hotel de Ville,
Saint Lazare, Concorde, Gare de Lyon, Madeleine, Opera, Pyramides, and Chatelet.

APPENDIX
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FIG. 17. Parisian metro system, geographically plotted, clustered using a 3-vector of Gromov coefficients l = 2, 5, 10. Shown here with
station names labels for the purple cluster.
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FIG. 18. New York metro system, geographically plotted, results for l = 2. The first image shows the value of the l = 2 Gromov coefficient
for the different stops. The second image highlights the 10 stops with the highest l = 2 coefficients. The third image shows the results of spectral
clustering performed using just the l = 2 coefficient. The 10 highlighted stops are Roosevelt Avenue/74th Street, Fourth Avenue/Ninth Street,
Canal Street 46X, 14th Street Union Square, Sutphin Boulevard Archer Avenue JFK Airport, Fulton Street/Broadway Nassau Street, 168th
Street, Myrtle Wyckoff Avenues, Delancey Street Essex Street, and Broadway Junction.

FIG. 19. New York metro system, geographically plotted, results for l = 4. The first image shows the value of the l = 4 Gromov coefficient
for the different stops. The second image highlights the 10 stops with the highest l = 4 coefficients. The third image shows the results of spectral
clustering performed using just the l = 4 coefficient. The 10 highlighted stops are Broad Channel, 96th Street/123, Lexington Avenue/59th
Street, New Utrecht Avenue/62nd Street, Franklin Avenue/Botanic Garden, Broadway Junction, 149th Street Grand Concourse, 168th Street,
Roosevelt Avenue/74th Street, and Myrtle Wyckoff Avenues.
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FIG. 20. New York metro system, geographically plotted, results for l = 10. The first image shows the value of the l = 10 Gromov
coefficient for the different stops. The second image highlights the 10 stops with the highest l = 10 coefficients. The third image shows
the results of spectral clustering performed using just the l = 10 coefficient. The 10 highlighted stops are 155th StreetBD, East 180th Street,
Rockaway Avenue AC, Bronx Park East, Sutphin Boulevard Archer Avenue JFK Airport, Jamaica Van Wyck, Briarwood Van Wyck Boulevard,
149th Street Grand Concourse, 161st Street Yankee Stadium, and Broadway Junction.

FIG. 21. New York metro system, geographically plotted, results for l = 15. The first image shows the value of the l = 15 Gromov
coefficient for the different stops. The second image highlights the 10 stops with the highest l = 15 coefficients. The third image shows the
results of spectral clustering performed using just the l = 15 coefficient. The 10 highlighted stops are 23rd Street FV, 14th Street FV, Grand
Central/42nd Street, DeKalb Avenue X, Grand Street BD, 34th Street Herald Square, Atlantic Avenue/Pacific Street,Times Square/42nd
Street Broadway Lafayette Street, and West Fourth Street Washington Square.
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