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Modified Heider balance on Erdös-Rényi networks
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The lack of signed random networks in standard balance studies has prompted us to extend the Hamiltonian of
the standard balance model. Random networks with tunable parameters are suitable for better understanding
the behavior of standard balance as an underlying dynamics. Moreover, the standard balance model in its
original form does not allow preserving tensed triads in the network. Therefore, the thermal behavior of the
balance model has been investigated on a fully connected signed network recently. It has been shown that
the model undergoes an abrupt phase transition with temperature. Considering these two issues, we examine
the thermal behavior of the structural balance model defined on Erdös-Rényi random networks within the range
of their connected regime. We provide a mean-field solution for the model. We observe a first-order phase
transition with temperature for a wide range of connection probabilities. We detect two transition temperatures,
Tcold and Thot, characterizing a hysteresis loop. We find that with decreasing the connection probability, both
Tcold and Thot decrease. However, the slope of decreasing Thot with decreasing connection probability is larger
than the slope of decreasing Tcold. Hence, the hysteresis region gets narrower until it disappears in a certain
connection probability. We provide a phase diagram in the temperature-tie density plane to accurately observe
the metastable or coexistence region behavior. Then we justify our mean-field results with a series of Monte Carlo
simulations.
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I. INTRODUCTION

Network models are a powerful method for describing
complex phenomena. Networks represent systems as a set of
nodes and ties between them, where nodes denote entities and
ties represent a type of association between a pair of entities.
This association can be friendship in social relations, a trans-
action in financial networks, or the possibility of infection in
an epidemiological setting. While simple networks can rep-
resent the cooperation, alliance, friendship, communication,
trust, and correlation between nodes, they lack the capability
of incorporating the notion of rivalry, conflict, enmity, distrust,
or negative correlation. Signed networks bring this possibility
into a network model by introducing signed ties, with positive
ties representing the former and negative ties representing
the latter types of relations [1–3]. Therefore, signed networks
have found many applications in various disciplines ranging
from sociology [4–7], epidemiology [8], international rela-
tions [9–13], politics [14], and ecology [15].

Signed networks have been employed by the structural
balance theory [16,17] to study the equilibrium states in net-
works with negative and positive associations. According to
this theory, the state of balance for a network is defined
based on the status of its triads, motifs consisting of three
nodes with three ties connecting them. A triad is defined
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as balanced or nontensed if an even number of its ties are
negative ([+,+,+], [−,−,+]). Otherwise, it is considered
an unbalanced or tensed triad ([−,+,+], [−,−,−]) [16].
Intuitively, thinking of signs as friendship and enmity, it can
be shown that balance holds when the following statements
hold for all nodes in a triad:

(i) The friend of my friend is my friend. (ii) The friend
(enemy) of my enemy (friend) is my enemy. (iii) The enemy
of my enemy is my friend.

In the simplest versions of the model, tie signs get updated
until the system reaches a fully balanced state. In this state,
the network comprises two communities, where all intracom-
munity and intercommunity ties are respectively positive and
negative. The classic works on the structural balance model
dynamics are Refs. [18–20]. However, real-world social net-
works rarely arrive at a fully balanced state. While balanced
triads are more prevalent, unbalanced triads still exist. To
reflect this issue, a relaxed version of the theory has been
devised by introducing a source of randomness and uncer-
tainty via the adoption of the concept of the social temperature
[21]. In other words, the systemic variable temperature ac-
counts for a persistent form of disorder in the formation of
the triadic relationships [22,23]. By doing so, the structural
balance model has been mapped to a Boltzmann-Gibbs statis-
tical model where each state is assigned with a probability
e−E/T

C . Here E denotes the system’s energy in this state, T
represents the social temperature, and C is the normalization
factor. In this picture, the energy, E�, assigned to balanced and
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unbalanced triads, is respectively −1 and +1, so that states
with a higher number of balanced triads are assigned with a
high probability. T represents the level of tension tolerance in
the system. With T → 0, one would achieve the strict model
in which only balanced triads are allowed, and T → ∞ would
lead to a system neutral toward triadic balanced/unbalanced.

The concept of temperature in socioeconomic systems has
been widely contemplated [24–29]. Like the physical systems,
the temperature is a measure of uncertainty and fluctuations in
these systems. Let us consider the structural balance model as
an example.

The structural balance model assigns a certain energy to
any given configuration. If all agents update their dyadic
relations to definitely minimize energy, then the tempera-
ture is zero [18]. As an example of interstate relations, the
zero-temperature model suggests a bipolar world with two
groups hostile toward each other. However, bipolarity does
not happen often. Although countries try to eliminate tensions
in triads they are involved in, there is also the potential of
retaining some tensed triads due to different levels of tension
tolerance. Hence, they do not restrict themselves to eliminat-
ing all tensed triads. If agents aim to minimize energy, but
this is not their definite goal, then the system’s behavior could
be better modeled by the nonzero temperature balance model.
To be more precise, triads with one or three hostile relations
are considered tensed or unbalanced in structural balance,
and the nonzero temperature model lets the system tolerate
these tensed triplet interactions and makes the model more
realistic.

In socioeconomic systems, agents are supposed to maxi-
mize utility function, minimize tension or energy function,
etc. In some work, agents maximize utility with the Gibbs
probability weight. In these works, a parameter is defined
to control the chance of maximizing utility that is similar to
the β factor in physical systems. If β is high, agents try to
maximize utility as their major goal. As β decreases, then
utility maximization happens with a moderate chance [25,26].
In summation, in socioeconomic systems, the temperature is
a measure of uncertainty in the decision making.

Most analytical studies of the structural balance model
have been conducted on complete graphs, neglecting the
underlying network structures [21,30–34]. While empirical
signed networks have also been employed [3,22,23], random
networks have not attracted much attention in structural bal-
ance models. Random networks with controllable parameters
have helped in understanding the effects of network char-
acteristics on the dynamics of different phenomena such as
spreading and percolation [35–37]. Hence, a similar method-
ology can be helpful in the study of the network aspects of the
structural balance. Recently, the thermal behavior of structural
balance has been investigated on diluted and enhanced trian-
gular lattices by performing a series of simulations [38].

In this study, we first introduce a Hamiltonian for the
structural balance model defined on a class of random graphs
called Erdös-Rényi graphs. Then, we investigate the stationary
states of our model in the presence of social temperature. We
present a mean-field solution for our model under a canonical
ensemble. We observe that the system undergoes a discontin-
uous phase transition by varying the temperature. We detect
two transition temperatures which we name Tcold and Thot. For

T < Tcold and T > Thot the system would respectively settle
in a completely balanced and a completely random phase.
For Tcold < T < Thot the system undergoes a bistability phase
experiencing both random and balanced phases. We calculate
Tcold analytically and show that the coexistence region gets
narrower as the connection probability decreases. Finally, we
perform a series of Monte-Carlo simulations to support our
mean-field solutions.

II. MODEL

This section presents a mean-field solution for the struc-
tural balance model defined on Erdös-Rényi networks. An
Erdös-Rényi network is a static random network with a fixed
number of nodes, in which each tie exists with an identical
independent probability p [39].

Inspired by the structural balance Hamiltonian, we define
the Hamiltonian of our model on Erdös-Rényi networks as

H = − 1

N

∑
i< j<k

si js jkskiei je jkeki. (1)

In Eq. (1), N is the number of nodes, and si j ∈ {+1,−1}
indicates the relationship between nodes i and j. Network
topology is encoded in the adjacency matrix e, where ei j = 1
if nodes i and j are connected, and ei j = 0 otherwise. To
evaluate the model, we need to investigate its observable
macroscopic quantities. The macroscopic quantities in our
model are ensemble averages of ties, two stars, and energy,
respectively denoted by 〈si j〉, 〈siksk j〉, and −〈si js jkski〉. The
role of the mean of two stars on the dynamic of thermal
balance has been studied in Ref. [21]. This quantity measures
the closeness of a network to the balanced state.

To calculate these quantities, we require the probability
distribution of the possible states of the system. For this pur-
pose, we define a partition function for our Hamiltonian (1) in
a canonical ensemble of the s variable. The partition function
is written as follows:

Z =
∑
{s}

e−βH. (2)

The {s} subscript indicates taking the summation over the
ensemble of all possible signed ties in a static Erdös-Rényi
network. Also β = 1/T is defined as the inverse temperature in
the Gibbs weight e−βH.

For evaluating statistical quantities using the Hamiltonian
(1), we first assume that the graph configuration is fixed
(quenched), and we sum over the link state variable s ≡ {sij}
for a given fixed set of eij generated by the probability distri-
bution P(ei j ). For the free energy of the system, we have

F = − 1

β
ln Z = − 1

β
ln

∑
{si j=±1}

e−βH ,

and hence the free energy is a function of e ≡ {eij}. In the next
step, we average the free energy over an ensemble of Erdös-
Rényi graph configurations to obtain the final expression of
the free energy. The technique of averaging over all possible
graph configurations is called configurational averaging. This
averaging method is widespread in spin-glass literature [40].
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We are allowed to first average over the link state variable
and then over the configuration variable because the network
configuration is fixed in the timescale of rapid fluctuations of
the state of the links. The free energy obtained using this ap-
proach is called the configurational free energy, and we denote
it by [F]c = − 1

β
[lnZ]c. The [ ]c represents the configurational

averaging.
To calculate the ensemble average of a tie sign, 〈si j〉, we

split the Hamiltonian into two parts [Eq. (3)], Hi j consisting
of the terms which the tie {i, j} contributes to (Eq. 4), and H′
comprising the rest of the terms:

H = Hi j + H′, (3)

Hi j = − 1

N
si j

∑
k 	=i, j

s jkskie jkeki − hi jsi j, (4)

where hi j is considered as an external field on si j . Therefore,
the partition function can be written as follows:

Z =
∑
{s}

e−βH =
∑
{s}

e−β(Hi j+H′ )

= Z′ ∑
{s 	=si j }

e−βH′

Z′
∑

si j={±1}
e−βHi j = Z′

〈 ∑
si j={±1}

e−βHi j

〉
Z ′

= Z′
〈

2 cosh

(
β

N

∑
k 	=i, j

s jkskie jkeki + βhi j

)〉
Z ′

= 2Z′ cosh

(
β

N

〈 ∑
k 	=i, j

s jkskie jkeki

〉
Z ′

+ βhi j

)
. (5)

As a result of the mean-field approximation, the term
〈∑

k 	=i, j s jkskie jkeki〉 can be approximated by m, the number
of triangles that two stars make with tie {i, j}, multiplied by
the ensemble average of the two stars 〈s jkski〉. So we have

Z = Zi j (m)Z′ = 2 cosh

(
β

N
m〈ss〉Z ′ + βhi j

)
Z′. (6)

Where we have decomposed the partition function into two
parts Zi j and Z′, respectively, the parts which tie {i, j} do and
do not contribute. From statistical mechanics we have [21]

〈si j〉 = − ∂[F]c
∂hi j

∣∣∣∣
hi j=0

. (7)

So, we have to calculate the configurational free energy [F]c,
Where [ ]c indicates the integral over all possible random
graph configurations. As we can split the partition function
in the form of Z = Zi jZ′, we can write the configurational
free energy as a sum of two terms, in which the first term
represents the integration of the partition function Zi j over the
terms including tie {i, j} and the second term represents the
integration of the partition function Z′ over the rest. Therefore,

we have

[F]c = − 1

β

⎛
⎝[F′]c′ +

∑
ci j

ln Zi j

⎞
⎠

= − 1

β

(
[F′]c′ +

N−2∑
m

P(m) ln Zi j (m)

)
. (8)

The details of the calculation can be found in Appendix A.
The first term of Eq. (8) does not play a role in our calcula-
tions, so we can consider it a constant.

As Eq. (6) indicates, Zi j is a function of m, the number
of triangles including the tie {i, j}, so the second term can
be approximated by a summation over values of m. Defining
P(m) the probability of generation of m triangles, including
the tie {i, j}, we have

P(m) =
(

N − 2

m

)
(p2)

m
[(1 − p)2 + 2p(1 − p)]N−2−m. (9)

Therefore, [F]c will be

[F]c = − [F′]c′

β
− 1

β
ln

[
cosh

(
β

N
(N − 2)p2〈ss〉Z′ + βhi j

)]
.

(10)

In Eq. (10) we have used
∑N−2

m=0 mP(m) = (N − 2)p2

which is the first moment of the binomial distribution. For
〈si j〉 we have

〈si j〉 = −∂[F]c

∂hi j

∣∣∣∣∣
hi j=0

= −∂[F′]c′

∂hi j

∣∣∣∣∣
hi j=0

+ 1

β

∂

∂hi j
ln

[
cosh

(
β

N
(N − 2)p2〈ss〉Z ′ + βhi j

)]∣∣∣∣∣
hi j=0

= 0 + tanh

(
β

N
(N − 2)p2〈ss〉Z ′ + βhi j

)∣∣∣∣
hi j=0

So, the average of signed edges, 〈s〉, is

〈s〉 = tanh

(
βp2 N − 2

N
〈ss〉

)
. (11)

As Eq. (11) indicates, 〈s〉 is a function of the ensemble
average of two stars, 〈ss〉. To calculate 〈ss〉, we employ a
similar method, where we split the Hamiltonian into H jk,ki

and H′′. The first term comprises the terms including at least
one of the ties {i, k} and {k, j}, [Eq. (12)] and the second term
comprises the rest:

Hik,k j = − 1

N
sik

∑
l 	=i, j,k

sil slkeil elk − 1

N
sk j

∑
l 	=i, j,k

skl sl jekl el j

− 1

N
siksk jsi j − siksk jhik,k j, (12)
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FIG. 1. “Blue-sky” bifurcation diagram versus temperature for an Erdös-Rényi random graph with N = 50 nodes and four connection
probabilities p = 1, p = 0.8, p = 0.6, and p = 0.4 in the mean-field approximation. For each p, three distinct regions are observed. The
random graph is in the balanced phase for T < Tcold. It is completely in a random phase for T > Thot. For Tcold < T < Thot, the random network
experiences the coexistence phase.

where hik,k j is considered as an external field on two stars
siksk j . The partition function can be written as follows:

Z =
∑
{s}

e−βH =
∑
{s}

e−β(Hik,k j+H′′ )

= Z′′ ∑
s 	=sik ,sk j

e−βH′′

Z′′
∑

sik=±1

∑
sk j=±1

e−βHik,k j

= Z′′
〈 ∑

sik=±1

∑
sk j=±1

e−βHik,k j

〉
Z ′′

. (13)

Substituting Eq. (12) in Eq. (13), we have

Z = Z′′(e
β

N (m1〈sil slk〉Z′′ +m2〈skl sl j 〉Z′′ +〈si j 〉Z′′ )+βhik,k j

+ e
β

N (m1〈sil slk〉Z′′ −m2〈skl sl j〉Z′′ −〈si j 〉Z′′ )−βhik,k j

+ e
β

N (−m1〈sil slk〉Z′′ +m2〈skl sl j 〉Z′′ −〈si j 〉Z′′ )−βhik,k j

+ e
β

N (−m1〈sil slk〉Z′′ −m2〈skl sl j 〉Z′′ +〈si j 〉Z′′ )+βhik,k j
)
, (14)

where m1 and m2 are the number of triangles established on
ties {i, k} and {k, j}, respectively, not including nodes j and i.

The homogeneity of the Erdös-Rényi random graph allows
us to assume m1 = m2. From statistical mechanics, we have
[21]

〈siksk j〉 = − ∂[F]c

∂hik,k j

∣∣∣∣
hik,k j=0

. (15)

So, for the mean of two stars we have

〈ss〉 =
(
eβ(2p2 N−3

N 〈ss〉) − 2eβ(−2 〈s〉
N ) + eβ(−2p2 N−3

N 〈ss〉)
)

(
eβ(2 N−3

N p2〈ss〉) + 2eβ(−2 〈s〉
N ) + eβ(−2p2 N−3

N 〈ss〉)
) . (16)

Details of this calculation are given in Appendix B. By
replacing Eq. (11) in Eq. (16) we reach a self-consistent
equation that yields the ensemble average of the two stars
for any temperature T , based on the connection probability p
and the network size N . The intersections of Eq. (16) yield its
fixed points. We illustrate this result for different p values in
Appendix D. Figure 1 depicts the bifurcation diagram versus
temperature for different connection probabilities in an Erdös-
Rényi graph of size N . As shown in Fig. 1, the bifurcation
is of the “blue-sky” type, which is the characteristic of a
discontinuous phase transition which leads to three distinct
regions.

(i) For T > Thot or the high-temperature regime, there ex-
ists one stable fixed point with q∗ = 0. From an intuitive point
of view, q∗ = 0 refers to the society that is in a random phase,
where the number of balanced and unbalanced triads are equal
and large thermal fluctuations prevent the formation of any
structural balance in the network. In other words, in this con-
dition, balanced triads have no superiority over unbalanced
triads.

(ii) For Tcold < T < Thot or the coexistence region, there
exist three fixed points of which two are stable (q∗

1 =
0, q∗

2 ) and the other one is unstable. Since we have two
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FIG. 2. The phase diagram in (T, p) space for Erdös-Rényi random graphs with N = 25, 50, 100, and 1000 nodes, respectively. As
indicated, the shaded region represents the coexistence phase in which random and balanced phases coexist.

stable fixed points in this region, the system experiences
the coexistence of both random and balanced phases. The
hysteresis loop is obtained due to the coexistence of bal-
anced and random phases within a specified temperature
range.

(iii) For T < Tcold or the low-temperature regime, there
exist two fixed points with q∗

1 = 0 and q∗
2 = 1. The first one

is an unstable fixed point, and the second one is stable. From
an intuitive point of view, a signed order is formed when the
temperature is low enough, and the system is in a balanced
phase. In other words, tie signs are frozen because of a strong
two-star field q∗ = 1.

As it is shown for the blue-sky bifurcation diagram in
Fig. 1, the cold critical temperature Tcold is where the coexis-
tence region starts appearing. To derive this point analytically,
we need to take the first derivative of the self-consistent
Eq. (16) with respect to q: As we know from stability anal-
ysis, the fixed points of a self-consistent equation f (q∗) = q∗
are stable if f ′(q∗) < 1 and unstable if f ′(q∗) > 1. Thus, q∗ =
0 is stable when f ′(q∗ = 0) = β2 p2( N−2

N2 ) < 1. Therefore we

have

Tcold = p

√
N − 2

N2
. (17)

Hence, the cold critical temperature has a linear dependency
on the connection probability p. Furthermore, the cold critical
temperature converges to zero in the limit of large N values.
This leads to the vanishing of the purely balanced phase even
for low temperatures.

In Fig. 2 we have illustrated the phase diagram of the
ensemble average of the two stars as a function of p and T
to analyze the behavior of the coexistence region in the (p, T )
phase space. Figure 2 indicates the phase diagram in the (p, T )
space for an Erdös-Rényi random graph with the connection
probability p at temperature T for network sizes N = 25, 50,
100, and 1000. As it is shown, the phase space is divided into
three regions. The shaded region represents the p and T values
leading to a bistability in the system, in which both random
and balanced phases coexist. As illustrated, an increase in the
size of the random graph enlarges the coexistence region and
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FIG. 3. The mean of energy versus temperature for four connection probabilities, p = 1, p = 0.8, p = 0.6, and p = 0.4, in an Erdös-Rényi
Random graph of size N = 50. As it is apparent, with increasing the network sparsity, both Thot and Tcold decrease, but the slope of decreasing
Thot is more than the slope of decreasing Tcold. Therefore, the coexistence region totally vanishes by reaching a specific value of connection
probability.

decreases Tcold, so that for sufficiently large sizes the pure
balance phase vanishes.

In the next section, we verify our mean-field solution by a
series of Monte-Carlo simulations.

III. SIMULATION

We generate 1000 realizations of an Erdös-Rényi random
graph with size N = 50 and the connection probability p.
Each tie is initially in the (+) state with the probability α

and in the (−) state with the probability 1 − α. We con-
sider two different initial conditions: (i) α = 1 (all + 1),
and (ii) α = 0.5 (random signs). To reach a stationary state
of the system, we apply a Metropolis-Hastings algorithm on
the tie signs with N3 Monte Carlo steps. The algorithm is
as follows.

(i) We choose a random tie and consider flipping its sign.
If the energy variation is negative, i.e., �E = E f − Ei < 0,
the flip is accepted. Where Ei and E f indicate the system’s
energy before and after the flip.

(ii) If the energy variation is semipositive, i.e., �E =
E f − Ei � 0, the flip is accepted with the Boltzmann prob-
ability e−�E/T.

(iii) This procedure continues for N3 Monte Carlo steps to
reach the stationary state.

Figure 3 illustrates the average energy, 〈E〉 = −〈si js jkski〉,
versus temperature for different connection probabilities. We
observe two curves, each corresponding to an initial con-
dition: the curve obtained for the random initial condition
has a critical point at T = Tcold, and the curve obtained for
the all + 1 initial condition has a critical point at T = Thot.
Therefore, simulation results correctly capture the two critical
temperatures Tcold and Thot.

Furthermore, By decreasing the connection probability p,
the coexistence region becomes narrower until it completely
vanishes in p ≈ 0.4. In addition, the hot critical temperature
Thot is in good agreement with the mean-field solution.

On the other hand, since the basin of attraction of q∗ = 0
in the coexistence region is very narrow, it is practically chal-
lenging to capture Tcold via the simulation for all temperatures.

IV. CONCLUSION

The idea of standard balance on empirical data obtained
from real signed networks has brought the opportunity to cap-
ture exciting phenomena in political networks, psychology,
international relations, and ecology. However, little has been
done so far to investigate signed random networks with an
analytical approach. On the other hand, the idea of eliminating
tension in all triadic relationships in signed networks inspired
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by structural balance theory does not come true for many
signed networks. For instance, in social networks, agents may
tend to change their relations with the other agents, even
though these changes are not in favor of total tension re-
duction. Thus, the concept of social temperature has been
introduced to capture different levels of tension tolerance [21].
Therefore, there is a competition between agents’ random
behavior (social temperature) and the tendency to reach a state
of balance. Considering these two issues, we have proposed
a model that defines the structural balance on Erdös-Rényi
networks in the presence of temperature within a theoretical
framework.

We have solved the model with a mean-field approach.
We have detected a discontinuous phase transition with
temperature. We have captured two temperatures, Tcold and
Thot, which lead to three distinct regions: For T < Tcold, the
system is in a completely balanced phase. On the other hand,
for T > Thot, the system cannot reach the balanced phase. For
Tcold < T < Thot, the system demonstrates bistability with two
stable fixed points q∗

1 = 0 and q∗
2 respectively denoting the

random and balanced phases. Regarding the bistability region,
the system experiences a hysteresis phenomenon. Hence, de-
pending on the initial condition, the system meets one of
the two curves surrounding the coexistence region. Therefore,
we do not need to overcool the system to enter the bipolar
state. The system enters the bipolar state even for moderate
temperatures. Another outcome of the model is the following:
the less the connection probability is, the closer Tcold and Thot

become. Solving Tcold analytically, we derive that for large
Erdös-Rényi networks Tcold converges to 0. Counterintuitively,
this indicates that even for T ≈ 0 the system can be in a
random state.

The social consequences of this phase transition and the
hysteresis phenomena would be as follows. Let us imagine a
society where the level of tension tolerance is high (T > Thot ).
Hence, this condition has no structural balance, and the soci-
ety is in a random state. In this state, balanced triads have
no superiority over unbalanced triads. Imagine that tension
tolerance decreases due to conflict, the political bargaining,
access to resources, trading partners, etc. Different scenarios
may happen depending on how much the tension tolerance is
reduced.

(a) If the tension tolerance drops sharply (from T > Thot

to T < Tcold), the society is immediately divided into two
mutually hostile groups. Hence, the fate of a society with low
tension tolerance would be a bipolar state, as we would expect
intuitively. For instance, in a politically polarized society, peo-
ple cannot positively bond with other people from the opposite
party.

(b) If the tension tolerance decreases moderately (from
T > Thot to Tcold < T < Thot), the society may stay at its ran-
dom state with no structural balance. However, this random
state has fragile stability, so a small perturbation can take
society out of its random state into a bipolar state, although
the tension tolerance is still above the Tcold (bistability phe-
nomenon).

(c) If a small perturbation takes the society out of its
random state into a bipolar state (Tcold < T < Thot), then it
would not be possible to take it out of its polarized state
unless the level of tension tolerance exceeded the critical point

(T > Thot). In other words, raising the level of tension toler-
ance up to the initial point is not sufficient to return the society
to the random state (hysteresis phenomena). This has a crucial
consequence from the sociological point of view; if we want
to take society out of its polarized phase, the practical solution
is to raise the level of tension tolerance in society at least
up to the Thot, instead of engineering relationships between
people.

We spanned the phase space (T, p) to analyze the coexis-
tence region. We observed that by reaching a specific value
of connection probability the coexistence region vanishes. We
have conducted a series of Monte Carlo simulations to verify
the result we obtained by the mean-field approach. There is
a good agreement for the behavior of the hot temperature
between the two approaches. The minor discrepancy for the
cold temperature in the two approaches is due to the fact
that the basin of attraction of q∗ = 0 is narrow and hard to
completely capture in a Monte Carlo simulation.

APPENDIX A: CONFIGURATIONAL FREE ENERGY:
ONE-BODY HAMILTONIAN APPROACH

For calculating the configurational free energy, we have
to take the configurational average of the quenched parti-
tion function over all possible random graph configurations.
Therefore we have

[F]c = − 1

β
[ln Z]c = − 1

β
[ln(Zi jZ′)]c = − 1

β
[ln Z′ + ln Zi j]c

= − 1

β
[ln Z′]c − 1

β
[ln Zi j]c

= − 1

β
[[ln Z′]ci j ]c′ − 1

β
[[ln Zi j]c′]ci j

= − 1

β
[ln Z′]c′ − 1

β
[ln Zi j]ci j

= − 1

β
([F′]c′ + [Fi j]ci j ). (A1)

In Eq. (A1), the bracket [ ]c indicates the configurational
average of partition function over all possible random graph
configurations. As we explained in the model section, we can
decompose the partition function to two parts, Zi j and Z′, that
existing tie {i, j} does and does not contribute to. Therefore,
we can write the configurational free energy as the sum of two
terms: the first term of Eq. (A1), − 1

β
[F′]c′ , does not play a

role in our calculations, so we can take it as a constant. From
Eq. (5), we know that Zi j for a quenched configuration is a
function of 〈∑k s jkskie jkeki〉Z ′ . We make an approximation in
this step and suppose that the abovementioned quantity that
appears in Zi j is approximated by the number of triangles, i.e.,
m established on existing tie {i, j}, multiplied by the mean of
two stars, i.e., 〈ss〉, in that specific quenched configuration. So
in Eq. (A1) the sum over {ci j} is approximated by the sum over
all possible numbers of triangles (m) multiplied by the prob-
ability of establishing m triangles on the tie {i, j}, i.e., P(m).

034309-7



R. MASOUMI et al. PHYSICAL REVIEW E 106, 034309 (2022)

FIG. 4. Graphical representation of self-consistent Eq. (16) for four connection probabilities, p = 1, p = 0.8, p = 0.6, and p = 0.4, in
three distinct phases for an Erdös-Rényi network with N = 50 nodes.

So we have

[F]c = − 1

β

(
[F′]c′ +

N−2∑
m=0

P(m) ln Zi j (m)

)
= − 1

β

{
[F′]c′+

N−2∑
m=0

P(m) ln

[
cosh

(
β

N
m〈ss〉Z ′+βhi j

)]}
. (A2)
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FIG. 5. Mean of energy during the evolution of an Erdös-Rényi random network with N = 50 nodes and connection probabilities p = 1,
0.8, 0.6, and 0.4 for a single trial with two different initial conditions, random and all + 1, in different temperatures.

APPENDIX B: CONFIGURATIONAL FREE ENERGY: TWO-BODY HAMILTONIAN APPROACH

Like the approach we applied for calculating the configurational free energy regarding the one-body Hamiltonian partition
function, for calculating the configurational free energy of the system regarding the two-body Hamiltonian partition function,
we separate the {ik, k j} part and follow a similar procedure. Therefore we have

[F]c = − 1

β

⎛
⎝[F′′]c′′ +

∑
{cik,k j}

ln Zik,k j

⎞
⎠

= − [F′′]c′′

β
− 1

β

N−3∑
m1=0

N−3∑
m2=0

P(m1)P(m2) ln[Zik,k j (m1, m2)]

= − [F′′]c′′

β
− 1

β

N−3∑
m1=0

N−3∑
m2=0

P(m1)P(m2) ln
[
e

β

N (m1〈sil slk〉Z′+m2〈skl sl j 〉Z′′ +〈si j 〉Z′′ )+βhik,k j

+ e
β

N (m1〈sil slk〉Z′′ −m2〈skl sl j 〉Z′′ −〈si j 〉Z′′ )−βhik,k j + e
β

N (−m1〈sil slk〉Z′′ +m2〈skl sl j 〉Z′′−〈si j 〉Z′′ )−βhik,k j

+ e
β

N (−m1〈sil slk〉Z′′ −m2〈skl sl j〉Z′′ +〈si j 〉Z′′ )+βhik,k j
]

= − [F′′]c′′

β
− 1

β
ln

[
eβ(2p2 (N−3)

N 〈ss〉+ 〈s〉
N +hik,k j ) + 2eβ( −〈s〉

N −hik,k j ) + eβ(−2p2 (N−3)
N 〈ss〉+ 〈s〉

N +hik,k j )
]
, (B1)

where m1 and m2 are the number of triangles established on ties {i, k} and {k, j}, respectively, not including nodes j and i. The
homogeneity of the Erdös-Rényi random graph lets us assume m1 = m2. From statistical mechanics we know that the mean of
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FIG. 6. Compatibility between Monte Carlo simulation (triangle-line curves) and mean-field solution (blue solid and red dashed curves)
for the mean of two stars versus temperature. We have considered four Erdös-Rényi random networks with N = 25, 50, 100, and 200 nodes
with the connection probability p = 1.

two stars, 〈siksk j〉, is the first derivative of free energy with respect to the field hik,k j :

〈siksk j〉 = − ∂[F]

∂hik,k j

∣∣∣∣
hik,k j=0

= −
∂
( − [F′′]c′′

β

)
∂hik,k j

∣∣∣∣
hik,k j=0

+ 1

β

∂

∂hik,k j
ln

[
eβ(2p2 (N−3)

N 〈ss〉+ 〈s〉
N +hik,k j ) + 2eβ( −〈s〉

N −hik,k j ) + eβ(−2p2 (N−3)
N 〈ss〉+ 〈s〉

N +hik,k j )
]∣∣∣∣

hik,k j=0

= 0 +
(
eβ(2p2 N−3

N 〈ss〉) − 2eβ(−2 〈s〉
N ) + eβ(−2p2 N−3

N 〈ss〉)
)

(
eβ(2 N−3

N p2〈ss〉) + 2eβ(−2 〈s〉
N ) + eβ(−2p2 N−3

N 〈ss〉)
) . (B2)

APPENDIX C: CALCULATING COLD CRITICAL TEMPERATURE

As we discussed earlier, Tcold is where the coexistence region starts appearing. We know that in the coexistence region q∗ = 0
is a stable fixed point. Hence, for calculating Tcold, we need to drive the first derivative of the right-hand side of the self-consistent
equation q = f (q) in q∗ = 0. We need to have it as a stable fixed point so we should have f ′(q∗ = 0) < 1. Therefore we have

∂ f (q)

∂q

∣∣∣∣
q=0

=
(
4βp2

(
N−3

N

)
sinh

[
2βp2

(
N−3

N

)
q
] + 4β2 p2

(
N−2
N2

){
1 − tanh2

[
βp2

(
N−2

N

)
q
]}

e−2β
〈s〉
N

)(
2 cosh

[
2
(

N−3
N

)
βp2q

] + 2e−2β〈s〉)(
2 cosh

[
2βp2 N−3

N q
] + 2e−2β

〈s〉
N

)2

∣∣∣∣∣
q=0

−
(
4βp2

(
N−3

N

)
sinh

[
2βp2

(
N−3

N

)
q
] − 4β2 p2

(
N−2
N2

){
1 − tanh2

[
βp2

(
N−2

N

)
q
]}

e−2β
〈s〉
N

)(
2 cosh

[
2
(

N−3
N

)
βp2q

] − 2e−2β〈s〉)(
2 cosh

[
2βp2 N−3

N q
] + 2e−2β

〈s〉
N

)2

∣∣∣∣∣
q=0

= β2 p2

(
N − 2

N2

)
. (C1)
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FIG. 7. Compatibility between Monte Carlo simulation (triangle-line curves) and mean-field solution (blue solid and red dashed curves)
for the mean of two stars versus temperature. We have considered four ER random networks with N = 25, 50, 100, and 200 nodes with the
connection probability p = 0.8.
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FIG. 8. Compatibility between Monte Carlo simulation (triangle-line curves) and mean-field solution (blue solid and red dashed curves)
for the mean of two-stars versus temperature. We have considered four ER random networks with N = 25, 50, 100, and 200 nodes with
connection probability p = 0.6.
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FIG. 9. Compatibility between Monte Carlo simulation (triangle-line curves) and mean-field solution (blue solid and red dashed curves) for
the mean of two stars versus temperature. We have considered four ER random networks with N = 25, 50, 100, and 200 nodes with connection
probabilities p = 0.4, 0.3, and 0.2.

Now if we apply f ′(q∗ = 0) < 1, we have

Tcold = p

√
N − 2

N2
.

APPENDIX D: GRAPHICAL REPRESENTATION FOR
SELF-CONSISTENT EQ. (16) FOR DIFFERENT

CONNECTION PROBABILITY

In Fig. 4 we have illustrated the graphical representation
of Eq. (16) for different connection probabilities. There is a
single stable fixed point for T < Tcold and T > Thot, which
represent the balanced and random phase, respectively. When
Tcold < T < Thot we have two stable fixed points that represent
the coexistence regions. Therefore, the number of intersec-

tions of Eq. (16) truly demonstrates the phase of our random
network.

APPENDIX E: MEAN OF ENERGY DURING THE
EVOLUTION OF AN ERDÖS-RÉNYI RANDOM NETWORK

WITH DIFFERENT CONNECTION PROBABILITIES

Figure 5 illustrates the mean of energy during the evolution
of an Erdös-Rényi (ER) random network of size N = 50 with
connection probabilities p = 1, 0.8, 0.6, and 0.4 for a single
trial. L represents every N2 Monte Carlo step in Fig. 5. We
have considered N3 Monte Carlo steps for each realization of
an ER random network to ensure that the network reaches its
stationary state. The rationale for taking N3 Monte Carlo steps
is the number of triangles in an ER random network. As shown
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in Fig. 5, the system reaches its stationary state after 10 ∗ L
steps.

APPENDIX F: COMPATIBILITY BETWEEN MEAN-FIELD
SOLUTION AND MONTE CARLO SIMULATION

To show the correspondence between analytical and sim-
ulation results, we have prepared four figures for the mean

of two stars versus temperature. As shown in Figs. 6–
9 with increasing N , the agreement between analytical
and Monte Carlo methods for predicting Thot and Tcold in-
creases; however, a slight mismatch for Tcold is observed
even for N = 200. Since the basin of attraction of q∗ = o,
which corresponds to the random state, is narrow, this fixed
point cannot be thoroughly captured in the simulations.
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