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Fractional centralities on networks: Consolidating the local and the global
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We propose a new centrality incorporating two classical node-level centralities, the degree centrality and the
information centrality, which are considered as local and global centralities, respectively. These two centralities
have expressions in terms of the graph Laplacian L, which motivates us to exploit its fractional analog Lγ with
a fractional parameter γ . As γ varies from 0 to 1, the proposed fractional version of the information centrality
makes intriguing changes in the node centrality rankings. These changes could not be generated by the fractional
degree centrality since it is mostly influenced by the local aspect. We prove that these two fractional centralities
behave similarly when γ is close to 0. This result provides its complete understanding of the boundary of the
interval in which γ lies since the fractional information centrality with γ = 1 is the usual information centrality.
Moreover, our computation for the correlation coefficients between the fractional information centrality and the
degree centrality reveals that the fractional information centrality is transformed from a local centrality into being
a global one as γ changes from 0 to 1.
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I. INTRODUCTION

Centralities of nodes are network measures which quantify
the importance of individual nodes [1]. Depending on the
meaning of the importance, various centralities have been
designed to identify central nodes of a network. The degree
centrality, defined as the number of the neighbors of a node,
is a widely used centrality measure. While the degree central-
ity only reflects the local property, classical centralities (for
example, closeness [2], betweenness [3], and information [4]
centralities) take into account global features. To incorporate
network effects, both direct and indirect interactions should be
appropriately taken into consideration. To address the relative
importance of local and global influences, centralities with a
free parameter have been introduced [5–10].

The global centrality that we focus on in this paper is the
information centrality introduced by Stephenson and Zelen
[4], which is based on the theory of statistical estimation.
Brandes and Fleischer [11] called this centrality the current-
flow closeness centrality since its definition is based on the
theory of electrical circuits. Van Mieghem, Devriendt, and
Cetinay used this centrality to identify the best spreader node
[12]. The effective resistance between two distinct nodes is the
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reciprocal of the current between the nodes in the electrical
flow driven by a unit voltage battery [13]. This quantity obeys
the metric axioms and hence the resulting metric is referred to
as the resistance distance [14]. It can be interpreted as escape
probability via random walks on networks [15]. Stephenson
and Zelen defined the information measure to be the recip-
rocal of the effective resistance between two nodes so that it
measures how close each two nodes are, and introduced the
information centrality of a node defined to be the harmonic
sum of the effective resistances between the node and other
nodes.

Based on a fractional analog Lγ of the graph Laplacian
L, we propose a new centrality with a parameter γ , which
we call fractional information centrality. These L and Lγ are
discrete analogs of the Laplace operator [16] and the frac-
tional Laplace operator [17,18], respectively. For each pair
of nonadjacent nodes, while the corresponding entry of the
graph Laplacian L is zero, that of the fractional Laplacian Lγ

is not zero. These nonzero entries generate nonlocal dynamics
concerning anomalous diffusion processes and random walks
with long-range dynamics like Levy flights [19–21]. Also,
the diagonal entry of the fractional Laplacian is called the
fractional degree centrality, or γ -degree centrality as a frac-
tional analog of the degree centrality. The electrical network
associated with the fractional Laplacian gives rise to fractional
information diffusion, which induces a fractional effective
resistance and henceforth defines our new centrality.

We analyze γ -information centralities varying the pa-
rameter γ to elucidate how the degree centrality and the
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information centrality are connected by the new centralities.
The γ -information centralities near γ = 1 behave similarly
to the usual information centrality. In Theorem 1, we prove
that at the other endpoint γ = 0, the derivative of the γ -
information centrality of a node is equal to that of the
fractional degree centrality up to scalar multiplication and ad-
dition. We demonstrate that any changes in the rankings with
respect to γ -degree centralities are negligible. In Theorem 2,
we also show that the ranks according to the fractional degree
centrality remain unchanged as γ varies under certain condi-
tions. Hence, we find that the γ -information centralities near
γ = 0 behave similarly to the degree centrality. To show that
the local relevance of γ -information centralities decreases as
γ increases, we compute the correlations between the degree
centrality and γ -information centralities. We provide param-
eters γ appropriate for a marriage network and a friendship
network, where the former is mostly concerned with direct
contacts and the latter requires consideration of indirect inter-
actions as in Ref. [7]. We also present a network where the
γ -information centrality works best when γ is neither near 0
nor 1.

The rest of the paper is organized as follows. Section II
contains background on two classical centralities, the degree
and information centralities. In Sec. III, we introduce the frac-
tional versions of these centralities, which lead to Theorem
1 revealing their similar behaviors near γ = 0. In Sec. IV,
we apply our fractional centralities to real-world networks
and random networks, linking the two classical centralities.
Finally, Sec. V addresses concluding comments and plans for
future study. A proof of Theorem 2 and applications to two
large real-world graphs are provided in two Appendices.

II. GRAPH LAPLACIANS, EFFECTIVE RESISTANCES,
AND INFORMATION CENTRALITIES

Denote the set of 1, . . . , n by [n] := {1, 2, . . . , n}, which
will be used as the set of nodes, and the diagonal matrix whose
diagonal entries are d1, . . . , dn by diag(d1, . . . , dn).

A. Graphs and Laplacians

Let G = ([n], E ) be a simple undirected loopless graph,
where [n] is the set of nodes and E is the set of edges.
We assume that G is connected. Refer to Ref. [22] for basic
notions concerning graphs and matrices.

To each edge i j ∈ E , we assign the weight wi j = w ji

which is referred to as the conductance between i and j. With
this weighting, the graph G will be regarded as a weighted
graph. The neighborhood N (i) of a node i ∈ [n] is N (i) =
{ j ∈ [n] | i j ∈ E }. For each node i ∈ [n], the degree central-
ity di (or shortly degree) is defined as di = ∑

j∈N (i) wi j . If
wi j = 1 for all i j ∈ E , then the degree centrality counts the
number of the neighbors of a node.

The Laplacian matrix L of G is an n-by-n matrix defined
by

Li j =
⎧⎨
⎩

di if i = j,
−wi j if i j ∈ E ,

0 otherwise.

The degree matrix D of G is a diagonal matrix
diag(d1, d2, . . . , dn) and the adjacency matrix A of G is
a matrix whose (i, j) entry is wi j if i j ∈ E , and 0 otherwise.
Then the Laplacian matrix L of G is expressed as L = D − A.
This matrix L is a discrete analog of the Laplace operator
(−∇2), where ∇ is the gradient operator [16], Sec. 8.4.

B. Effective resistances and information centralities

Consider the electrical circuit whose underlying graph is G
and each edge i j ∈ E has the resistance given by the recipro-
cal of the weight wi j . For two nodes i, j ∈ [n], the effective
resistance Ri j between i and j is defined to be the reciprocal
of the current Ii j flowing from i to j when a unit potential
difference is introduced between i and j [8,13]. This quantity
Ri j is also referred to as the resistance distance between i and
j [14]. Its reciprocal is known to be equal to escape probabil-
ity. Refer to Refs. [22–24] for the effective resistance and its
combinatorial interpretation, and Ref. [15] for its probabilistic
aspects.

Let L+ be the pseudoinverse of the Laplacian matrix L
defined so that L+L is the projector on the subspace spanned
by all nonzero eigenvectors of L. Refer to Ref. [25] for the
pseudoinverse, which is also called the Moore–Penrose pseu-
doinverse. The effective resistance Ri j is expressed in terms of
L+ as follows:

Ri j = L+
ii + L+

j j − 2L+
i j .

Refer to Ref. [14], Theorem A for this expression.
We review information centrality introduced by Stephen-

son and Zelen [4]. They call the current Ii j the information
measure Ii j between i and j for two distinct nodes i, j ∈ [n]
so that Ii j = 1

Ri j
. Also, note that Iii = ∞.

The information centrality Ii of node i ∈ [n] is defined to
be the harmonic mean of the information measures between i
and the other nodes, i.e.,

Ii = n

(∑
j∈[n]

1

Ii j

)−1

.

Equivalently, the centrality Ii is defined to be the reciprocal
of the mean of effective resistances between i and the other
nodes, i.e.,

Ii = n∑
j∈[n] Ri j

.

Thus, it is also referred to as the current-flow closeness cen-
trality [11] as a current-flow analog of closeness centrality [2].

The centrality Ii can be expressed via the pseudoinverse of
L as follows (see Ref. [26], Eq. (15) or Ref. [12], Eq. (27)):

Ii = n∑
j∈[n] Ri j

= n

n L+
ii + tr(L+)

. (1)

Note that this expression will be employed to prove the the-
orem (Theorem 1) connecting the degree centrality and the
information centrality.
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III. FRACTIONAL CENTRALITIES ON NETWORKS

A. Fractional degrees and fractional Laplacians

Let γ be a fractional parameter with 0 � γ � 1. A frac-
tional analog Lγ of the Laplacian L is defined as follows [20].
This Lγ is a discrete version of the fractional Laplace operator
[17,18].

The Laplacian L has a spectral decomposition since the
matrix L is symmetric. Let {�i}n

i=1 and { 0 � μ1 � · · · �
μn} be orthonormal eigenvectors of L and the corresponding
eigenvalues, respectively, i.e.,

L�i = μi�i, and �T
i � j = δi j, for i, j = 1, . . . , n.

Since we assume that graphs are connected, the smallest
eigenvalue μ1 = 0 and μi > 0 for i = 2, . . . , n. Then �1 =
1/

√
n, where 1 is all-ones vector of size n. Let Q = (qi j )i, j∈[n]

be the matrix whose columns are �1, �2, . . . , �n so that Q is
an orthogonal matrix, and let � be the diagonal matrix whose
diagonal entries are 0, μ2, . . . , μn: � = diag(0, μ2, . . . , μn).
Then L = Q�Q−1 = Q�QT holds. The fractional Laplacian
Lγ is defined to be the Laplacian L to the power γ , i.e.,

Lγ = Q�γ QT ,

where �γ = diag(0, μ
γ

2 , . . . , μ
γ
n ). Since 1 is an eigenvector

of Lγ with eigenvalue 0, it holds that for each i ∈ [n],
n∑

j=1

(Lγ )i j = 0. (2)

Another important property [20,27] for Lγ is that its nondiag-
onal entries are negative, i.e., for distinct nodes i, j ∈ [n],

(Lγ )i j < 0.

The diagonal entry (Lγ )ii of Lγ is called the (fractional)
γ -degree centrality of node i. This invariant is denoted by d (γ )

i
and expressed as

d (γ )
i =

n∑
α=2

q2
iα μγ

α . (3)

Take distinct integers i, j ∈ [n]. Let w
(γ )
i j be the absolute value

of the (i, j) entry of Lγ , i.e.,

w
(γ )
i j = |(Lγ )i j | = −(Lγ )i j .

This quantity w
(γ )
i j is a fractional analog of the entry wi j of the

adjacency matrix A. Equation (2) can be written as

d (γ )
i =

∑
j �=i

w
(γ )
i j . (4)

Let s = maxi∈[n] di, γ ∈ [0, 1], and i ∈ [n]. To apply a Tay-
lor series approximation, we define

l (γ )
i = (di + 1)γ−1di and

r (γ )
i = sγ

[
1 − γ + γ di

s
+

(
γ

2

)(
1 − 2di

s
+ d2

i + di

s2

)]
.

We show that the γ -degree centrality d (γ )
i of node i satisfies

the following inequality:

l (γ )
i � d (γ )

i � r (γ )
i . (5)

Its proof using a technique in Refs. [27,28] is given in Ap-
pendix A 1. When a graph G is regular (i.e., every node has
the same degree), inequality (5) was obtained in Ref. [28].

B. Fractional effective resistances and information centralities

We now introduce fractional analogs of effective resistance
and information centrality.

Definition 1 (Fractional effective resistance). For a frac-
tional parameter γ with 0 � γ � 1, the γ -effective resistance
between two nodes i, j ∈ [n] is defined to be

Rγ
i j = (Lγ )+ii + (Lγ )+j j − 2(Lγ )+i j,

where (Lγ )+ is the pseudoinverse of the fractional Laplacian
Lγ .

The probabilistic interpretation for Rγ

i j as a fractional ana-
log of the escape probability Pγ (i → j) [15] is given as
follows. Let x be a particle on nodes. Using Eq. (4), we
suppose that at node i, the particle x moves to its neighbor
j with probability w

γ

i j/(d (γ )
i ). Define the fractional escape

probability Pγ (i → j) to be the probability that x visits j
before returning to i. Then the probability Pγ (i → j) is given
by

Pγ (i → j) = 1

d (γ )
i Rγ

i j

.

We define a new centrality, called fractional information
centrality, as a fractional analog of information centrality
introduced by Stephenson and Zelen [4].

Definition 2 (Fractional information centrality). Let γ be
a parameter with 0 � γ � 1. For two nodes i, j ∈ [n], its
(fractional) γ -information measure I (γ )

i j between i and j is
defined as the reciprocal of the γ -effective resistance Rγ

i j
between i and j. The (fractional) γ -information centrality
I (γ )
i of node i ∈ [n] is defined to be the harmonic mean of
γ -information measures between i and the other nodes, i.e.,

I (γ )
i = n

(∑
j∈[n]

1

I (γ )
i j

)−1

= n∑
j∈[n] Rγ

i j

.

Let us express the fractional information centrality I (γ ) in
terms of the pseudoinverse (Lγ )+ of the fractional Laplacian
Lγ . Note that (Lγ )+ is given by

(Lγ )+ = Q�−γ QT .

For i, j ∈ [n], its (i, j) component is

(Lγ )+i j =
n∑

α=2

qiα μ−γ
α q jα.

It follows from
∑

j∈[n](L
γ )+i j = 0 that∑

j∈[n]

Rγ
i j =

∑
j∈[n]

[(Lγ )+ii + (Lγ )+j j − 2(Lγ )+i j]

=
∑
j∈[n]

(Lγ )+ii +
∑
j∈[n]

(Lγ )+j j − 2
∑
j∈[n]

(Lγ )+i j

= n (Lγ )+ii + tr[(Lγ )+].
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As in Eq. (1), the γ -information centrality I (γ )
i of node i is

expressed as follows:

I (γ )
i = n∑

j∈[n] Rγ

i j

= n

n (Lγ )+ii + tr[(Lγ )+]

= n

n
∑n

α=2 q2
iα μ

−γ
α + ∑n

α=2 μ
−γ
α

. (6)

Note that when γ = 1, the γ -information centrality I (γ )
i of

node i is equal to the (usual) information centrality Ii.
We now suppose that γ = 0. It follows from the fact that

�1 = 1/
√

n and Q is an orthogonal matrix that

L0 = Q diag(0, 1, . . . , 1)QT = Id −J/n,

where Id denotes an identity matrix and J is the all-ones n-by-
n matrix which equals 11T . For each i ∈ [n], the 0-degree d (0)

i
of node i equals

d (0)
i = 1 − 1

n
. (7)

The pseudoinverse of L0 is itself

L0 = Id −J/n.

Therefore, when γ = 0, all pairs of distinct nodes have the
same effective resistance R0

i j = 2, and all nodes have the same
information centrality with value

I (0)
i = n

2n − 2
. (8)

C. Derivatives of fractional degree centralities and fractional
information centralities

We show that the derivative of the γ -information centrality
evaluated at γ = 0 is equal to that of the γ -degree centrality
up to scalar multiplication and addition. Our result says that
these two centralities, d (γ )

i and I (γ )
i , behave similarly near

γ = 0. By Eqs. (7) and (8), all nodes have the same value
for both centralities, and hence the derivatives at γ = 0 can
be used as their approximations. Note that the result is mo-
tivated by the fact that expressions [Eqs. (3) and (6)] for the
fractional degree centralities d (γ )

i and information centralities
I (γ )
i contain terms

∑n
α=2 q2

iα μ
γ
α and

∑n
α=2 q2

iα μ
−γ
α , respec-

tively.
Theorem 1. For each node i, the derivative of the γ -

information centrality of node i evaluated at γ = 0 is equal
to

d

dγ

(
I (γ )
i

)∣∣∣∣
γ=0

= n2

(2n − 2)2

{
d

dγ

(
d (γ )

i

)∣∣∣∣
γ=0

+ log ( pdet(L))
n

}
, (9)

where pdet(L) is the product of all nonzero eigenvalues of L.
Proof. Let us differentiate d (γ )

i [Eq. (3)] and evaluate it at
γ = 0 to obtain

d

dγ

(
d (γ )

i

)∣∣∣∣
γ=0

=
[ n∑

α=2

q2
iα log(μα )μγ

α

]∣∣∣∣
γ=0

=
n∑

α=2

q2
iα log(μα ).

Then we differentiate the denominator of Eq. (6) and evaluate
it at γ = 0 to obtain

d

dγ

(
n

n∑
α=2

q2
iαμ−γ

α +
n∑

α=2

μ−γ
α

)∣∣∣∣∣
γ=0

=
[

− n
n∑

α=2

q2
iα log(μα )μ−γ

α −
n∑

α=2

log(μα )μ−γ
α

]∣∣∣∣∣
γ=0

= −n
n∑

α=2

q2
iα log(μα ) −

n∑
α=2

log(μα )

= −n
(
d (0)

i

)′ − log[pdet(L)].

Since the 0-information centrality I0
i of node i equals I0

i =
n/(2n − 2) from Eq. (8), we derive our desired identity (9):(

I (0)
i

)′ = n

(2n − 2)2

{
n · (

d (0)
i

)′ + log[pdet(L)]
}
.

�

IV. ANALYZING NETWORKS VIA FRACTIONAL
CENTRALITIES

We apply the fractional centralities discussed in the pre-
vious section to real-world complex networks and random
network models. Note that only connected graphs will be
taken from these networks.

The following three networks derived from real-world data
will be considered: The friendship network [29] collected by
Van de Bunt, the Karate club network [30], and the Dolphin
network [31]. For short, these networks will be abbreviated as
friendship, karate, and dolphin, respectively.

We carefully analyze the Van de Bunt’s friendship network
to elucidate meaning of the fractional centralities. The friend-
ship network depicted in Fig. 2(a) has 32 nodes and 43 edges.
The network obtained by ignoring isolated nodes (5, 12, and
18) is a connected network. In what follows, the resulting
network will be referred to as the friendship network.

Two more real-world complex networks together with
outcome variables for nodes of the networks will be also
considered. One is the classic marriage network among Flo-
rentine families with the attribute wealth which represents the
richness of each family [32]. The other is the EIES friendship
network with the citations of network researchers [33]. Also,
we will analyze the Hollywood film music network [34] with
62 producers and 40 composers. In this network, the top 5
composers according to their incomes are identified.

Random network models we will employ are Barabási-
Albert graphs [35] and Watts-Strogatz graphs [36]. The
notation BA(n, m) stands for a Barabási-Albert graph with
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FIG. 1. Fractional degree centralities of all the nodes of the real-world networks.

n nodes and m edges attached between a new node and
existing nodes, and the notation WS(n, k, p) stands for an
Watts-Strogatz graph with n nodes, the number k of nearest
neighbors of each node in a ring topology and the probability
p of rewiring each edge.

A. Fractional degree centralities

The 1-degree centralities, which are equal to the (usual)
degree centralities, for the friendship network are given in
Fig. 2. The network have seven different values of degree
centralities. Node 27 has the highest degree 8, node 10 has
the second highest degree 6, and node 3 has the third highest
degree 5. Nodes 4, 7, 8, 15, 17, 22, 24, 30, and 31 have the
same degree 4.

Fractional degree centralities for the friendship network,
the karate network and the dolphin network are given in
Figs. 1(a)–1(c), respectively. Although these figures contain
all the curves for the centralities of 29 nodes, 34 nodes, and
62 nodes, they appear to contain just 7 curves, 12 curves,
and 11 curves. This is because nodes of the same degree
have almost the same fractional degree centralities. To explain
this statement, let us calculate fractional degree centralities
of nodes of the friendship network. For each integer d and
a parameter γ ∈ [0, 1], denote by I (d, γ ) the collection of
γ -degree centralities of nodes of degree d , i.e.,

I (d, γ ) = {
d (γ )

i

∣∣di = d
}
.

FIG. 2. The friendship network among 32 Dutch students by Van
de Bun.

The diameter of a finite subset I of real numbers is defined to
be diam I = max I − min I. Then we compute

max
γ∈[0,1]

diam I (1, γ ) = 0.053 · · · ,

max
γ∈[0,1]

diam I (2, γ ) = 0.080 · · · ,

max
γ∈[0,1]

diam I (3, γ ) = 0.023 · · · ,

max
γ∈[0,1]

diam I (4, γ ) = 0.042 · · · ,

which are significantly smaller than 0.8697 · · · , the minimum
of fractional degree centralities of all nodes over γ with 0 �
γ � 1.

The fractional degree centralities have been utilized to
distinguish nodes of regular graphs arising in mathematical
chemistry as molecules [28]. In Ref. [28], Chapter 2.3, the
authors considered a fullerene regarded as a degree-3 graph
with 26 nodes, and divided its nodes into four groups accord-
ing to their fractional degree centralities at γ = 0.9. However,
their fractional degree centralities are approximately 1.625
and their differences are “minuscule,” being at most 0.001,
as we figured out in Fig. 1. Since the main goal of introducing
centralities is to evaluate the importance of nodes, these slight
differences are not enough to capture the importance of nodes
distinct from the degree centrality.

We next explore fractional degree centralities of nodes of
different degrees. From Figure 1, we observe that a node j
having a greater degree centrality than another node i has a
greater fractional degree centrality than the node i, i.e.,

if d j > di, then d (γ )
j > d (γ )

i ,

for γ with 0 < γ � 1. By virtue of inequality (5), the above
statement can be shown under some assumptions for degrees
di and parameter γ (see Theorem 2). Let us take nodes of
degrees 8,6,5, and 4 from the Friendship graph. In Figs. 3(a)–
3(c), we plot the fractional degree centralities for the node
of degree 8, the nodes of degrees 5 and 6 and the nodes of
degrees 3 and 4, respectively, together with their lower bounds
and upper bounds given in inequality (5). Figure 3(a) shows
that the lower bound and upper bound for the highest degree
are good estimates. In Fig. 3(b) [respectively, Fig. 3(c)], the
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FIG. 3. Fractional degree centralities, lower bounds, and upper bounds given in inequality (5).

lower bound for the node with a greater degree is greater than
the upper bound for the node with a smaller degree, for param-
eters γ with 0.4395 � γ � 1 (respectively, 0.5011 � γ � 1).

Theorem 2. Let G be an unweighted graph with the max-
imum degree s = maxi∈[n] di. Then there is a constant c(s)
with 0 < c(s) < 1 such that for all 1/2 � γ < 1, if dj > di �
sc(s), then d (γ )

j > d (γ )
i .

Proof. See Appendix A 2. �
We have seen that although the parameter γ varies, the

ranks for fractional degree centralities of nodes of different
degrees are rarely reversed. Therefore, the fractional degree
centrality is similar to the usual degree centrality for the
purpose of node centralities.

Finally, we plot entries of fractional adjacency matrices for
the real-world complex networks in Figs. 4(a)–4(c). Those en-
tries for adjacent nodes and nonadjacent nodes correspond to
red curves and blue curves, respectively. Red curves decrease
as γ decreases, which means that direct interactions between
adjacent nodes are weakened. Blue curves increase as γ de-
creases to about 0.5, and then decrease as γ decreases to 0.
This indicates that indirect interactions between nonadjacent
nodes are strengthened and then weakened as γ decreases
from 1 to 0.

Figure 4 shows that almost all red curves lie above blue
curves with a few blue points lying above red points near γ =
0. This indicates that nonlocal dynamics induced by fractional
adjacency matrices are not sufficient to alter the importances

FIG. 4. Entries of the fractional adjacency matrices of the real-
world networks.

of nodes govern by the direct interactions. That is, fractional
degree centralities of nodes are largely determined by adja-
cencies of nodes, or their degree centralities.

B. Fractional information centralities

We compute fractional information centralities of nodes
of the real-world complex networks and plot these values in
each network [Figs. 5(a)–5(c)]. Unlike the case for fractional
degree centralities, the ranks of the nodes according to γ -
information centralities are reversed at myriad values of γ .

To point out the change of ranks according to γ -
information centralities, we extract top and bottom nodes of
the friendship network ranked according to information cen-
tralities and plot γ -information centralities of those nodes as
our parameter γ changes in Figs. 6(a) and 6(b), respectively.

The top 6 nodes ranked according to information central-
ities are nodes 3, 24, 27, 23, 7, and 10 [Fig. 6(a)]. Node 3
has the largest γ -information centrality for γ with 0.5782 �
γ � 1, and node 23 has the largest γ -information centrality
for γ with 0 < γ � 0.5781. At γ = 0.7727 · · · , the ranks of
nodes 24 and 27 are reversed. Node 23 ranks fourth for the γ -
information centrality with γ = 1, while the node gets lower
ranks as γ decreases, ranking 12th for the γ -information cen-
trality near γ = 0. Node 10 ranks 6th for the γ -information
centrality with γ = 1, while the node gets a higher rank as
γ decreases, ranking second for the γ -information centrality
near γ = 0.

Except for the isolated nodes, nodes 26, 2, 21, 9, 11, 25,
and 32 are the bottom 7 nodes ranked according to informa-
tion centralities [Fig. 6(b)]. The nodes except node 21 are of
degree 1, and node 21 is of degree 2. Node 21 ranks third
to last for the γ -information centrality with γ = 1 but gets a
higher rank as γ decreases. The rank of node 21 and ranks
of node 9 and node 11 are reversed at γ = 0.7583 · · · , and
the rank of node 21 and ranks of node 25 and node 32 are
reversed at γ = 0.5141 · · · . Then at γ less than 0.5141, node
21 of degree 2 precedes all the nodes of degree 1.

From Figs. 6(a) and 6(b) near γ = 0, we observe that ranks
of nodes according to γ -information centrality near γ = 0 are
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FIG. 5. Fractional information centralities of all the nodes of the real-world networks.

similar to their degree centralities. Three nodes 27, 10, and
3 are ranked at the top three for the γ -information central-
ity near γ = 0, and so do they for their degree centralities.
Among the nodes ranked at the bottom, the only node of
degree 2 is the node 21 which has a higher rank than the others
of degree 1. The behavior of the γ -information centralities
near γ = 0 will be further discussed in the next section.

To figure out that structural measures of networks are
concerned with the changes in the node centrality rankings,
we count intersections for curves of γ -information centralities
with 0 < γ < 1 and compare the numbers of the intersections
with those measures. Since it is observed from Figs. 5(a),
5(b) and 5(c) that distinct two curves with γ > 0 have at
most one intersection, we instead consider the cardinality of
the following collection as an estimation of the number of
intersections:{ {i, j} | i, j ∈ [n],

(
I (1)
i − I (1)

j

)(
I (0.1)
i − I (0.1)

j

)
< 0

}
,

where we restrict the range of γ to 0.1 � γ � 1 since γ -
information centralities have the same value at γ = 0. The
structural measures we will consider are network density and
algebraic connectivity. The network density of a graph with n

nodes and the edge set E is

|E |(n
2

) = 2|E |
n(n − 1)

.

The algebraic connectivity of a graph is defined as the smallest
nonzero eigenvalue of its Laplacian [37].

We observe that the lower density a network has, the
more intersections the network has. In fact, the friendship
network and the Karate club network have 32 and 15 inter-
sections, respectively. The network density of the friendship
network equaling 0.1059 approximately is less than that of
the Karate club network equaling 0.1390 approximately. The
numbers of intersections and densities of random network
models are documented in Table I. For Barabási-Albert graphs
and Watts-Strogatz graphs with the same probability p of
rewiring each edge, we see that the lower density a network
has, the more intersections the network has. However, since
WS(200, 2, 0.001), WS(200, 2, 0.05), and WS(200, 2, 0.8)
have the same network density, we need to consider another
measure for explaining the changes in the rankings.

The measure we will employ is algebraic connectivity,
which serves as decentralized estimation [38]. From Table I,

FIG. 6. Top and bottom nodes ranked according to γ -information centralities on the friendship network.
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TABLE I. The number of intersections (IS) for fractional information centralities, edge densities (ED), and algebraic connectivities (AC)
with 100 trials for each random network, where these values are represented by (mean ± std) with n = 200.

IS ED AC

BA(n,1) 1.9 × 102 ± 4.5 × 101 0.04 1.1 × 10−2 ± 3.8 × 10−3

BA(n,2) 1.1 × 101 ± 5.3 × 100 0.08 5.8 × 10−1 ± 3.1 × 10−2

BA(n,3) 5.7 × 100 ± 2.7 × 100 0.12 1.3 × 100− ± 1.0 × 10−1

WS(n,2,0.05) 4.2 × 103 ± 1.0 × 103 0.01 5.0 × 10−1 ± 7.8 × 10−2

WS(n,12,0.05) 2.0 × 103 ± 3.8 × 102 0.06 1.7 × 100− ± 1.3 × 10−1

WS(n,24,0.05) 6.5 × 102 ± 1.8 × 102 0.12 3.6 × 100− ± 2.1 × 10−1

WS(n,5,0.05) 3.0 × 103 ± 3.5 × 102 0.02 2.7 × 10−5 ± 1.3 × 10−5

WS(n,5,0.3) 1.0 × 103 ± 2.1 × 102 0.02 6.3 × 10−5 ± 2.3 × 10−5

WS(n,5,0.8) 2.1 × 102 ± 4.2 × 101 0.02 2.0 × 10−4 ± 8.7 × 10−5

we see that for Watts-Strogatz graphs WS(n, m, p), as a
network has higher probability p, the network has lower al-
gebraic connectivity and more intersections. This indicates
that increasing the rewiring probability forces a network to
be more centralized and have more changes of ranks of nodes
as parameters γ vary.

C. Connecting degree centralities and information centralities

We investigate how the proposed fractional informa-
tion centralities are related to classical centralities. The
γ -information centrality with γ = 1 is the information cen-
trality, one of well-known global centralities, introduced by
Stephenson and Zelen [4]. Thus, γ -information centralities for
γ near 1 reflect the global structure of a given network.

To explain the behavior of γ -information centralities I (γ )
i

of node i for γ near 0, we consider its derivative at γ = 0.
This quantity is denoted by (I (0)

i )′. Our theorem (Theorem 1)
shows that near γ = 0, γ -information centralities Iγ

i behave
similarly to γ -degrees d (γ )

i . Since γ -degree centralities d (γ )
i

are almost the same centralities as degree centralities di by the
observation in Sec. IV A, we see that γ -information centrali-
ties Iγ

i near γ = 0 behave similarly to the degree centralities
di, one of local centralities.

We measure (Pearson) correlation coefficients [39]
between degree centralities and γ -information centralities
on real-world networks (the friendship network, the Karate
club network, and the dolphin network [Fig. 7(a)–7(c)])
and random networks (Barabási-Albert graphs and

Watts-Strogatz graphs). Graphs plotted in Fig. 8(a)
correspond to BA(1000, 1), BA(1000, 2), BA(1000, 3),
graphs plotted in Fig. 8(b) correspond to WS(1000, 2, 0.05),
WS(1000, 12, 0.05), WS(1000, 24, 0.05) and graphs
plotted in Fig. 8(c) correspond to WS(1000, 2, 0.001),
WS(1000, 2, 0.05), WS(1000, 2, 0.8).

From these figures, we observe that correlation coefficients
between degree centralities and γ -information centralities
decrease as the parameter γ increases. In particular, the γ -
information centrality near γ = 0 is highly correlated with
the degree centrality, while the γ -information centrality near
γ = 1 has a lower correlation with the degree centrality. These
computations tell us that the γ -information centralities near
γ = 0 and at near γ = 1 are local and global centralities,
respectively. Therefore, for varying γ , the γ -information cen-
tralities have the aspects of the degree centrality and the
information centrality.

D. Choosing appropriate parameters γ

When we apply our γ -information centralities, our task is
to choose an appropriate parameter γ according to properties
of networks. To provide a guideline for selecting a parameter
γ , we first consider two real-world complex networks together
with outcome variables for nodes of the networks. One is a
marriage network and the other is a friendship network, which
are different from the Van de Bunt’s friendship network.

The marriage network is a network among Florentine
families with the attribute wealth of each family [32]. The
friendship network is the EIES friendship network whose

FIG. 7. Correlation coefficients between degree centralities and γ -information centralities of the real-world networks.
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FIG. 8. Correlation coefficients between degree and γ -information centralities on random networks with each 100 trials. We represent their
means with solid lines and their standard deviations with shaded areas.

nodes are early network researchers with the number of the
citations of the nodes [33]. We focus on the subnetwork con-
sisting of the researchers whose discipline is sociology. As in
Ref. [7], Sec. 2.4, the natural log transformation [log(x + 1)]
is used for the citations variable. The goal is to find a pa-
rameter γ which maximizes the explanatory power of the
outcome variable based on our γ -information centralities for
each network.

We plot the R-squared (or coefficient of determination) in
Fig. 9 to figure out how γ -information centralities explain
the outcome variables for these two networks as γ varies.
The R-squared for the marriage network attains the maximum
value 0.157 · · · at γ close to 0 and decreases as γ goes to
1 [Fig. 9(a)]. This tells us that the importance of the family
in the marriage network mainly depends on the number of
marriages, or the degree centrality meaning the direct inter-
action between families. Unlike the marriage network, the
R-squared for the EIES friendship network increases as γ

increases and attains the maximum value 0.324 · · · at γ = 1

FIG. 9. The R-squared of the outcome variables based on γ -
information centralities.

[Fig. 9(b)]. This indicates that indirect communication be-
tween researchers is a significant factor in predicting citations
of their papers. Note that our analysis is consistent with that
of Ref. [7], Sec. 2.4 using a generalized measure of centrality
based on closeness.

Next, let us consider the Hollywood film music net-
work [34] collected from 1964 to 1976, consisting of
sixty-two producers and forty composers. The nodes in-
dexed as 1, 2, . . . , 62 are producers and the nodes indexed as
63, . . . , 102 are composers. Each edge between a producer A
and a composer B is weighted by the number of movies which
is produced by A and whose music is created by B. Nodes 63,
79, 80, 81, and 92 are the top 5 composers each of whom
gained more than 1.5% of the total income of Hollywood
movie score composers in the period.

We investigate changes of ranks of the top 5 composers
according to γ -information centralities as γ varies from a
positive number close enough to 0 to 1. For any γ , nodes
63, 92 and 81 rank first, fourth, and fifth, respectively. Node
79 ranks second for γ � 0.89 and node 80 ranks ninth for
γ � 0.79 (see Fig. 10). These ranks are the highest among the
ranks according to γ -information centralities, respectively. It
is worth noting that different from the previous two network,
the γ -fractional information centrality in this network is most
effective when γ is between 0.79 (> 0) and 0.89 (< 1) in a
sense that the sum of ranks of the top 5 nodes is minimum.

V. CONCLUSION

We have studied fractional analogs of two classical cen-
trality measures, degree centrality and information centrality.
Since the fractional degree centrality hardly gives rise to any
changes in the rankings as a fractional parameter γ varies, the
fractional degree centrality does not perform better than the
degree centrality in the sense of centrality. However, the frac-
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FIG. 10. The changes of ranks of nodes 79 and 80 according to
γ -information centralities.

tional information centrality leads to the compelling changes
in the rankings as γ goes to 0 from 1. Our theorem (Theorem
1) for the fractional information centrality with γ close to
0 shows that the centrality works like the degree centrality.
In addition, correlation coefficients between the fractional
information centrality and the degree centrality tell us that
the fractional information centrality is getting more global as
γ goes to 0 from 1. Therefore, our study has demonstrated
that the fractional centralities unify the local centrality (degree
centrality) and the global centrality (information centrality).

Our main idea of connecting the degree centrality and
the information centrality is the fractional analog of graph
Laplacians. In addition to these two centralities, there are cen-
tralities which can be expressed in terms of graph Laplacians,
including eigenvector centrality [40], pagerank centrality [41],
Katz centrality [5], diffusion centrality [42], and Laplacian
centrality [43]. It would be interesting to define factional
analogs of these centralities and employ these fractional ver-
sions to analyze networks. Note that the fractional analog of
the pagerank centrality is used to improve the performance of
graph-based semi-supervised learning [44].

Other than centrality measures, various network measures
such as Kirchhoff index [14] are expressed in terms of graph
Laplacians. Kirchhoff index has been utilized as an overall
structure descriptor and is also interpreted as the average
commuting times of random walks. Estrada [21] developed
its fractional analog and explored how his measure changes
in a fixed network as the fractional parameter varies. It
would be interesting to use this fractional analog to compare
the robustness of distinct networks and uncover a relation
to other robustness measures as we connect the informa-
tion centrality with the degree centrality via the fractional
Laplacian.

Gurfinkel and Rikvold developed a classification system
for parametrized centralities [8,10]. One of the parametrized
centralities is reach-parametrized centralities, whose param-
eter adjusts the impacts of flows between nodes. As γ goes
from 1 to 0, fractional weights for pairs of adjacent vertices
decrease while the impacts of those for pairs of nonadjacent

vertices increase (see Fig. 5). Hence, we see that the fraction
degree centrality is classified as reach-parametrized centrali-
ties. The fractional information also seems to be classified as a
measure of the same type since the local influence increases as
γ goes from 1 to 0. However, to confirm this statement, it still
needs a careful analysis for fractional effective resistances,
which we leave for future work.
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APPENDIX A: PROOFS OF INEQUALITIES
FOR FRACTIONAL DEGREE CENTRALITIES

We provide proofs of inequality (5) and Theorem 2.

1. Inequalities for fractional degree centralities

We first recall inequality (5). Let s = maxi∈[n] di. For i ∈
[n] and γ ∈ [0, 1], define

l (γ )
i = (di + 1)γ−1di, and

r (γ )
i = sγ

[
2∑

k=0

(−1)k

(
γ

k

)(
1 − di

s

)k

+
(

γ

2

)
di

s2

]

= sγ

[
1 − γ + γ di

s
+

(
γ

2

)(
1 − 2di

s
+ d2

i + di

s2

)]
.

Then the γ -degree centrality d (γ )
i of node i satisfies the fol-

lowing inequality:

l (γ )
i � d (γ )

i � r (γ )
i .

Proof. Set B = s Id −L. Since s = maxi∈[n] di, the matrix
B is a nonnegative matrix. Indeed, Bii = s − di � 0 for i ∈
[n] and Bi j = Ai j for i, j ∈ [n] with i �= j. Let us fix i ∈ [n].
Shortly, denote

bk = (Bk )ii, d = di, d (γ ) = d (γ )
i , l (γ ) = l (γ )

i , and r (γ ) = r (γ )
i .

First, let us show the right inequality of Eq. (5), i.e.,

d (γ ) � r (γ ).

The series expansion of Lγ is given as follows:

Lγ = sγ

∞∑
k=0

(−1)k

(
γ

k

)
Bk

sk

= sγ

2∑
k=0

(−1)k

(
γ

k

)
Bk

sk
+ sγ

∞∑
k=3

(−1)k

(
γ

k

)
Bk

sk
.
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Since b1 = s − d and b2 = (s − d )2 + d = s2 − 2sd +
d2 + d , we have

d (γ ) = r (γ ) + sγ

∞∑
k=3

(−1)k

(
γ

k

)
bk

sk
.

For a natural number k, from the fact that (−1)k
(
γ

k

)
< 0 and

bk � 0, it follows that (−1)k
(
γ

k

)
(Bk )ii � 0. Hence, the desired

inequality follows.
Next, we prove the left inequality of Eq. (5):

d (γ ) � l (γ ).

Since each row sum of L is 0, i.e., L1 = 0, we have Bk 1 =
(sI − L)k1 = sk1. Then

(Bk )ii =
∑
j∈[n]

(Bk−1)i jb ji

=
∑

j∈[n], j �=i

(Bk−1)i jb ji + bii(B
k−1)ii

�
∑

j∈[n], j �=i

(Bk−1)i j + bii(B
k−1)ii

=
∑
j∈[n]

(Bk−1)i j + (bii − 1)(Bk−1)ii

� sk−1 + (s − d − 1)(Bk−1)ii.

The above inequality can be written as

bk � sk−1 + (s − d − 1)bk−1,

which is equivalent to

bk − sk

d + 1
� (s − d − 1)

(
bk−1 − sk−1

d + 1

)
.

Solving this recurrence inequality gives

bk � sk

d + 1

[
1 + d

(
1 − d + 1

s

)k
]
.

Using this inequality, we obtain

d (γ ) = sγ

∞∑
k=0

(−1)k

(
γ

k

)
bk

sk

� sγ

∞∑
k=0

(−1)k

(
γ

k

)
1

d + 1

[
1 + d

(
1 − d + 1

s

)k
]

= sγ

d + 1
[(1 − 1)γ ] + sγ d

d + 1

[
1 −

(
1 − d + 1

s

)]γ

= sγ d

d + 1

(
d + 1

s

)γ

= (d + 1)γ−1d = l (γ ),

as desired. �
We remark that the first-order approximations yields the

simple estimates given by

dγ

i − 1 − γ

di
� d (γ )

i � (1 − γ )sγ + γ dis
γ−1. (A1)

2. A comparison of fractional degree centralities

Using inequality (5), we prove Theorem 2.
italic Proof It suffices to consider the case d j = di + 1.

Note that 1 � di � s − 1. By inequality (5), it is enough to
show that

r (γ )
i < l (γ )

j , (A2)

which is equivalent to

1 − γ

(
1 − di

s

)
+

(
γ

2

)[(
1 − di

s

)2

+ di

s2

]

<
di + 1

di + 2

(
di + 2

s

)γ

.

To prove this inequality, we will show that the quantity(
di

s

)γ

lies between the above two numbers appearing in the inequal-
ity.

We first claim that

di + 1

di + 2

(
di + 2

s

)γ

>

(
di

s

)γ

,

which is equivalent to

γ >
log(di + 2) − log(di + 1)

log(di + 2) − log di
.

Let f (x) be a function defined by

f (x) := log(x + 2) − log(x + 1)

log(x + 2) − log x
.

It can be shown by a direct computation that f (x) < 1/2 for
all x ∈ R. Hence, the claim follows from the assumption γ �
1/2.

Next, we will show that

I :=
(

di

s

)γ

− r (γ )
i � 0.

We apply the Taylor expansion to (di/s)γ to obtain

(
1 + di

s
− 1

)γ

=
∞∑

k=0

(−1)k

(
γ

k

)(
1 − di

s

)k

.

Then

I =
∞∑

k=3

(−1)k

(
γ

k

)(
1 − di

s

)k

−
(

γ

2

)
di

s2
.

For k � 3, the following inequality holds:

0 < (−1)k

(
γ

k

)
/

(
γ

2

)

= (2 − γ )(3 − γ ) · · · (k − 1 − γ )

k(k − 1) · · · 3
� 2

k
.

034310-11



LEE, LEE, KOOK, AND LEE PHYSICAL REVIEW E 106, 034310 (2022)

FIG. 11. Fractional degree centralities of all the nodes.

Using this inequality together with the fact that (−1)k
(
γ

k

)
< 0

for k � 1, we get

I �
(

γ

2

) ∞∑
k=3

2

k

(
1 − di

s

)k

−
(

γ

2

)
di

s2

= −
(

γ

2

)[
di

s2
+ 2 log

(
di

s

)
+ 2

(
1 − di

s

)
+

(
1 − di

s

)2]
.

Let g(x) be a function defined by for x > 0,

g(x) := x

s
+ 2 log x + 2(1 − x) + (1 − x)2.

It follows from g′(x) = 1/s + 2/x − 2 + 2(x − 1) � 1/s > 0
that the function g is increasing. Since g(1) > 0, there exists
a unique c = c(s) such that g(x) > 0 for x > c. From the

assumption di � cs, we have

I = −
(

γ

2

)
g

(
di

s

)
� 0,

which completes the proof. �

APPENDIX B: APPLICATIONS TO OTHER REAL-WORLD
NETWORKS

We consider the Italian 380 kV power grid [45] (for short,
the Italian power grid) and the electrical circuit network, s838,
from the ISCAS 89 benchmark set [46] (for short, the electri-
cal circuit) which are larger than those discussed in Sec. IV.
The Italian power grid has the largest component which we
focus on contains 124 nodes and 169 edges. The electrical
circuit is a connected network with 512 nodes and 819 edges.

FIG. 12. Fractional information centralities of all the nodes.
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1. Fractional degree centralities

Fractional degree centralities for the Italian power grid
and the electrical circuit are given in Figs. 11(a) and 11(b),
respectively. We figure out that nodes of the same de-
gree have almost the same fractional degree centralities as
in Figs. 1(a)–1(c).

2. Fractional information centralities

Fractional information centralities for the Italian power
grid and the electrical circuit are given in Figs. 12(a) and
12(b), respectively. We see that as parameters γ vary, the ranks
of nodes according to γ -fractional information centralities
changes.
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