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Synchronization dynamics on power grids in Europe and the United States
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Dynamical simulation of the cascade failures on the Europe and United States (U.S.) high-voltage power
grids has been done via solving the second-order Kuramoto equation. We show that synchronization transition
happens by increasing the global coupling parameter K with metasatble states depending on the initial conditions
so that hysteresis loops occur. We provide analytic results for the time dependence of frequency spread in the
large-K approximation and by comparing it with numerics of d = 2, 3 lattices, we find agreement in the case
of ordered initial conditions. However, different power-law (PL) tails occur, when the fluctuations are strong.
After thermalizing the systems we allow a single line cut failure and follow the subsequent overloads with
respect to threshold values T . The PDFs p(Nf ) of the cascade failures exhibit PL tails near the synchronization
transition point Kc. Near Kc the exponents of the PLs for the U.S. power grid vary with T as 1.4 � τ � 2.1,
in agreement with the empirical blackout statistics, while on the Europe power grid we find somewhat steeper
PLs characterized by 1.4 � τ � 2.4. Below Kc, we find signatures of T -dependent PLs, caused by frustrated
synchronization, reminiscent of Griffiths effects. Here we also observe stability growth following the blackout
cascades, similar to intentional islanding, but for K > Kc this does not happen. For T < Tc, bumps appear in
the PDFs with large mean values, known as “dragon king” blackout events. We also analyze the delaying
or stabilizing effects of instantaneous feedback or increased dissipation and show how local synchronization
behaves on geographic maps.
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I. INTRODUCTION

With the power sector undergoing huge changes, the mod-
eling of power grids has become a focus point for researchers
in the fields of statistical physics as well. The hierarchical
modular structure of these networks, their heterogeneity and
their size make them a perfect candidate for complex system
analysis, as discussed in Refs. [1–3]. The shift from traditional
fuels to large-scale utilization of renewable energy sources
poses a number of challenges in regards of robustness and
resilience of power systems, mainly due to the appearing
correlated spatiotemporal fluctuations. Sudden changes (e.g.,
intermittent production, load ramps, outages) may start desyn-
chronization cascades, which would propagate through the
whole synchronously operated system as an avalanche. The
resulting blackouts are of various sizes, but they often lead to
full system desynchronizations lasting for extended periods
[4]. The size distributions of the outages have been found
scale-free in the United States (U.S.), China, Norway, and
Sweden in the available long time-series data. In particular,
power laws could be fitted in countries with so-called robust
networks [5], where the networks are categorized as robust or
fragile based on static network topology analysis. As defined
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in Ref. [6], networks with P(k > K ) = C exp (−k/γ ) cumu-
lative degree (k) distribution and γ < 3/2 are called robust,
based on a mean-field theory of random node removals on the
percolation [7].

The research community is actively working on methods to
support understanding and forecasting of such events [8] More
particularly, taking the aspect of statistical physics, risk of fail-
ure in power systems represents a specific case of the risk of
systemwide breakdown in threshold activated disordered sys-
tems. Self-organized criticality (SOC) [9] is typically used for
the modeling of such phenomena [10], where SOC is expected
to arise as the consequence of self-tuning to a critical point,
which is determined by the competition of power needs and
transmission capabilities of the grid itself. The direct current
(dc) threshold models [11] can be extended by considering
ac power flows of power systems, modelling them via the
second-order Kuramoto equation [12]. An increasing number
of papers discuss synchronization and stability issues by this
approach, such as in Refs. [13–24].

These solutions can be deduced from the power transmis-
sion behavior of ac systems and are actually a generalization
of the Kuramoto model [25] with inertia. Below d < dl = 4,
where d is the spatial, or in networks the so-called graph
dimension, defined by Eq. (16), the Kuramoto model does
not exhibit real phase transitions to a synchronized state but
a smooth crossover [26]. In real life, partially synchronized
states can be observed. It was also observed that in lower
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graph dimensions the transition point shifts toward infinity as
the system size and a hysteresis behavior emerges [3].

Highly heterogeneous systems (often referred to as dis-
ordered with respect to the homogeneous ones) can exhibit
rare-region effects, which alter critical dynamics [27]. Such
rare regions, locally in different state than the remainder of
the network, evolve slowly and contribute to the global order
parameter, causing slow dynamics and fluctuations. They can
generate so-called Griffiths phases (GP) [28] in an extended
region around the critical point, causing slowly decaying au-
tocorrelations and burstyness [29]. Their existence in load
driven power grid and earthquake models has been studied
very recently in Ref. [30]. These rare regions can also lead to
frustrated synchronization and chimera states [31–33], which
result in nonuniversal PL distributions of the desynchroniza-
tion events below the transition point [3,34–36]. The authors
have previously provided evidence for this using the second-
order Kuramoto model on two-dimensional (2D) lattices and
large synthetic power system topologies [3] and on the realis-
tic representation of the Hungarian power system while also
allowing line outages (line cuts) [37].

Control of cascading failures is a great challenge for de-
signers and engineers of power grids. Model calculations
based on dynamical simulations of the swing equations have
been shown in Ref. [38]. Rare-region phenomena, leading to
nonuniversal PL cascade size distribution exponents provides
an empirical way to go further in the knowledge of spatial or
temporal maps of them, as suggested in Ref. [30].

The second-order Kuramoto model with power transmis-
sion thresholds (line capacities) has been also introduced in
Refs. [37,39] for the dynamical modeling of cascade events.
Identification of critical lines of transmission in different
national power grids has been determined. We follow this
method in order to investigate the desynchronization dura-
tion distributions via measuring the number of failed lines
following a link removal event. We shall also compare re-
sults obtained on 2D and 3D lattices with those of the U.S.
and Europe high-voltage power grids. Multiple recent stud-
ies suggested that it is possible to prevent the spread of
cascade failures either by adding an isolator as a fortress
against an attack [40], adding some nodes to increase the
rerouting path, or strengthening a link [41]. Surprisingly, we
observed that it is also possible to increase the synchroniza-
tion level by triggering moderate cascade line failures for
more weakly coupled power grids. This effect bears a close
resemblance to the “intentional islanding operation” in which
the spread of failures could be contained by removing some
weak links so that a power grid is segregated into several self-
sustained islands [42,43]. As coupled oscillators described
by the second-order Kuramoto model exhibit a discontinuous
synchronization transition, cascade distributions are expected
to consist of two different types of avalanches: regular ones
and huge avalanches or kings [44], corresponding to the
bumps in the distributions. Recently these kings, also called
“dragon kings” (DK), were shown to exist in sandpile models,
following self-organized bistability [45], which is expected
to be a common phenomenon in nature. The existence of
DKs has also been shown very recently in a sandpile model,
coupled to massless Kuramoto oscillators, designed to model
power grids [46]. We also show the appearance of DKs in our

power-grid simulations based on the swing equations of the
alternating current (ac) circuits.

The remainder of this paper is organized as follows: In
Sec. II we describe the methods and the power grids to be
used in the paper. In Sec. III, we first explore the temporal
evolution of the frequency spread and the phase order param-
eter during thermalization and after invoking one random line
cut. We also give a qualitative explanation for the frequency
spread algebraic decay via a linear approximation argument
[47]. We then present numerical results for cascades for the
Europe-HV and U.S.-HV networks. These results show that
in the neighborhood of criticality, cascade sizes can display
nonuniversal power laws and there is also a manifestation of
islanding effects [42,43]. In Sec. IV, we briefly demonstrate
that the local Kuramoto order parameter is not uniform across
different geographical regions. Finally, Sec. V summarizes
this work.

II. MODELS AND METHODS

In the lack of full details of power grids, as a first approxi-
mation, the evolution of synchronization is described by the
swing equations [48] set up for mechanical elements with
inertia by the second-order Kuramoto equation [12]. For a
network of N oscillators with phase θi(t ):

θ̇i(t ) = ωi(t )

ω̇i(t ) = ωi(0) − αθ̇i(t ) + K
N∑

j=1

Ai j sin[θ j (t ) − θi(t )], (1)

where α is the damping parameter, describing the power dis-
sipation, or an instantaneous feedback [37], K is a global
coupling, related to the maximum transmitted power between
nodes and Ai j , which is the adjacency matrix of the network
containing admittance elements. The self-frequency of the ith
oscillator ωi(0) describes the power in or out of a given node
when Eq. (1) is considered to be the swing equation of a
coupled ac circuit. The dimension of the ωi(0) term is [1/s2].

In our simulations the following parameter settings were
used: The α dissipation factor, which is chosen to be equal
to 0.4 to meet expectations for power grids, with the [1/s]
inverse time physical dimension assumption. For modeling
instantaneous feedback, or increased damping parameter, we
applied α = 3.0[1/s] similarly as in Ref. [37].

To solve the differential equations we used the adaptive
Bulirsch-Stoer stepper [49] in general, which provides more
precise results for large-K coupling values. To obtain reason-
able statistics, via the adaptive solver we needed very strong
computing resources, using parallel codes running on GPU
clusters by utilizing the VexCL library for vector operations
[50], but the results were cross-checked with the results ob-
tained on conventional CPU machines and compared with the
Runge-Kutta-4 solvers, too. The details of the GPU imple-
mentation will be discussed in a separate publication.

Exploiting the Galilean invariance of Eq. (1) we can gauge
out the mean value 〈ωi(0)〉 in a rotating frame; thus for the
self-frequencies ωi(0) we used Gaussian random variables
with zero mean and unit variance.

Moreover, another rescaling invariance can also be discov-
ered similarly as in the case of the first-order Kuramoto model
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[35]:

K ′ = aK, ω′
i(0) = aωi(0), α′ = √

aα, t ′ = t/
√

a,

(2)
which could also be exploited by the solutions at very large
couplings, where the adaptive solver may slow down substan-
tially. Conversely, if the relaxation time (for smaller K) is too
slow, then we could avoid it by increasing K . However, there
is an optimal value for rescaling due to the balance between
the speed gain for the solver by using a smaller K and the
dilation of time by a factor of

√
a. This may be determined by

actual simulations for a given network or parameter set. We
measured that by choosing a = 1/9 with which, although the
simulation time t ′ is increased by a factor of 3, the GPU run
times became faster by a factor of 20% as compared to the
runs without rescaling in case of large 2D lattices with linear
sizes L = 3000. Further benchmark results will be published
in a separate publication [51].

To achieve thermalized states with larger synchroniza-
tion the initial state was set to be fully synchronized with
phases θi(0) = 0, but to determine the hysteresis curve or
to investigate �(t ) decays we also used the uniform ran-
dom distribution: θi(0) ∈ (0, 2π ). The initial frequencies were
set as θ̇i(0) = ωi(0). The thermalization was performed by
running the code for 1000 − 5×104 time steps, judging by
visual or automatic inspection of the status of order param-
eter saturation, without allowing line cuts on the graph. This,
is the “quench” procedure in statistical physics, which does
not happen in reality, because in case of a cold restart both
the consumers and generators are connected gradually and
adiabatically, following a prescribed protocol to avoid initial
unbalance. However, instead of the more tedious equilibration
process we quenched the system from random or ordered
initial conditions to a steady states without allowing cascade
failures. This also has the advantage that we could learn the
dynamics of the second-order Kuramoto model on different
networks.

Following the thermalization we perturbed the system by
removing a randomly selected link or, alternatively, a ran-
domly selected node in order to simulate a power failure event.
Following that, if the ensuing power flow on a line between
neighboring nodes was greater than a threshold:

Fi j = |sin(θ j − θi )| > T, (3)

so that that line is regarded as overloaded, then we removed
this link from the graph permanently and measured the total
number of line failures Nf of the simulated blackout cascades
of each realizations, corresponding to different ωi(0) self-
frequency values. At the end we applied histogramming to
determine the PDFs of Nf . In the vicinity of criticality, one
usually expects power-law distributions of the form

p(Nf ) ∼ N−τ
f , (4)

thus we plotted our results on the log-log scale.
During the cascade simulations, which had the length of

tmax = 103-104 we measured the Kuramoto phase order pa-
rameter:

z(tk ) = r(tk ) exp [iθ (tk )] = 1

N

∣∣∣∣∣
∑

j

exp [iθ j (tk )]

∣∣∣∣∣, (5)

by increasing the sampling time steps exponentially:

tk = t0×1.08k . (6)

In Eq. (5), 0 � r(tk ) � 1 gauges the overall coherence and
θ (tk ) is the average phase. The set of equations (1) were solved
numerically for 103 − 3×104 independent initial conditions,
initialized by different ωi(0)s, and different θi(0)s if applica-
ble, and sample averages for the phase order parameter,

R(tk ) = 〈r(tk )〉, (7)

and for the variance of the frequencies,

�(t, N ) =
〈

1

N

N∑
j=1

(ω − ω j )
2

〉
, (8)

were determined. In case of a single peaked self-frequency
distribution, �(t, N ) is an appropriate order parameter and is
easier to measure, besides the more commonly used measure
[47], which counts the number of oscillators in the largest
cluster having an identical frequency.

In the steady state after thermalization we also measured
the standard deviation of the order parameters R(tk ) and
�(t, N ) in order to locate the transition point Kc by the fluctu-
ation maxima. In case of the first-order Kuramoto equation the
fluctuations of both order parameters show a maximum at
the same Kc [36], meaning a maximal chaoticity here. For
the second-order Kuramoto equation only σ [R(tk )] seems to
have a peak at Kc; see Secs. III C and III D for more details.
Nonetheless, one would expect chaotic dynamics to emerge in
the vicinity of the transition point.

A. Description and analysis of the power grids

Here we determined some basic topological characteristics
[52] of the studied power grids using the Gephi tool [53] and
Mathematica. For comparison, we have studied the dynam-
ical behavior of the western U.S.-HV power grid, obtained
from Ref. [54], and of the Europe-HV power grid, obtained
from the “SciGRID Dataset” [55]. These power-grid networks
are hierarchical modular networks, i.e., each part acts as a
single module, while internally it can be further structured
into smaller subcomponents if the detailed information for
the medium- and low-voltage parts of the grids are also in-
corporated. Practically, it is almost impossible to infer the
entire structure of a large power-grid network, but it is fea-
sible to mimic a realistic power grid network by adding to
the HV skeleton of the grid the medium- and low-voltage
parts according to the empirical hierarchical distribution, as
we previously did in Ref. [3] for the Hungarian power-grid
network. In this work, we will only focus on the high-voltage
networks as obtained from the raw data. For simplicity, all
transmission lines are regarded as bidirectional and identical.
Nodes are also identical and featureless.

Standard graph measures for the U.S.-HV and the Europe-
HV networks are summarized in Table I. The U.S.-HV
network statistics were also summarized in Ref. [37]. The
U.S.-HV network consists of N = 4194 nodes and E = 6594
edges, while N = 13 478 nodes of the Europe-HV network
are interconnected via E = 33 844 links. The average degrees
〈k〉 of the two networks take very similar values 2.67 and
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TABLE I. Graph measures of the investigated power grids. Notations: N and E are the number of nodes and the number of edges; 〈k〉 is the
average degree; γ is the robustness exponent; Q is the modularity quotient [Eq. (9)]; C is the clustering coefficient [Eq. (10)]; 
 (
r) denotes the
average shortest path lengths of the network (random network counterpart) [Eqs. (11) and (12)]; σ is the small-worldness coefficient [Eq. (13)];
Eg (Egr) and El (Elr) are the global and local efficiency measures of the network (random graph counterpart) [Eqs. (14) and (15)]; and d is the
effective graph dimension [Eq. (16)].

N E 〈k〉 γ Q C 
 
r σ Eg Egr El Elr d

U.S. 4194 6594 2.67 1.24(1) 0.929 0.08 18.7 17.7 9.334 0.063 0.104 0.195 0.078 3.0(1)
Europe 13478 33844 2.51 1.53(5) 0.963 0.089 49.505 10.2 98.63 0.027 0.083 0.192 0.059 2.6(1)

2.51, respectively. As an example, in Fig. 1, we show the
degree distribution of the Europe-HV network. Even though
the vertex degree range is quite limited (k � 32), the tail
of the degree distribution (k > 5) may be fitted with a PL
with a large exponent �5. However, it is more reasonable
to fit the data by an exponential function, which is common
for power grids [56,57]. For k � 15 a stretched exponential
8.25 × e−0.53(5)k fits the data quite well. Furthermore, com-
paring the exponents γ of the cumulative degree distribution
of the two networks renders Europe-HV network to be just at
the threshold of robust or fragile (γ = 3/2, according to the
definition in Refs. [6,7]), while the U.S.-HV network can be
categorized as a robust network.

The adjacency matrix of the Europe-HV network is shown
in Fig. 2. Similarly to the U.S.-HV network, this is a highly
modular network with modularity quotient Q = 0.964, de-
fined by

Q = 1

N〈k〉
∑

i j

(
Ai j − kik j

N〈k〉
)

δki,k j , (9)

where δi j is the Kronecker delta function.
The Watts-Strogatz clustering coefficient [58] of a network

of N nodes is

C = 1

N

∑
i

2ni/ki(ki − 1), (10)
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8.25 e
−0.53(5)k

FIG. 1. Degree distribution of the Europe-HV network. The blue
dashed line shows an exponential fit for k � 15, while the red long-
dashed line is a a PL fit for k > 5.

where ni denotes the number of directed edges, interconnect-
ing the ki nearest neighbors of node i. With CU.S. = 0.08 and
CEurope = 0.089, both networks show a much higher clustering
coefficient than that of a random graph with the same N and
E , defined by Cr = 〈k〉/N . The CEurope = 0.089 is about 480
times higher than that of a random network of same size
Cr = 0.000186229.

The average shortest path length is


 = 1

N (N − 1)

∑
j 	=i

di j, (11)

where di j is the graph distance between vertices i and j. For
a random graph of the same size and edge number, Ref. [59]
gives the expression


r = ln N − 0.5772

ln〈k〉 + 1/2. (12)

As shown in Table I, in case of the Europe-HV network, 
 is
much larger than 
r , in stark contrast to the U.S.-HV network.
Furthermore, according to the definition of the coefficient
[60]:

σ = C/Cr


/
r
, (13)

the Europe-HV network is a small-world network because
σ � 100, is much larger than unity.

0 5000 10000
i

0

5000

10000

j

FIG. 2. The adjacency matrix of the Europe-HV grid, with Ai j =
1 displayed in black and white if otherwise (cf. Ref. [37] for the
U.S.-HV grid data).
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In addition to C, 
, and σ , the small-worldness of a net-
work may be better assessed by how efficiently it exchanges
information globally and locally, i.e., a small-world network
should be efficient both globally and locally [61]. These two
measures are based on the assumption that transferring in-
formation from site i to site j would be easier if they are
closer and the efficiency of the transmission between the two
sites is simply calculated as the inverse of their shortest path
length εi j = 1/di j . The global efficiency and the improved
local efficiency are then defined as the mean efficiency of all
pairs [61],

Eg = 1

N (N − 1)

∑
i 	= j

1

di j
, (14)

and the average of efficiencies of all local neighborhood
graphs (denoted as 1) of different nodes [62]

El = 1

N

∑
i

1

ki(ki − 1)

∑
j 	=k∈1

1

d jk/i
, (15)

where d jk/i is calculated with node i being removed from
the network. Since the efficiency measures are system size
dependent [62], by comparing the respective efficiency mea-
sures of a power grid to those of the random network of the
same node number and edge number (denoted by Egr and Elr),
which characterizes the largest possible global efficiency and
the lowest local efficiency, Table I suggest that both the U.S.
and the Europe networks are more or less small world. The
Eg values are not very high as compared to the respective Egr

values though. This can be ascribed to the fact that power-grid
networks are geographical networks, on which links spanning
long geographical distances are typically rare.

To summarize, from Table I we can see that the Europe-HV
network has about 3 times more nodes and 5 times more edges
than the western U.S.-HV grid and exhibits similar measures,
except for 
, which is also ∼2.5 times bigger. Furthermore, by
the degree exponent it is marginally fragile, unlike the U.S.-
HV grid, which is robust, thus the existence of PL blackout
size distributions is a matter of question. We shall investigate
if this holds in the dynamical sense, in the presence of fluctu-
ating energy resources.

In addition, we also provide estimates for the effective
graph (topological) dimension d , defined by

N (r) ∼ rd , (16)

where we counted the number of nodes N (r) with chemical
distance, i.e., the number of links in the network, r or less
from randomly selected seeds and calculated averages over
many trials. In Fig. 3, we illustrate the growth of N (r) for
the Europe-HV network. Note, however, that finite-size cutoff
happens already for r > 30. To see the corrections to scaling
we determined the effective exponents of d as the discretized,
logarithmic derivative of (16)

deff (r + 1/2) = ln〈N (r)〉 − ln〈N (r + 1)〉
ln(r) − ln(r + 1)

. (17)

These local slopes are shown in the inset of Fig. 3, as the
function of 1/r and enables an extrapolation to 1/r → 0. This
gives a smaller value d = 2.6(1) for the Europe-HV network
than in case of the U.S.-HV network d = 3.0(1).

10
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10
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r

10
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10
4

10
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10
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10
8

N
(r

)

0 0.1 0.2 0.3 0.4 0.5

1/r

1.8

2

2.2

2.4

2.6

d
ef

f

FIG. 3. Number of nodes with distance r or less from random
seeds in the breadth-first search algorithm applied for the Europe-HV
graph. The inset shows the local slopes, corresponding to the same
data. Linear extrapolation to 1/r → 0 provides d = 2.6(1).

III. SYNCHRONIZATION DYNAMICS
ON THE POWER GRIDS

A. Frequency entrainment for large K

It is known that on a d-dimensional lattice, the frequency
order parameter (8) decays as � ∝ t−d/2 in case of the
first-order Kuramoto model in the large-coupling limit [47].
Following Ref. [47], we have investigated this in the case of
the second-order Kuramoto model first by applying a linear
approximation by replacing sin(x) ∝ x to gain a qualitative
understanding. In a d-dimensional space, casting the contin-
uum second-order Kuramoto equations into the momentum
space, we are led to solve

∂2

∂t2
θ (k, t ) + α

∂

∂t
θ (k, t ) = ω(k, 0) − Kk2θ (k, t ). (18)

Without citing the cumbersome solution, we simply give the
expression for the phase velocity [ω(x, t ) ≡ θ̇ (x, t )] in the
Fourier space

ω(k, t ) = e− 1
2 t (α+�){ω(k, 0)[(� + 2 − α)e�t

+α + �− 2] − 2Kk2θ (k, 0)(e�t − 1)}/2�, (19)

where � = √
α2 − 4Kk2. In the initial short-time regime,

ω(k, t ) displays a transient oscillation (also cf. Fig. 4) for
modes k > α/2

√
K , but they are quickly suppressed by the

factor e− 1
2 t . Similarly to the first-order Kuramoto model [47],

all Fourier modes of ω(k, t ) and now including the k = 0
mode also vanish in the long-time limit, suggesting that the
phase velocity becomes uniform and the frequency spread �

approaches zero. This is immediately verified by the explicit
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FIG. 4. The frequency spread for d = 2, obtained through nu-
merical integration of Eq. (20) at different α and K values for
(a) L = 3000 and (b) L = 1012. For comparison, the dot-dashed lines
show the full results of Eq. (1) with synchronized initial conditions
and the dashed lines mark the algebraic decay law t−d/2 of the
first-order Kuramoto model.

expression for �:

�(t ) = 1

Ld

∫
dd x〈[ω(x, t ) − ω̄(t )]2〉

=Cd

∫ π/a

2π/L
dkkd−1 e−t (α+�)

4�2

× [α + � − 2 + (� − α + 2)e�t ]2, (20)

where ω̄(t ) denotes the spatial average of ω(x, t ), while a
and Cd are the lattice spacing and the geometric factor, re-
spectively, both of which can be innocuously taken as 1 for a
qualitative analysis.

As shown in Fig. 4(b), for a large-enough system, after a
short initial oscillatory transition, the frequency spread dis-
plays the same algebraic decay (in the intermediate short-time
regime 1  t  L/

√
K) as that of the first-order Kuramoto

model, as long as α > 0 and K > 0. This is most evident
for the scenario when α � 1 as the damping term becomes
essentially dominant over the second-order term. In smaller
systems, due to finite-size effects, the algebraic decay may
give way to a more rapid decay for smaller α and larger K
values [cf. Fig. 4(a)], with which, one may still observe a
distorted algebraic decay in the intermediate time range.

It should be emphasized that linear approximation in-
evitably missed out nonlinearity of the system as well as the
effects of heterogeneity in the initial frequency or phase distri-
bution and in the topological structure. Hence, an intermediate
algebraic decay may also be observed for the frequency spread
by explicitly solving Eq. (1), but it does not necessarily follow
t−d/2, e.g., due to nonlinearity. In particular, most realistic
complex networks are characterized by a relatively small av-
erage shortest path length (see, e.g., Table I) as well as a
more heterogeneous structure, the latter of which could even
render linear approximation invalid. Both these two factors
may then strongly suppress any manifestation of an elongated
algebraic decay for networks, except for a certain critical
coupling value, which is exactly what we observed for the
Europe-HV and the U.S.-HV networks, as will be shown in
below with respect to the U.S.-HV network.

To this end, we solved Eq. (1) on L = 3000 (2D) and
L = 260 (3D) linear sized lattices, with periodic boundary
conditions, as well as on the Europe-HV and the U.S.-HV
networks. Averaging was done over 100–1000 samples of
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FIG. 5. Evolution of frequency spread order parameter on the 2D
lattices as the function of K and α values shown by the legends in
case of disordered initial conditions. These curves exhibit PL tails
within the exponent range 1.2 � τ � 1.5. For comparison the dashed
line shows the result for the U.S.-HV network at K = 20 and α = 3,
for which τ � 1.5 can be read off.

different initial self-frequencies. Although the linear approx-
imation shows good agreement with simulation results, when
we start from a fully synchronized state, as Figs. 5 and 6 show,
the �(t ) spread decays exhibit nontrivial K- and α-dependent
PLs for large global couplings if a disordered initial state
[θi(0) ∈ (0, 2π )] is implemented. The fitted decay exponents
τ change in the range 1.2 � τ � 1.5 in the 2D case. Solutions
on the 3D lattice provide PL tails, with exponents τ � 1.85.
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FIG. 6. Evolution of frequency spread order parameter on the 3D
lattices as the function of K and α as shown by the legends in case
of disordered initial conditions. These curves exhibit PL tails, with
similar exponents τ � 1.85. For comparison the dashed line shows
the result for the U.S.-HV at K = 20 and α = 3, where τ � 1.5 can
be read off.

034311-6



SYNCHRONIZATION DYNAMICS ON POWER GRIDS … PHYSICAL REVIEW E 106, 034311 (2022)

FIG. 7. Evolution of phase order parameter (top) and frequency
spread order parameter (bottom) of the U.S. network at K = 20
during thermalization (left) and after one subsequent line cut (right)
with respect to different thresholds (right: T = 0.1, 0.2, . . . , 0.8).
Comparing to the normal case α = 0.4 (solid lines), a negative feed-
back α = 3 (dashed lines) essentially slows down the dynamics of
the phase order parameter, while at the same time leads to a smaller
frequency spread; similar effects are observed following one line cut.

Therefore, the decay exponents are slightly larger than d/2,
due to the non-negligible phase fluctuations.

In contrast to lattices, in the case of the U.S.-HV network
on which the linear approximation fails, algebraic decay is
only observed at Kc = 20 with a larger α = 3. The PL tails,
before size cutoff, seem to agree with the regular lattice
results, the fitted exponent is around τ � 1.5 ≈ d/2. Note
that the effective graph dimension of the U.S.-HV network
is between 2 and 3, but an extrapolation to N → ∞ gives
d = 3.0(1) shown in Table I.

B. The effects of line cut and instantaneous feedback

In this section, we introduce a random transmission line
cut to thermalized, stable systems. As shown in Figs. 7 and
8, after the systems transited into their stationary states with
a thermalization process without allowing any line failures,
a subsequent random line cut introduces a perturbation that
can trigger a cascade of line failures dictated by the overload
condition (3) and hence decrease the synchronization level.
In accord with our intuition, systems with a lower threshold
value (i.e., lines are more vulnerable against disturbances)
usually are affected to a greater extent by one line cut, tran-
siting into a new stationary state with a lower phase order
parameter value and a broader frequency spread. However,
this may not always be the case. As can be seen in the case
of the Europe network, the phase order parameter may even
increase after one line cut for certain intermediate threshold
values (e.g., T = 0.2), irrespective of the fact that the fre-
quency spreads are actually increased. This hints that it is also
possible to make certain power grid more stable by removing
some of its links, as long as lines are not removed too de-
structively with respect to a very low threshold. Such power
grids may provide a prototype for studying the factors that
affect the stability of power grids. This effect is in analogous

FIG. 8. Evolution of phase order parameter (top) and fre-
quency spread order parameter (bottom) of the Europe network
at K = 80 during thermalization (left) and after one subsequent
line cut (right) with respect to different thresholds (right: T =
0.1, 0.2, 0.4, 0.6, 0.8). Comparing to the normal case α = 0.4 (solid
lines), a negative feedback α = 3 (dashed lines) essentially slows
down the dynamics of the phase order parameter, while at the same
time leads to a smaller frequency spread; similar effects are observed
following one line cut.

to the “islanding effect” [42,43]. We will revisit its implication
further in the subsequent subsections.

Furthermore, we note that, acting as a damping force,
a negative instantaneous feedback α = 3 plays the role of
slowing down the dynamics of the phase order parameter and
at the same time suppressing the eventual frequency spread.
A slightly smaller level of decrease in R(t ) also happens.
For certain threshold value, such as the case for T = 0.6 in
Fig. 8, a negative feedback caused nontrivial effect, where the
frequency spread is dropped by several orders of magnitude.
Therefore, mechanisms for negative feedback would be desir-
able in designing power grids if achieving a high-frequency
entrainment is crucial.

Now that we have learned the overall picture for the evo-
lution processes during thermalization and after carrying out
one line cut, in the next two subsections, we quantify the
changes induced by one line cut for the U.S.-HV network and
Europe-HV network, separately.

C. U.S.-HV power-grid results

We have repeated the analysis performed in Ref. [3] for the
U.S.-HV network with the difference that now we do not allow
line cuts in the thermalization, as discussed in the previous
subsection. This is a more realistic approach, as we avoid
failures in the grid by a sudden restart. In reality such restart
happens by a slow, adiabatic procedure, gradually switching
on generators and consumers by a prescribed power system
protocol.

Generally, we started the thermalization processes from a
fully synchronized state: θi(0) = 0 in order to arrive at higher
steady states than in case of quenching from random initial
conditions. This difference comes from the hysteretic behav-
ior of the second-order Kuramoto solution. As Fig. 9 shows
the R(t → ∞) fluctuations, measured in the steady state of
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FIG. 9. Fluctuations of R(t → ∞) in case of the U.S.-HV power
grid at the end of the thermalization process. Both for the normal
α = 0.4 and the α = 3 dissipation cases. Partial synchronization
transition occurs at Kc � 22(2). The inset shows the decay of �(t )
starting from disordered states at α = 3 and for different global
couplings, as shown by the legends. The curves are multiplied by
a factor t1.5 in order to see the scaling at Kc = 20.

this thermalization at t = 20 000 exhibit peaks as before,
published in Ref. [3], but they occur at a smaller value. We
can estimate them as Kc � 22(2) for both α = 0.4 and α = 3.

The synchronization transition behavior can also be seen
in the �(t ) decays, starting from disordered states for α = 3,
U.S.-HV, as shown by the inset of Fig. 9. For K > K ′

c the
decay is exponentially fast; for K < K ′

c the curves saturate to
finite � values, while at K ′

c = 20 a PL decay occurs, char-
acterized by the exponent τ � 1.5, as one can read off from
the inset of Fig. 9. It is interesting to see that K ′

c ≈ Kc on the
U.S.-HV network, but we should see later that is not always
the case.

In Ref. [3] Kc � 60(10) was published in case of α = 3,
which is reasonable, since in the thermalization process line
cuts were allowed, and thus higher coupling was needed to
stabilize the synchronization. Note that in the case of the
frequency spread order parameter we do not find a peak in
σ [�(t → ∞)], unlike for the first-order Kuramoto solutions
[36], thus � does not become more chaotic at the transition.

Yet another advantage of the above-prescribed thermaliza-
tion process is that one can initiate failure cascades by a single
line or node removal, unlike by the procedures followed in
Ref. [37]. This alters the steady-state values and the synchro-
nization transition peaks as compared to the results published
in Ref. [37].

In the previous subsection, we observed that for some
intermediate T values the order parameter R may even in-
crease following one line cut, despite the fact that cascade
line failures may follow. To scrutinize this intriguing obser-
vation more closely, the relative change of the steady-state
R(T )/R(T = 1) values, following the cascade, are shown in
Fig. 10. Islanding effects occur if K is lower than the the
thermalization value Kc � 20 for T � 0.5, which is maximal
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FIG. 10. Relative change of the steady-state Kuramoto order pa-
rameter at α = 0.4 as the consequence of the cascade in the U.S.-HV
power grid. The R(T = 1) values are set to be the reference points
and R(T )/R(T = 1) is plotted. The gray dashed line marks the
baseline for the emergence of islanding effects. The inset shows
σ [R(T, K )].

at Tc � 0.7 (see the inset of Fig. 10). One may understand
this by noting that, on the one hand, cascade line failures
could bring about disturbances and render the system desyn-
chronized, and, on the other hand, with quite a proportion of
the lines being removed, the network gradually becomes less
and less connected and eventually prevent failures from being
spread further, allowing an even higher synchronization level
similar to the “islanding effect” [42,43]. The observed island-
ing effect is thus a consequence of the delicate competition
of these two factors, so this effect is peaked at Tc, where the
increased fluctuations most efficiently do the job (cf. Fig. 16
for a stronger justification). However, by tuning a system into
a very vulnerable state with a very small T value, the system
becomes quite unstable and failures will always prevail. The
system is then tremendously desynchronized. In the inset of
Fig. 10 we also show the σ [R(T, K )] values for different K
and T control parameters. One can observe a smooth transi-
tion for the peaks, suggesting Tc → 0 as we increase K .

The U.S.-HV cascade size distributions p(Nf ) published
in Ref. [37] remain the same for K = 30, as demonstrated
on Fig. 11. The estimated exponent values are also in good
agreement with empirical estimations [11]. For K = 20 we
could find p(Nf ) with PL tails, at T � 0.9 only. Here we
could fit for the narrow region Nf < 10 a PL with an exponent
τ = 1.6(3), as shown in Fig. 12. As we increase T from 0.5,
we can see slowly decaying p(Nf ) curves, with an exponential
cutoff for Nf > 20. For T < 0.5 thresholds, bumps in the
PDFs with large mean values appear, suggesting DK events
of cascade failures. However, these DK bumps do not appear
for couplings K > Kc.

Note that the forms of p(Nf ) do not change as we increase
the dissipation or feedback factor from α = 0.4 to α = 3. The
PDFs are also insensitive for the mode of initial perturbation,
i.e., whether an edge or a node removal is committed after
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FIG. 11. Probability distribution of line failures for K = 30,
α = 0.4 and different thresholds marked by the legends in case of
the U.S.-HV power grid. Dashed lines show the power-law fit for the
scaling region, determined by visual inspection.

the thermalization. This kind of invariance was also found in
Ref. [37] where even multiple perturbations caused the same
kind of cascade size distribution forms.

D. Europe-HV power-grid results

By determining the steady-state values of R after the ther-
malization we can investigate the type of transition as it was
done for the U.S.-HV case. The adaptive solver allowed us to
provide precise values even for very large K values. Similarly
to the U.S.-HV grid we again found a smooth crossover from
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FIG. 12. Probability distribution of line failures for K = 20,
α = 0.4 and different thresholds marked by the legends in case of
the U.S.-HV power grid. DK cascade failures at T = 0.3 can be
observed.

FIG. 13. The steady-state values of the Kuramoto order param-
eter for the Europe-HV network. Start from ordered or disordered
initial states causes a hysteresis loop, closing at K ∼ 106 for α = 0.4.
For α = 3 we could not reach the closure point as for this large
value the adaptive solver becomes very slow. There exists infinite
intermediate branches if we initialize the phases as θi(0) ∈ (0, θmax)
with different θmax values. The inset shows σ (R), in which the peaks
of the solid curves indicate Kc � 100.

desynchronization to partial synchronization [which is merely
indicated by the σ (R) peaks for the U.S.-HV case in Fig. 9]
by increasing the global coupling K , as shown on Fig. 13.
We can observe a hysteresis, where the upper branch corre-
sponds to a start from an ordered, while the lower branch to
a disordered initial state. The upper branch is insensitive to
α, but for very large Ks the Runge-Kutta-4 algorithm breaks
down and provides nonphysical, decreasing order parameter
values. We have also measured the fluctuations of R over
many samples. The inset of Fig. 13 shows that for the upper
branch a peak occurs at K � 100 marking a transition there.
For random initial states the fluctuation peaks seem to occur at
much higher couplings that we could not investigate in detail
as the adaptive solver slows down substantially for large K
values.

We have also investigated the cascade size distributions
for α = 0.4, 3, K = 20, 60, and 80, i.e., near the synchro-
nization transition point Kc � 100. For the low K = 20 we
could only find log-normal like PDFs, with increasing mean
values as T is decreased; see Fig. 18, in which we also demon-
strate the invariance of p(Nf ) with respect to an initial line
or node removal. Still below the synchronization transition
point Kc, at K = 60 one finds very few cascade line failures
for T > 0.5, PDFs with continuously changing PL tails for
0.5 � T � 0.4 and log-normal like distributions for T < 0.5
(see Fig. 14). The small threshold distributions resemble to the
“dragon king” events described in Refs. [44,46], while in the
0.5 � T � 0.4 region, the continuously changing exponents
1.4 � τ � 2.4 suggest Griffiths effects as the consequence of
the heterogeneity. Note that Griffiths effects may also occur
near mixed order transitions, where the steady-state values
jump, but dynamical scaling persists [63].

Near the transition point, at K = 80 the situation is dif-
ferent as shown on Fig. 15. Here PL tails emerge in the
region 0.33 � T � 0.46, which could be fitted by the expo-
nents 1.3 � τ < 3.0, but part of these exponent values are
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FIG. 14. Probability distribution of line failures for different
thresholds for K = 60 shown in the legends in case of the Europe-HV
power grid. Dashed lines show power-law fits for the scaling region,
determined by visual inspection. One can observe DK bumps for low
thresholds.

larger than the empirical data and simulations of Refs. [10,11],
1.3 � τ � 2 obtained for many countries. As these PL decays
are very steep and occur for Nf < 20 only, it is hard to dif-
ferentiate them from the tail of a Gaussian distribution. For
T < 0.22 thresholds we can find the emergence of bumps,
suggesting DK events.

As thermal noise, originating from various sources has
not been considered in Eq. (1), but fluctuations, which solely
come from the nonlinear chaoticity, we have also investigated
the effect of an additional Gaussian noise. Without showing
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FIG. 15. Probability distribution of line failures for different
thresholds for K = 80 shown in the legends in case of the Europe-HV
power grid. Dashed lines show power-law fits for the scaling region
determined by visual inspection. One can observe DK bumps for low
thresholds.
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grid. The R(T = 1) values are set to be the reference points and
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for the emergence of islanding effects. The inset shows σ [R(T, K )].

the preliminary results, we remark that the zero-centered an-
nealed noise, with unit variance did not modify the shape of
the PDF but shifted the noiseless T = 0.33 result to T = 0.56.
Further analysis of the thermal noise is in progress, using the
Euler-Maruyama adaptive solver, that can avoid the problem
with Bulirsch-Stoer and the inaccuracies of Runge-Kutta-4 at
large couplings.

We have compared the stability of steady states of the
U.S.-HV and Europe-HV systems as the consequence of the
failure cascades by measuring R(t → ∞). Since the sizes and
dimensions of the networks differ, we determined the relative
change of R (Fig. 16) as in the case of U.S.-HV network.
Again, we can see the “islanding” stabilization effect on the
networks after the cascade failures, known in the power-grid
engineering literature [42,43]. As mentioned in the last sub-
section, this happens near Tc(K ), as one can see in the inset of
Fig. 16, but gradually disappears for large K above Kc.

Note that the maxima of these curves also agree with the
T values by which the p(Nf ) decays exhibit power-law decay
behavior. Hence the system displays some nontrivial critical
dynamics in the vicinity of criticality (Kc, Tc). We can also
see that the increase of the dissipation factor from α = 0.4
to α = 0.3 does not change a lot, but enhances the islanding
effect; compare the K = 60 curves in Fig. 16.

IV. LOCAL KURAMOTO RESULTS

Topological (graph) properties of power systems are
largely determined by their evolutionary processes, i.e., how
the load centers were formulated, how certain technologies
(most importantly new voltage levels) were introduced and
how public and private ownership (and market regulation) in-
fluenced new investments. Large power grids with less evenly
distributed loads (e.g., U.S.) tend to show a more clustered
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FIG. 17. Local Kuramoto results encoded by the color map as 1 − ri. Red corresponds low local synchronization, green to high synchro-
nization. The width of gray edges is proportional to the amplitude of the power flow.

topology, as it was shown in a previous paper of the authors
[37].

To investigate the heterogeneity further we also measured
the local Kuramoto order parameter, defined as the partial sum
of phases for the neighbors of node i

ri(t ) = 1

Ni.neigh

∣∣∣∣∣
Ni.neigh∑

j

Ai je
iθ j (t )

∣∣∣∣∣ , (21)

and the power flows Fi j defined in Eq. (3). This local Ku-
ramoto measure was first suggested by Restrepo et al. [64,65]
to quantify the local synchronization of nodes, which al-
lows us to follow the synchronization process by mapping
the solutions on the geographical map. One example for the
Europe-HV grid is shown in Fig. 17, which is the result of
thermalization after averaging over 1000 samples, initiated by
random self-frequencies at K = 80 and α = 0.4, rendering the
grid close to the transition point. The map reveals strongly
synchronized (green) regions as well as some weakly synchro-
nized ones, especially near sea cable connections, where the
power flow is also maximal. Hence, it is quite evident that

there are many heterogeneous, rare regions in the Europe-HV
grid.

V. CONCLUSIONS

Energy security is becoming an extremely important issue
these days. The vulnerability of power grids depend very
much on the network topology, which has been investigated
in our numerical study by comparing the western U.S. and
the Europe high-voltage grids. The traditional electric swing
equations, describing the power flow among interconnected
rotating generators and consumers (machines) is equivalent to
a set of second-order Kuramoto equations, which have been
solved numerically on these networks. Our analysis has two
parts, a thermalization regime, by which we create stable
steady-state conditions and a “line-cut” regime, where we
allowed dynamical cascade failure events, by removing edges
from the graph, whenever the power flows exceed certain
threshold values.

The time-dependent behavior in the thermalization regime
had been followed by analyzing the Kuramoto order

034311-11



ÓDOR, DENG, HARTMANN, AND KELLING PHYSICAL REVIEW E 106, 034311 (2022)

parameter of phases as well as by the frequency spread. We
used a simplified scenario, in which self-frequencies of the
nodes were chosen randomly from a zero-centered Gaussian
distribution, and thus we neglected the power in and out
magnitudes of the vertices and their inertia as well as the
impedance of the lines. Instead we focused on the effects of
dissipation, which can also describe instantaneous feedback.

We compared the frequency spread behavior in the large-
coupling limit of the solutions with those of the linearized
equations and showed that they agree in the case of coherent
initial state using d = 2, 3 lattices. This behavior is asymptot-
ically the same as that of the massless Kuramoto equation:
�(t ) ∼ t−d/2. However, starting from randomly distributed
oscillators we observed faster decays with PL regions after a
short initial slip and before finite-size cutoffs. We also found
this behavior at the synchronization transitions for the U.S.
and Europe grids, suggesting that when the linear approxi-
mation breaks down due to the fluctuations, coming by large
chaoticity at the transition or by initial conditions, nontrivial
PL decay can be observed for intermediate times in finite
systems.

It is important to note that for the frequency order param-
eter we expect real phase transitions for d � 2, which was
the case in our networks. For R we expect crossovers in case
of d < 4, which could be identified by the fluctuation peaks,
agreeing with the phase order parameter transition data. How-
ever, this crossover point may not coincide with the frequency
phase transition point value for the following reason. The
crossover point Kc → ∞ with the system size, while a real
phase transition point should remain a finite value in the ther-
modynamic limit. In case of U.S.-HV we found a coincidence
K ′

c ≈ Kc regardless of the initial conditions (cf. Figs. 9 and
19), while for the Europe-HV the the phase transition of �

happens at K ′
c � 44 as compared to Kc � 100 crossover point

of the phases (cf. Figs. 13 and 19).
The dissipation or feedback factor had mainly delaying

effects on the R(t ), but increasing α slightly increased R(t →
∞) and drastically decreased �(t → ∞). In general the �

order parameter proved to be a more sensitive measure of the
synchronization than R.

Following the thermalization we induced failure cascades,
by cutting a line from the network. We measured the prob-
ability distributions of the line failures, which occurred by
the overloads of lines during the power redistribution pro-
cess, dictated by the second-order Kuramoto dynamics. In
the U.S.-HV case, the PDFs of the cascade line cuts were
log-normal, for small avalanches in case of high T and K
values. For the control parameter regions, where the fluc-
tuations of R showed a peak, the PDFs exhibited PL tails,
with continuously changing exponents around τ � 1.9, which
agrees with historically observed blackout exponent vales. For
the Europe case we also found the occurrence of steeper PLs,
characterized by τ � 3, in contrast to the U.S.-HV case, but
as the observed scaling region is narrow, possibly due to finite
sizes, it is hard to distinguish PLs from log-normal. In any
case this is in agreement with the topological analysis result
in Ref. [5] according to which the marginally fragile Europe
network might show scale-free cascade distributions as well.
The steeper PLs suggest a more stable operation dynamically.
Note that fragility is present not only on the theoretical level

but also in the occurrence of large disturbances and blackouts,
which are a rather rare phenomenon in Europe but not in the
United States.

For small T and K parameters non-zero-centered PDF
“bumps” could be observed, which can be explained by the
first-order transition behavior of the second-order Kuramoto
model and can be called dragon kings following the literature.

In the PL scaling regions we found that the remaining
networks after the cascade could exhibit an increase of syn-
chronization. This kind of “islanding” stabilization is also
known in the literature as a mean to stabilize power grids
via truncation. The detailed phase transition analysis leads
to our most important conclusion for blackout engineering:
Although “islanding” stabilization does not work for K > Kc,
it is just the best near the transition point Tc(K ), thus self-
organization of power systems provides an advantage, as in
many other cases, like in neural systems.

Our results suggest that the second-order Kuramoto model
exhibits a mixed-order transition in the sense that the steady-
state order parameter R(t → ∞) displays a hysteresis and
the frequency order parameter �(t → ∞) jumps rapidly at
the transition point, with �(t ) exhibiting PL tails there. Fur-
thermore, in case of allowing line failures the PDFs of the
avalanches also show PL tails. As the consequence of the
strong heterogeneity Griffihts phase like frustrated synchro-
nization can also be observed. This is allowed, because the
graph dimensions are below dc = 4 and the networks possess
modular structure, which enhances rare-region effects.

It is important to note that these PL regions are robust for
changes in the networks and the initial perturbations details.
The exponents are also invariant for the value of α, but the
width of the distribution shrinks, so instantaneous feedback
can stabilize or delay cascades but does not affect the tail
behavior of the PDFs.

We have been investigating the heterogeneity in more detail
by measuring the local order parameters. As a preliminary
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FIG. 19. The stationary frequency spread and the corresponding standard deviation show that the frequency entrainment has a transition
point at K ′

c � 20 for the U.S.-HV grid (left) and at K ′
c � 20 for the Europe-HV grid (right). This transition point coincides with Kc for the

U.S.-HV case but differs from that of the Europe-HV case, as estimated from the peaks of σ (R); cf. Figs. 9 and 13.

result we show how the stronger connected graphical regions
are reflected by higher local synchronization.
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APPENDIX

In this Appendix we first show cascade failure distribution
results for the Europe grid in case of a very low global cou-

pling: K = 20 as compared to the transition point: Kc � 100.
Although the sizes of the avalanches are large, we cannot see
scale-free behavior up to T = 0.8. The graph (Fig. 18) also
shows invariance of PDFs with respect to an initial node or
line failure.

In addition, Fig. 19 shows that there is also a transition
in the frequency spread. Since the lower critical dimension
for frequency entrainment and phase order parameter are 2
and 4, respectively, in 2 � d < 4, the frequency entrainment
transition point K ′

c is not necessarily identical with the phase
order crossover point Kc [47]. Even though the transition point
K ′

c for the U.S.-HV case almost coincides with Kc we see that
K ′

c � 44 is rather different from Kc � 100 in the Europe-HV
case.
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