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Coevolution of vaccination behavior and perceived vaccination
risk can lead to a stag-hunt-like game
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Voluntary vaccination is effective to prevent infectious diseases from spreading. Both vaccination behavior
and cognition of the vaccination risk play important roles in individual vaccination decision making. However, it
is not clear how the coevolution of the two shapes population-wide vaccination behavior. We establish a coupled
dynamics of epidemic, vaccination behavior, and perceived vaccination risk with three different time scales. We
assume that the increase of vaccination level inhibits the rise of perceived vaccination risk, and the increase of
perceived vaccination risk inhibits the rise of vaccination level. It is shown that the resulting vaccination behavior
is similar to the stag-hunt game, provided that the basic reproductive ratio is moderate and that the epidemic
dynamics evolves sufficiently fast. This is in contrast with the previous view that vaccination is a snowdriftlike
game. And we find that epidemic breaks out repeatedly and eventually leads to vaccine scares if these three
dynamics evolve on a similar time scale. Furthermore, we propose some ways to promote vaccination behavior,
such as controlling side-effect bias and perceived vaccination costs. Our work sheds light on epidemic control
via vaccination by taking into account the coevolutionary dynamics of cognition and behavior.
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I. INTRODUCTION

Vaccination is regarded as one of the most effective ways
to prevent the spread of infectious diseases. It has successfully
controlled many diseases, such as influenza, poliomyelitis,
and smallpox [1–3], and it plays a vital role in controlling
the present COVID-19 virus [4–6]. Many previous models
combined individual vaccination behavior with disease trans-
mission, and fruitful results are obtained via evolutionary
game theory [7–10]. Typically it is assumed that vaccinated
individuals pay the price for taking vaccination. Unvacci-
nated individuals may be infected, or may remain healthy
without paying any price [7,11–13]. However, voluntary vac-
cination is a long-standing social dilemma, and it is difficult
to completely eradicate infectious diseases through voluntary
vaccination [3,14,15]. This is because vaccinated individuals
will pay the cost, such as time, money, side effects, and so on,
in order to obtain immune ability, which is not only beneficial
for the vaccinated, but also helpful for those who do not take
vaccination. When vaccination level is sufficiently high, the
whole population gives rise to herd immunity [16–18]. At
this time, unvaccinated individuals are protected from infec-
tious diseases by herd immunity without paying any cost.
This implies that unvaccinated individuals are tempted to free
ride, i.e., choose not to vaccinate themselves but expect other
individuals to vaccinate [7,13]. Many effective methods are
used to facilitate the population to escape from the vacci-
nation dilemma. For example, it has been explored how the
update rules of strategy [19–21], topological structures within
the population [9,22–24], and the multistrategy vaccination
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game [25–27] improve vaccination level to create herd im-
munity.

Awareness is also crucial to the spread of infectious dis-
eases in addition to human behavior [28–31]. For example,
when cases of side effects of vaccination are reported, the
perceived vaccination risk is dramatically increased by the
communications among acquaintances [7,12,14], although the
risk of the vaccination is not necessarily variant. Whether
individuals take vaccination or not is thus affected by the
perceived vaccination risk [32,33]. Studies have shown that
individuals are more likely to be vaccinated if the perceived
side effects are low, or individuals think that infectious dis-
eases are more serious [34,35]. Individuals who choose not
to be vaccinated may be affected by the outbreak of other
infectious diseases [36]. At the same time, they will also be
misled by false messages, for example, the statement that
Measles, Mumps, and Rubella vaccine triggered autism leads
to measles outbreaks in western countries [37]. Many indi-
viduals lack vaccine related knowledge and are vulnerable to
such information. Even those who are in favor of vaccination
may be confused by boisterous false information, leading
them to question their choice [32]. In other words, perceived
vaccination risk is an evolving opinion. Thus, to vaccinate or
not changes the social environment of the follow-up vaccina-
tion campaign, that is, perceived vaccination risk. In turn, the
perceived vaccination risk affects an individual’s vaccination
strategy choice in the subsequent epidemic season.

In addition to infectious disease, general ideas, sentiments,
and information are also “socially” infectious, in the sense
that they can be driven by others [15]. For the perception of
vaccination risk, individuals are likely to take the vaccination
as less secure, if few others take vaccination. This is because
popular opinions are likely to be taken as a safe one. Previous
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studies do not take into account the coupling between vac-
cination and perceived vaccination risk, although it is known
the coupling facilitates understanding of general complex sys-
tems [8,38]. At present, studies have linked perceived payoffs,
perceived vaccination risks, and vaccination [39–41] without
paying attention to the feedback between the two dynamics.
How does the coevolution of vaccination behavior and per-
ceived vaccination risk affect the vaccination uptake level, and
how can the vaccination uptake level be improved if perceived
risk of vaccination is also evolving? To this end, we couple
the vaccination dynamics with individual cognition of the
vaccination risk, and establish a toy model to study this issue.

II. MODEL

Epidemic, vaccination behavior, and perceived vaccination
risk are evolving with different time scales. Let us assume
that the epidemic evolves at the unit rate, and the evolution
rates of vaccination behavior and that of perceived vaccina-
tion risk relative to epidemic are ε1 and ε2, respectively. In
fact, the epidemic evolves fast and the infected individuals
increase exponentially [42]. It thus implies that individuals
update strategies and opinions less often, i.e., 0 < ε1 � 1 and
0 < ε2 � 1.

Epidemic dynamics. Let us consider an infinite and well-
mixed population. We assume that the epidemic follows the
classic susceptible-infected-recovered (SIR) model for infec-
tious diseases including influenzas and COVID-19. There are
three compartments in the population: susceptible (S), who
can get the disease if exposed to infected individuals; infective
(I), who are infected and can infect others; and recovered
(R), who are vaccinated or recovered from the disease and
gain immunity against the disease. At any time, a susceptible
individual gets infected provided it interacts with an infected
individual before it dies. The epidemic dynamics is given by

Ṡ = μ(1 − x) − βSI − μS, İ = βSI − γ I − μI,

Ṙ = μx + γ I − μR, (1)

where μ is birth rate (death rate), β is transmission rate, γ is
recovery rate, and x denotes the proportion of vaccinated in-
dividuals. In this case, the infection probability of susceptible
individuals is f (x, t ) = βIt/(βIt + μ), in which It denotes the
proportion of infected individuals at time t .

Vaccination dynamics. In every season of infectious dis-
eases including influenzas and COVID-19, each individual
has two strategies, vaccination or not. We assume that the
vaccine is perfect and vaccinated individuals will not be in-
fected in the upcoming season. In the vaccination stage, all
the individuals have the same cognition of vaccination risk,
denoted as n (0 � n � 1). If n = 1, all the individuals take the
view that the vaccination risk is high. If n = 0, the perceived
vaccination risk is low. In general, the vaccinated individuals
pay the cost of V (n) = nVH + (1 − n)VL > 0. Here, VH is the
perceived cost of vaccination when the vaccination risk is at its
maximum (n = 1), and VL is the perceived cost of vaccination
when the vaccination risk is at its minimum (n = 0). It holds
that VH > V (n) > VL > 0 (0 < n < 1). The unvaccinated in-
dividuals do not pay any cost. However, if the unvaccinated
are infected, they will pay the cost of C for recovering, which

FIG. 1. The schematic of the model. The vaccination game con-
sists of two stages: vaccination campaign and disease transmission.
In the first stage, all the individuals have the same cognition of
vaccination risk. They follow the majority rule in opinion dynamics:
the more individuals are taking vaccination, the more secure the
vaccination is regarded. At the same time, each individual has two
strategies, vaccination or not. Vaccinated individuals will not be
infected in the upcoming season (perfect vaccination). The unvac-
cinated individuals may remain healthy without paying any cost.
However, if the unvaccinated are infected, they will pay more for
recovering. The individual imitates others’ strategy via the Fermi
update rule. In the second stage, the epidemic follows the classic SIR
model. There are three types of individuals at the end: vaccinated and
healthy individuals, unvaccinated and healthy individuals, as well
as unvaccinated and infected individuals. Noteworthily, the cost of
vaccination is determined by the public opinion of vaccination risk.

includes suffering from the disease as well as social economic
costs. Typically, the cost of recovery is larger than the highest
perceived vaccination cost, that is, C > VH (see Fig. 1).

In the stage of disease transmission, the vaccinated indi-
viduals are not at risk of infection. The infection probability
of unvaccinated individuals is f (x, t ), in which x is the pro-
portion of vaccinated individuals. There are three types of
individuals in the population. Vaccinated and healthy indi-
viduals’ proportion is x with payoff −V (n), unvaccinated and
infected individuals’ proportion is (1 − x) f (x, t ) with payoff
−C, and unvaccinated and healthy individuals’ proportion
is (1 − x)(1 − f (x, t )) with payoff zero. At this time, the
individual imitates the strategy of other individuals via the
Fermi update rule [11,43,44]; that is, i and j are randomly
selected, and the probability of i learning j’s strategy is
[1 + exp (−ω(π j − πi ))]−1. Here, πi and π j are the perceived
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payoffs of i and j, respectively, and ω � 0 is the selection
intensity, which determines how much the payoff difference
affects the individual’s strategy. When the selection inten-
sity is zero, it implies that individual i learns j’s strategy
with probability of one-half, regardless of the payoffs of the
two individuals. When the selection intensity is strong, i.e.,
ω → +∞, it implies that individual i is almost sure to learn
j’s strategy, even though the payoff of j’s strategy is only
slightly higher than that of i’s strategy. Noteworthily, the se-
lection intensity mirrors the inverse temperature in statistical
physics [45–47]. Thus, vaccination dynamics is described by

ẋ = x(1 − x)
[
(1 − f (x, t )) tanh

(ω

2
(−V (n))

)
+ f (x, t ) tanh

(ω

2
(−V (n) + C)

)]
, (2)

where ω is the selection intensity, f (x, t ) is the infection prob-
ability of unvaccinated individuals when vaccination level
equals x, and the logistic term x(1 − x) ensures that the vacci-
nation level is restrained to [0,1], as it is defined within.

Perceived vaccination risk dynamics. In every epidemic
season, the vaccination level of the current season will have
an impact on the individual’s perceived vaccination risk dur-
ing the vaccination campaign. We follow the majority rule
in opinion dynamics in the sense that the more individuals
are taking vaccination, the more secure the vaccination is
regarded. This is because social groups are likely to adopt
popular opinions, and the popular opinions are taken as less
harmful. As a basic toy model, we propose that (i) the risk is
between 0 and 1; (ii) the more vaccinated individuals there
are, the less is the risk of vaccination; and (iii) the more
unvaccinated individuals there are, the more the perceived risk
of vaccination. To this end, we assume that the greater the
side-effect bias θ is, the stronger the role the unvaccinated play
in the dynamics of the perceived vaccination risk:

ṅ = n(1 − n)[−x + (1 + θ )(1 − x)], (3)

where θ > 0 is side-effect bias, which measures the ratio
of the enhancement rates to degradation rates of vaccinated
and unvaccinated individuals, respectively. The logistic term
n(1 − n) ensures that the perceived vaccination risk is re-
strained to [0,1], as it is defined within. In addition, the term
(−x + (1 + θ )(1 − x)) describes the side-effect bias with the
assumption that the more vaccinated individuals there are, the
less the perceived risk of vaccination; the more unvaccinated
individuals there are, the more the perceived risk of vaccina-
tion (see Appendix A for details). In fact, the side-effect bias
could be controlled by some measures. For example, side-
effect bias decreases by reporting the positive utility and data
of vaccinated individuals [48,49]. Otherwise, the spreading
of negative, exaggerated, and untrue statements increases the
side-effect bias [37,50].

Therefore, epidemic, vaccination behavior, and perceived
vaccination risk are evolving with time in our model. How-
ever, the evolution rates of these three dynamics may be
different. Under the weak selection limit ω → 0+, after a time
rescaling which does not change the asymptotic dynamics, the
resulting coupled dynamics of the epidemic described by SIR
model, vaccination behavior, and perceived vaccination risk

are given by

Ṡ = μ(1 − x) − βSI − μS, İ = βSI − γ I − μI,

Ṙ = μx + γ I − μR, ẋ = ε1x(1 − x)[( f (x, t )C − V (n)],

ṅ = ε2n(1 − n)[−x + (1 + θ )(1 − x)]. (4)

In spite of its simplicity, our model captures how (i) the
change of vaccination level affects the vaccination risk and (ii)
the individual’s cognition of vaccination risk affects whether
to vaccinate or not in the next epidemic season.

III. DYNAMICAL ANALYSIS

In this section, we consider two cases: (i) the epidemic
evolves much faster than vaccination behavior and perceived
risk and (ii) these three dynamics evolve with a similar time
scale. We find that coevolutionary vaccination is similar to a
stag-hunt game in case (i), and repeated outbreaks in epidemic
lead to vaccine scare in case (ii).

A. Coevolution of vaccination behavior and perceived
vaccination risk can lead to a stag-hunt-like game

There are some studies on coevolutionary dynamics of
epidemics and vaccination [25,51–53]. Repeated outbreaks of
an epidemic are present due to external factors such as immi-
gration and zoonotic and thing-to-human transmission, even if
the epidemic dynamics has reached equilibrium [54,55]. Then
a new framework is proposed [11,52,56], in which the epi-
demic transmission and vaccination campaign are divided into
two stages. Once the epidemic dynamics reaches its stationary
regime, individuals choose whether or not to vaccinate before
the next season begins. It resembles a time-scale separation,
which is worth considering. Based on similar considerations,
we assume the epidemic evolves much faster than vaccination
behavior and perceived risk. It implies that once the epidemic
dynamics dies out, that is, at the final state of the epidemic
season, individuals choose whether or not to vaccinate before
the next outbreak begins. At the same time, we assume that
vaccination behavior evolves at the same rate as perceived
vaccination risk. Thus, we set ε1, ε2 � 1 to indicate that the
epidemic evolves much faster than vaccination behavior and
perceived risk. For simplicity, we assume ε1 = ε2. In this case,
the infection probability of susceptible individual f (x) is seen
as the limit of f (x, t ) = βIt/(βIt + μ), in which It denotes the
proportion of infected individuals at time t . When t tends to
infinity, it shows that the epidemic dynamics has reached the
equilibrium. As mentioned before, infection probability f (x)
is given by [13,14,47]

f (x) =
{

1 − 1
R0(1−x) if 0 � x < 1 − 1

R0

0 if x � 1 − 1
R0

,
(5)

if the epidemic follows the classic SIR model. Here, R0 is
the basic reproduction ratio, which is the average infection
number of secondary infections among infected individuals
in the susceptible individuals. Under the weak selection limit
ω → 0+, the coupled dynamics is given by

ẋ = x(1 − x)[ f (x)C − V (n)],

ṅ = n(1 − n)[−x + (1 + θ )(1 − x)]. (6)
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The above equations are much less complicated than Eqs. (4),
which can facilitate us to provide analytical insight.

We find that there are only two stable regimes when the
basic reproductive ratio R0 is moderate. One stable regime has
a high vaccination level with the lowest perceived vaccination
risk. The other stable regime has a low vaccination level
with the highest perceived vaccination risk. We show how
side-effect bias, disease severity, and individual payoff alter
vaccination level and cognition risk of vaccination to shed
light on epidemic control.

1. Two stable regimes

When R0 is too small or too large, there is only one sta-
ble fixed point. For small basic reproductive ratio, R0 < 1,
the disease disappears naturally and the infection risk ends
up being low. Individuals believe that the vaccination risk
is higher than that of infection. Rational individuals do not
choose to vaccinate in the following vaccination campaign.
Based on our model, the perceived vaccination risk increases
with the decrease of vaccination level. Thus, the vaccination
level reaches zero and the perceived vaccination risk reaches
1. When R0 � 1, however, the number of infected individuals
increases exponentially and the disease lasts for a long time.
At this time, individuals believe that the infection risk is very
high. In other words, the cost and side effects caused by
vaccination are obviously not worth mentioning. In this case,
the vaccination level maintains at a level 1 − C/[R0(C − VL )],
and the vaccination risk reaches zero (see Appendix B for
details). Noteworthily, 1 − C/[R0(C − VL )] is the vaccination
level at which the perceived vaccination risk is not evolving
and remains the lowest.

However, the dynamics is completely different when the
basic reproductive ratio is moderate. When

(2 + θ )C

C − VL
< R0 <

(2 + θ )C

C − VH
,

two and only two stable regimes are present. And if

(2 + θ )C

C − VL
>

C

C − VH
,

the two stable fixed points are(
1 − C

R0(C − VL )
, 0

)
,

(
1 − C

R0(C − VH )
, 1

)
.

The phase diagram satisfying these conditions is shown in
Fig. 2. The two stable fixed points refer to high vaccination
level (1 − C/[R0(C − VL )]) with the lowest perceived vacci-
nation risk and low vaccination level (1 − C/[R0(C − VH )])
with the highest perceived vaccination risk, respectively. This
dynamical outcome is absent if the perceived vaccination risk
is not coevolving with behavior [7,11–14]. Thus, we are more
interested in the case that the basic reproductive ratio is mod-
erate (see Appendix B).

From the perspective of perceived vaccination risk, on one
hand, when the initial perceived vaccination risk is high, the
vaccination level will be reduced. Lower vaccination levels,
in turn, give rise to higher perceived vaccination risks. When
the time is sufficiently long, the perceived vaccination risk
reaches 1, but the vaccination level remains at a low level,

FIG. 2. Phase plane dynamics of x-n. The gray curves denote the
realized orbits and the arrows denote the direction of the trajectories.
The black open circle denotes the unstable internal fixed point. The
blue solid circles denote the stable point which has high vaccination
level with the lowest perceived vaccination risk, and the other stable
point which has low vaccination level with the highest perceived
vaccination risk, respectively. The orange dotted line separates the
attraction domain of the two stable fixed points approximately. Pa-
rameters: R0 = 3.5, C = 10, VH = 3, VL = 1, θ = 1.

1 − C/[R0(C − VH )]. On the other hand, when the perceived
vaccination risk in the initial state is low, the vaccination level
increases. The increase of vaccination level leads to lower per-
ceived vaccination risk. Eventually, the perceived vaccination
risk reaches zero, and the vaccination level remains at a high
level, 1 − C/[R0(C − VL )].

From the perspective of vaccination level, if the initial
vaccination level is high, rational individuals choose not to
vaccinate. It reduces the vaccination level and increases the
perceived vaccination risk. Finally, the perceived vaccination
risk reaches 1, and the vaccination level remains at a low level,
1 − C/[R0(C − VH )]. If the initial vaccination level is low,
individuals think that they have a high risk of infection; as a
result, they choose to vaccinate. The increase of vaccination
level reduces the perceived vaccination risk. Then the per-
ceived vaccination risk reaches zero, and the vaccination level
remains at a high level, 1 − C/[R0(C − VL )]. Therefore, when
R0 is moderate, there are two stable fixed points, one of which
has a higher vaccination level and the lowest vaccination risk
and vice versa.

2. Mechanisms to promote vaccination behavior: A
stag-hunt-game perspective

Since the vaccination level of fixed point (1 − C
R0(C−VL ) , 0)

is higher and the perceived vaccination risk is the lowest,
we are more concerned about how to enlarge its attraction
basin α. We regard the vaccination level to be improved if
the attraction basin of fixed point (1 − C

R0(C−VL ) , 0) is larger.
To obtain higher vaccination level, we discuss how side-effect
bias, vaccination cost, and disease severity alter vaccination
level and perceived vaccination risk (see Fig. 3).

We find that when (2+θ )C
C−VL

< R0 < (2+θ )C
C−VH

, the dynamics is
similar to that of the stag-hunt game. The stag-hunt game has
two stable Nash equilibria. All rational individuals choose ei-
ther stag or hare. And the two stable fixed points are separated
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(a) (b) (c)

FIG. 3. The area of the attraction basin of fixed point (1 − C
R0 (C−VL ) , 0). The red solid line denotes the change of the attraction basin area

of fixed point with (a) side-effect bias θ , (b) vaccination cost at the lowest perceived vaccination risk VL , and (c) basic reproductive ratio R0.
The black dotted line denotes the baseline, and the red solid line above it shows that the regime with high vaccination level and low perceived
vaccination risk is dominant. Parameters are (a) R0 = 4, C = 4, VH = 2, VL = 1; (b) R0 = 3.6, C = 10, VH = 5, θ = 0.1; and (c) C = 3.5,
VH = 2, VL = 1, θ = 0.5.

by an unstable fixed point. Technically, the unstable fixed
point captures the attraction basin of the two stable equilibria.
The equilibrium which has a larger attraction basin is regarded
as favored by natural selection (risk dominant strategy). In the
one-dimensional model, the internal equilibrium is sufficient
to capture which strategy is dominant, that is, which strategy
has a larger attraction basin. However, in our two-dimensional
model, what we need to find is no longer a point, but a curve
composed of countless points. Thus, it is challenging to clarify
which stable regime has a larger attraction basin. Here, we
are to give an estimation of the attraction basin of the more
effective vaccination regimes, that is, low perceived risk and
high level of vaccination (see the orange dotted line in Fig. 2).
We find that such a curve passes through the internal saddle
point (

θ + 1

θ + 2
,−C(2 − R0 + θ ) + R0VL

R0(VH − VL )

)
,

in which (2+θ )C
C−VL

< R0 < (2+θ )C
C−VH

, and the direction is a sta-
ble direction of the point. If the position of the initial
point of the system is below this line, the vaccination level

will reach 1 − C/[R0(C − VL )] and the perceived vaccina-
tion risk will reach zero eventually. If the position of the
initial point is above the line, the vaccination level will
reach 1 − C/[R0(C − VH )] and the perceived vaccination risk
will reach 1 eventually. To obtain this approximated line,
we calculate the negative eigenvalue and its eigenvector
of the Jacobian matrix at the saddle point, then approxi-
mately divide the attraction basin of the two stable regimes
through a line passing through the point and the direction
is the eigenvector corresponding to the negative eigenvalue
(see Appendix C).

Low side-effect bias promotes vaccination. The two equi-
libria have nothing to do with the side-effect bias. But when
C, VH , VL, and R0 do not change, the attraction basin of
fixed point (1 − C

R0(C−VL ) , 0) shrinks with the increase of θ ,
as shown in Fig. 3(a). We select three representative points,
namely, θ = 0.05, 0.5, 0.8, and give the phase diagrams
when other parameters remain unchanged (see Fig. 4).

Intuitively, when the side-effect bias increases, individuals
believe that the current perceived vaccination risk is even
higher once they contact an unvaccinated individual. They

FIG. 4. Phase plane dynamics of x-n when (a) θ = 0.05, (b) θ = 0.5, and (c) θ = 0.8. The gray curves denote the realized orbits and the
arrows denote the direction of the trajectories. The black open circle denotes the unstable internal fixed point. The blue solid circles denote the
stable point which has high vaccination level with the lowest perceived vaccination risk, and the other stable point which has low vaccination
level with highest perceived vaccination risk, respectively. The orange dotted line separates the attraction domain of the two stable fixed
points approximately. The areas of the attraction basin of fixed point (1 − C

R0 (C−VL ) , 0) (the bottom one) are about 0.9489, 0.4608, and 0.1655,
respectively. The parameters are the same as in Fig. 3(a).
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FIG. 5. Phase plane dynamics of x-n when (a) VL = 1, (b) VL = 3, and (c) VL = 4. The gray curves denote the realized orbits and the
arrows denote the direction of the trajectories. The black open circle denotes the unstable internal fixed point. The blue solid circles denote the
stable point which has high vaccination level with the lowest perceived vaccination risk, and the other stable point which has low vaccination
level with the highest perceived vaccination risk, respectively. The orange dotted line separates the attraction domain of the two stable fixed
points approximately. The areas of the attraction basin of fixed point (1 − C

R0 (C−VL ) , 0) (the bottom one) are about 0.7891, 0.5795, and 0.1644,
respectively. The parameters are the same as in Fig. 3(b).

tend not to take vaccination, and the vaccination level thus
reduces. When the vaccination level decreases, the probability
of individuals interacting with unvaccinated individuals will
increase. And the perceived vaccination risk will further in-
crease.

On the other hand, we find that the vaccination level of
internal unstable fixed point is x∗ = θ+1

θ+2 . When θ > 0, x∗ is
a monotonically increasing of the side-effect bias θ and is
always between (0.5,1). It mirrors the unstable equilibrium
in the stag-hunt game tht determines the attraction basin of
the stag behavior, which is socially optimal. Similarly, here x∗
also sheds light on the attraction basin.

Low perceived vaccination cost promotes vaccination. The
attraction basin of fixed point (1 − C

R0(C−VL ) , 0) shrinks with
the increase of vaccination cost VL, as shown in Fig. 3(b). We
also select three representative points, namely, VL = 1, 3, 4,

and show the phase diagrams when other parameters remain
unchanged (see Fig. 5).

It is shown that the whole vaccination cost V (n) increases
when the vaccination cost at the lowest perceived risk VL

increases. Intuitively, when the epidemic is not serious (in this
case, R0 = 3.6), individuals believe that the risk of vaccina-
tion outweighs the risk of disease.

High basic reproductive ratio promotes vaccination. We
find that when C, VH , VL and θ do not change, the attraction
basin of fixed point (1 − C

R0(C−VL ) , 0) spans with the increase
of basic reproductive ratio R0, as shown in the Fig. 3(c). We
show three representative points, namely, R0 = 3.6, 4, 5.5,
and give the phase diagrams respectively when other parame-
ters remain unchanged (see Fig. 6).

If the measures of disease prevention (including time cost,
cognition of disease risk, etc.) do not change, the basic

FIG. 6. Phase plane dynamics of x-n when (a) R0 = 3.6, (b) R0 = 4, and (c) R0 = 5.5. The gray curves denote the realized orbits and the
arrows denote the direction of the trajectories. The black open circle denotes the unstable internal fixed point. The blue solid circles denote the
stable point which has high vaccination level with the lowest perceived vaccination risk, and the other stable point which has low vaccination
level with the highest perceived vaccination risk, respectively. The orange dotted line separates the attraction domain of the two stable fixed
points approximately. The areas of the attraction basin of fixed point (1 − C

R0 (C−VL ) , 0) (the bottom one) are about 0.0586, 0.2743, and 0.8885,
respectively. The parameters are the same as in Fig. 3(c).
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(a) x0 = 0.9, n0 = 0.1 (b) x0 = 0.1, n0 = 0.9

FIG. 7. There are two stable regimes of vaccination, and the initial state influences the end of the coupled dynamics. (a) Initial vaccination
level x0 = 0.9 and perceived vaccination risk n0 = 0.1, and the final vaccination level reaches a higher proportion and perceived risk reaches
zero. (b) Initial vaccination level x0 = 0.1 and perceived vaccination risk n0 = 0.9, and the final vaccination level reaches a lower proportion
and perceived risk reaches 1. The result is consistent with the case given by Eqs. (6). Parameters: ε1 = ε2 = 0.01, μ = 1, β = 16, γ = 3,
θ = 1, C = 10, VH = 3, VL = 1.

reproductive ratio R0 is large, which implies the epidemic is
serious. In this case, individuals believe that the perceived
vaccination risk is significantly reduced compared with the
infection risk. Thus, rational individuals tend to take vacci-
nation. According to our assumption, the vaccination level
increases, then the perceived vaccination risk decreases. With
the increase of R0, the area of the attraction basin of fixed
point (1 − C

R0(C−VL ) , 0) increases. The whole vaccination level
is high and perceived vaccination risk is the lowest. It implies
that more and more individuals take the view that the per-
ceived vaccination risk is low and then choose to vaccinate.

B. Repeated outbreaks in epidemic can lead to vaccine scare

In fact, disease transmission and vaccination campaigns
are difficult to delineate precisely into two separate stages.

For example, the number of COVID-19 infections never fully
cleared in the past two years. It implies that the epidemic has
not yet reached its equilibrium. During the disease transmis-
sion stage, individuals change their vaccination behavior and
perceived vaccination risk. Thus, we consider the model by
incorporating three time scales for the three dynamics we take
into account (SIR, vaccination behavior, and risk assessment),
i.e., Eqs. (4). We aim to investigate how the relative time
scales of epidemics and vaccination alter the outcome. At any
time t , the infection probability of unvaccinated susceptible
individuals is f (x, t ) = βIt/(βIt + μ), in which x denotes the
proportion of vaccinated individuals and It denotes the propor-
tion of infected individuals at time t . Here, we assume that the
initial proportion of infected individuals is I0 = 0.1, the initial
proportion of recovered individuals is zero, and the initial
proportion of susceptible individuals is S0 = 1 − I0 − x0, in

(a) x0 = 0.9, n0 = 0.1 (b) x0 = 0.1, n0 = 0.9

FIG. 8. Emergent vaccination scare. (a) Initial vaccination level x0 = 0.9 and perceived vaccination risk n0 = 0.1. (b) Initial vaccination
level x0 = 0.1 and perceived vaccination risk n0 = 0.9. For the two cases, the final perceived risk reaches 1 but the vaccination level is unstable.
The phenomenon of oscillating vaccination level and epidemics is not found in the model that epidemic dynamics evolves sufficiently fast,
which is given by Eq. (6). Parameters: ε1 = ε2 = 0.99, μ = 1, β = 16, γ = 3, θ = 1,C = 10,VH = 3,VL = 1.
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(a) ε1 = 0.01, ε2 = 0.005 (b) ε1 = 0.01, ε2 = 0.05

(c) ε1 = 0.99, ε2 = 0.5 (d) ε1 = 0.99, ε2 = 0.9

FIG. 9. The time scales cannot change the dynamical results qualitatively. When ε1 = 0.01, the final state of the dynamics remains
unchanged under conditions (a) ε2 = 0.005 and (b) ε2 = 0.05, even if there is a slight change in evolution. It also remains unchanged under
conditions (c) ε2 = 0.5 and (d) ε2 = 0.9 when ε1 = 0.99. Parameters: μ = 1, β = 16, γ = 3, θ = 1, C = 10, VH = 3, VL = 1.

which x0 denotes the initial proportion of vaccinated individ-
uals.

If epidemic evolves much faster, the time-scale separation
facilitates us to analyze the coupled dynamics. For Eqs. (4), the
basic reproduction ratio is R0 = β/(γ + μ). When the basic
reproductive ratio is moderate, that is, R0 is in ( (2+θ )C

C−VL
, (2+θ )C

C−VH
)

approximately, two and only two stable regimes are present.
One stable regime has high vaccination level and low per-
ceived vaccination risk and the other one has low vaccination
level and high perceived vaccination risk (see Fig. 7). It
is consistent with the analysis. If both ε1 and ε2 are much
smaller than 1, it degenerates to the case given by Eqs. (6), in
which time-scale separation is applied to obtained analytical
insights.

If these three dynamics evolve at a similar time scale, it can
lead to vaccine scare. In this case, the epidemic evolves with
vaccination behavior and perceived risk at a similar time scale.
Once the epidemic outbreaks, infected individuals increase.
Then parts of susceptible individuals choose to vaccinate, and
infected individuals gradually decrease in number. However,
if epidemic is not serious, it does not die out naturally and
the vaccination level does not lead to herd immunity. The
proportion of infected individuals does not reach zero, and
the epidemic continues. Thus, outbreaks of epidemic come

and go, and the susceptible, the infected, the recovered, and
the vaccinated individuals fluctuate in number. On the other
hand, the perceived vaccination risk reaches 1 (see Fig. 8). It
implies that it can lead to vaccine scare if the epidemic does
not die out or new infected individuals increase frequently. A
similar case is COVID-19, which has been coming back and
forth for more than two years, with infected individuals still
present and the epidemic not yet reaching the end point. Thus,
it can lead to vaccine scare if COVID-19 has been slow to die
out.

The above analysis is based on the same time scale between
vaccination behavior and perceived risk. In fact, vaccination
behavior and perceived vaccination risk do not necessarily
evolve at the same time scale; that is, ε1 �= ε2. However, we
find that a slight change in ε2 does not change the dynam-
ical results, no matter if ε1 = 0.99 or ε1 = 0.01. We take
ε1 = 0.01 as an example. There are also two stable regimes
when the basic reproductive ratio is moderate, regardless of
ε2 = 0.005 or ε2 = 0.05 (see Fig. 9).

IV. EPIDEMIC CONTROL VIA SIDE-EFFECT BIAS

The coevolutionary dynamics of cognition and behavior
is taken into account. Thus, it is important to study how to
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lortnoclortnoctuohtiw

ε = 0.1

ε = 0.5

FIG. 10. Controlling side-effect bias promotes vaccination behavior. Gray dotted lines denote vaccination level, and green lines denote
perceived vaccination risk in four figures. Gray solid lines in the second row denote average vaccination level. The time scale of the first row
is ε1 = ε2 = 0.1 and that of the second row is ε1 = ε2 = 0.5. Controlling side-effect bias is that change θ from 1 to 0.3 if the proportion of
infected individuals reaches It = 0.001 at any time. The first column has no control, which implies that θ is always equal to 1. And the second
column has controls. Vaccination level increases and perceived risk decreases with controlling side-effect bias θ . Parameters: μ = 1, β = 16,
γ = 3, θ = 1, C = 10, VH = 3, VL = 1.

promote vaccination behavior by controlling side-effect bias
θ , which measures the ratio of the enhancement rates to degra-
dation rates of vaccinated and unvaccinated individuals. We
focus on a simple control rule that the side-effect bias reduces
as long as the infected individuals exceed a critical value.
Noteworthily, the side-effect bias could be adjusted by policy
modification. For example, reporting the positive utility and
data of vaccinated individuals is an effective way to decrease
side-effect bias. We assume that side-effect bias θ decreases
if the epidemic reaches a critical size, that is, θ = 0.3 if the
proportion of infected individuals exceeds It = 0.001 at any
time t (see Fig. 10). It implies that the effect of unvaccinated
on perceived vaccination risk reduces as long as the number
of infected individuals exceeds one thousand in a population
with one million individuals. It is found that it promotes
vaccination behavior at various time scales when the epidemic
reaches a critical size.

Then we consider a strict condition that side-effect bias
θ decreases to 0.0001 if the proportion of infected in-
dividuals exceeds It = 0.0001 at any time t , that is, the
effect of unvaccinated on perceived vaccination risk is much
lower when the number of infected individuals exceeds one
hundred (see Fig. 11). It is found that the vaccination be-
havior is also promoted and evolves much faster under this
condition.

In addition, we consider one-shot controlling side-effect
bias, that is, θ = 0.01 if time t is within the interval (10, 60)
(see Fig. 12). And we find that it also promotes vaccination
behavior in this case.

To sum up, we find that it is effective to promote vacci-
nation behavior by controlling side-effect bias at both fast and
slow time scales. Thus, what we should do is increase the pos-
itive utility reports of vaccinated individuals, and reduce the
spread of exaggerated and untrue statements of unvaccinated
individuals when the epidemic is present.

V. CONCLUSION

We have introduced a coevolutionary model of epidemic,
vaccination behavior, and perceived vaccination risk: these
three dynamics evolve with different time scales. We have
assumed that the increase of vaccination level inhibits the rise
of vaccination risk (popular behaviors are likely to be taken as
safe), and the increase of vaccination risk inhibits the rise of
perceived vaccination level (high-cost behavior is not likely to
evolve).

We have shown how to make the whole population reach
a higher vaccination level for moderate infectious disease if
an epidemic evolves the fastest among these three dynamics:
First, the lower the side-effect bias is, the larger the attraction
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(a) ε1 = ε2 = 0.1 (b) ε1 = ε2 = 0.5

FIG. 11. Strict conditions accelerate the evolution of vaccination behavior. The time scale of (a) is ε1 = ε2 = 0.1 and that of (b) is ε1 =
ε2 = 0.5. Controlling side-effect bias is that change θ from 1 to 0.0001 if the proportion of infected individuals reaches It = 0.0001 at any
time. Parameters: μ = 1, β = 16, γ = 3, θ = 1, C = 10, VH = 3, VL = 1.

basin of the fixed point with higher vaccination level and
the lowest perceived vaccination risk is. The side-effect bias
strengthens the role of the proportion of unvaccinated in-
dividuals in increasing the vaccination risk. Therefore, the
side-effect bias should be as small as possible in order to
make the overall vaccination level higher. That is to say, the
side-effect bias should be reduced so as to avoid the reduction
of vaccination level due to the enhanced vaccination risk.
It suggests that officials should adopt policies to strengthen
the trust in vaccines and punish individuals who maliciously
spread false information. Second, the smaller the vaccination
cost, the larger the attraction basin of the fixed point. This is
because low perceived vaccination cost promotes vaccination.
It implies that the interaction between vaccination level and
vaccination risk increases the vaccination level. Therefore,
in order to make the whole population reach high vaccina-
tion level, the vaccination cost should be reduced, including
time consumption, side effects, etc. Finally, the larger the

FIG. 12. Vaccination behavior is promoted by controlling side-
effect bias in a period of time. θ = 0.01 if time t ∈ (10, 60), and
θ = 1 in other time. Parameters: R0 = 3.5, C = 10, VH = 3, VL = 1,
θ = 1, ε1 = ε2 = 0.5.

basic reproductive ratio, the larger the attraction basin of the
fixed point. This is because individuals recognize that the
vaccination risk is obviously lower than the infection risk.
Rational individuals tend to vaccinate, which improves the
overall vaccination level. Thus, it is effective to reduce the
side-effect bias and vaccination cost when infectious diseases
are not serious. Side-effect bias refers to the interaction be-
tween vaccination level and perceived vaccination risk. These
ways effectively prevent and control the spread of infectious
diseases by promoting vaccination and simultaneously reduc-
ing the perceived vaccination risk. We have supposed that the
promotion effect of nonvaccination level on perceived risk is
stronger than that of vaccination level. However, it is chal-
lenging to measure side-effect bias. For example, individuals
who cannot vaccinate due to illness are different from those
who believe and even spread false information about vaccina-
tion [57]. The two types have different impacts on perceived
vaccination risk. It is worth study in the future.

Generally, we have considered that these three dynamics
evolve with a similar time scale. We have found that it can lead
to vaccine scare if the epidemic is not serious. In this case, the
epidemic does not die out naturally and the vaccination level
cannot lead to herd immunity. Outbreaks of epidemics come
and go, and the proportion of susceptible, infected, recovered,
and vaccinated individuals continues to fluctuate. But the
perceived vaccination risk reaches 1, which refers to vaccine
scare. A similar case is COVID-19, which has been going
back and forth for nearly two years, with infected individuals
still present and the epidemic not yet reaching the end point.
Thus, it can lead to vaccine scare if COVID-19 has been slow
to die out. In addition, we have found that it is effective to
promote vaccination behavior by controlling side-effect bias
at both fast and slow time scales.

VI. DISCUSSION

In previous studies on voluntary vaccination behavior, indi-
viduals do what others do not do [7,11,13,14,17,18,39], which
is similar to the snowdrift game. Vaccinated individuals obtain
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immune ability, but they pay the price of time, money, and side
effects for taking the vaccine. Unvaccinated individuals may
be infected, but they are protected by herd immunity when
a sufficient number of individuals are vaccinated, and may
remain healthy without paying any price. Rational individuals
do not pay the cost of vaccination, but try to be protected
by herd immunity. Voluntary vaccination cannot reach the
vaccination level that is necessary to eradicate the epidemic.
Thus it is a dilemma to vaccinate or not. In this case, indi-
viduals would take the vaccine if few other individuals do.
Otherwise many individuals take vaccination, herd immunity
is present, and thus rational individuals would not take the
vaccine. In contrast with previous studies, we have found that
there are two stable regimes when the basic reproductive ratio
is moderate, provided that the epidemic evolves much faster
than vaccination behavior and perceived vaccination risk. One
stable regime has high vaccination level and low perceived
vaccination risk. The other one has low vaccination level and
high perceived vaccination risk. If the initial vaccination level
is high and the perceived vaccination risk is low, individuals
choose to vaccinate and think the vaccination risk is low.
On the contrary, if the initial vaccination level is low and
the perceived vaccination risk is high, more individuals are
not likely to vaccinate and think the perceived vaccination
risk is high. Herein all the individuals do what others do. It
implies coevolutionary vaccination is similar to a stag-hunt
game [58,59]. Therefore, our coevolutionary dynamics intrin-
sically transforms a snow-drift-like game to a stag-hunt-like
game. Intuitively, high vaccination level would lead to low
perceived risk of vaccination, and low perceived risk would
promote vaccination. Thus perceived vaccination risk acts as
a catalyst to yield such a stag-hunt-like vaccination behavior.
The underlying assumption of our work is that the newly born
inherit the vaccination from their parents. In fact, the infection
probability of susceptible individuals is the same if all newly
born are susceptible. Thus, the results do not change if the
epidemic evolves quite faster.

There are other models of evolutionary games with en-
vironmental feedback mechanisms for a general commons
tragedy [60–66]. Weitz et al. proposed the replicator dynamics
of an evolutionary game with a feedback mechanism. They
linked the payoffs of a classic two-strategy symmetric matrix
game with environmental feedback. And it is proved that it
cannot give rise to two stable regimes [60]. This is signifi-
cantly different from our model based on a vaccination game
and state-dependent feedback. It suggests that the vaccination
game is intrinsically complex, which is different from the
matrix game. Thus, the vaccination game cannot be simply
regarded as a snowdrift game.

To sum up, we have pointed out that coevolutionary
dynamics between vaccination behavior and perceived risk
intrinsically transforms a snow-drift-like game to a stag-hunt-
like game, in which perceived vaccination risk acts as a
catalyst to promote vaccination behavior. The significance of
our work is (i) to reshape the understanding of vaccination
behavior by taking into account realistic evolving vaccination
risk and (ii) to highlight the coordinationlike rather than snow-
driftlike dynamics, which is absent in vaccination behavior
in evolutionary games. It could open a new avenue for the
game-theoretic modeling of vaccination in the future.

APPENDIX A: DYNAMIC EQUATIONS

At the end of the epidemic season, there are three types
of individuals in the population. The proportion of vaccinated
and healthy individuals is x with payoff −V (n); the propor-
tion of unvaccinated and infected individuals is (1 − x) f (x)
with payoff −C, where f (x) is the probability of infection
of unvaccinated individuals when the proportion of vacci-
nation is x; and the proportion of unvaccinated and healthy
individuals is (1 − x)(1 − f (x)) with payoff zero. At this
time, the individual imitates the strategy of other individu-
als via the Fermi update rule, that is, i and j are randomly
selected, and the probability of i learning j’s strategy is
[1 + exp (−ω(π j − πi ))]−1. πi and π j represent the perceived
payoffs of i and j, respectively, and ω � 0 is the selection
intensity, which determines how much the payoff difference
affects the individual’s strategy. Then the dynamics of vacci-
nation is given by

ẋ = x(1 − x)
[
(1 − f (x)) tanh

(ω

2
(−V (n))

)
+ f (x) tanh

(ω

2
(−V (n) + C)

)]
.

When selection intensity ω is sufficiently small, i.e., ω → 0+,
the equation can be simplified to

ẋ = x(1 − x)( f (x)C − V (n)). (A1)

Next, we consider the interaction between vaccination be-
havior and perceived vaccination risk, and suppose that the
evolution of perceived vaccination risk has the same time
scale with that of the proportion of vaccinated individuals.
At the end of the epidemic season, the vaccination level of
the current season will have an impact on the individual’s
perceived vaccination risk during the vaccination campaign.
We follow the majority rule in opinion dynamics in the sense
that the more individuals are taking the vaccine, the more
secure the vaccination is taken to be. This is because social
groups are likely to adopt popular opinions, and the popular
opinions are taken as less harmful. As a basic toy model,
we propose that (i) the risk is between zero and 1; (ii) the
more vaccinated individuals there are, the less the perceived
risk of vaccination; (iii) the more unvaccinated individuals
there are, the more the perceived risk of vaccination; and (iv)
state-dependent feedback is proposed. At the same time, the
greater the feedback intensity θ is, the stronger the role the
unvaccinated play in the dynamics of the perceived vaccina-
tion risk. Thus, the dynamics of perceived vaccination risk is
given by

ṅ = n(1 − n)(−x + (1 + θ )(1 − x)), (A2)

where θ is side-effect bias, which measures the ratio of the
enhancement rates to degradation rates of vaccinated and
unvaccinated individuals, respectively, and the logistic term
n(1 − n) ensures that the perceived vaccination risk is re-
strained to [0,1], as it is defined within. In addition, the term
(−x + (1 + θ )(1 − x)) describes the side-effect bias with the
assumption that the more vaccinated individuals there are,
the less the perceived risk of vaccination; the more unvac-
cinated individuals there are, the more the perceived risk of
vaccination.
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APPENDIX B: STABLE REGIMES

Let ẋ = 0, and ṅ = 0 in Eq. (6); then we can ob-
tain seven fixed points as follows: (1) (1 − C

R0(C−VL ) , 0),

where R0 > C
C−VL

; (2) (1 − C
R0(C−VH ) , 1), where R0 > C

C−VH
;

(3) ( θ+1
θ+2 ,−C(2−R0+θ )+R0VL

R0(VH −VL ) ), where (2+θ )C
C−VL

< R0 < (2+θ )C
C−VH

; (4)
(0,0); (5) (0,1); (6) (1,0); and (7) (1,1). Since x, n ∈ [0, 1],
the first three fixed points exist only if their corresponding
conditions are satisfied. We investigate the fixed points and
analyze their stabilities with the aid of Jacobian matrices:

(i) If the determinant of the matrix det(J (x∗, n∗)) is posi-
tive and the trace of it tr(J (x∗, n∗)) is negative, the fixed point
(x∗, n∗) is stable.

(ii) If the determinant det(J (x∗, n∗)) is positive and trace
tr(J (x∗, n∗)) is positive, the fixed point (x∗, n∗) is unstable.

(iii) If the determinant det(J (x∗, n∗)) is negative and trace
tr(J (x∗, n∗)) is either zero or indeterminate, the fixed point
(x∗, n∗) is a saddle point.

For every fixed point, the Jacobian matrix can be calculated
by the following equations:

J (x∗, n∗) =
(

∂ ẋ
∂x

∣∣
(x∗,n∗ )

∂ ẋ
∂n

∣∣
(x∗,n∗ )

∂ ṅ
∂x

∣∣
(x∗,n∗ )

∂ ṅ
∂n

∣∣
(x∗,n∗ )

)
. (B1)

Here, if x < 1 − 1
R0

,

∂ ẋ

∂x
= C

(
1 − 1

R0
− 2x

)
+ (n(VH − VL ) + VL )(−1 + 2x),

∂ ẋ

∂n
= x(VH − VL )(x − 1),

∂ ṅ

∂x
= n(θ + 2)(n − 1),

∂ ṅ

∂n
= (−1 + 2n)(−1 − θ + 2x + θx),

and if x � 1 − 1
R0

,

∂ ẋ

∂x
= (n(VH − VL ) + VL )(−1 + 2x),

∂ ẋ

∂n
= x(VH − VL )(x − 1),

∂ ṅ

∂x
= n(θ + 2)(n − 1),

∂ ṅ

∂n
= (−1 + 2n)(−1 − θ + 2x + θx).

Thus, the corresponding Jacobian matrices of each fixed
point can be given by the following equations:

(1) For (1 − C
R0(C−VL ) , 0),

J =
(−C

(
1 − 1

R0

) + VL
C(VH −VL )(C−CR0+R0VL )

R2
0 (C−VL )2

0 C(2+θ−R0 )+R0VL

R0(C−VL )

)
.

Fixed point 1 exists if the condition R0 > C
C−VL

is satisfied.

When R0 > (2+θ )C
C−VL

, fixed point 1 is stable. When C
C−VL

< R0 <
(2+θ )C
C−VL

, fixed point 1 is unstable.

(2) For (1 − C
R0(C−VH ) , 1),

J =
(−C

(
1 − 1

R0

) + VH
C(VH −VL )(C−CR0+R0VH )

R2
0 (C−VH )2

0 −C(2+θ−R0 )+R0VH

R0(C−VH )

)
.

Fixed point 2 exists if the condition R0 > C
C−VH

is satisfied.

When C
C−VH

< R0 < (2+θ )C
C−VH

, fixed point 2 is stable. When

R0 > (2+θ )C
C−VH

, fixed point 2 is unstable.

(3) For ( θ+1
θ+2 ,−C(2−R0+θ )+R0VL

R0(VH −VL ) ),

J =
( − (1+θ )C

R0
− (1+θ )(VH −VL )

(2+θ )2

(2+θ )(C(2+θ−R0 )+R0VH )(C(2+θ−R0 )+R0VL )
R2

0 (VH −VL )2 0

)
.

Fixed point 3 exists if the condition (2+θ )C
C−VL

< R0 < (2+θ )C
C−VH

is
satisfied. Since the determinant of a Jacobian matrix is always
negative, fixed point 3 is a saddle point.

(4) For (0,0),

J =
(

C
(
1 − 1

R0

) − VL 0

0 1 + θ

)
.

(5) For (0,1),

J =
(

C
(
1 − 1

R0

) − VH 0

0 −(1 + θ )

)
.

(6) For (1,0),

J =
(

VL 0
0 −1

)
.

(7) For (1,1),

J =
(

VH 0
0 1

)
.

The last four fixed points always exist based on our model.
Fixed point 5 is stable if R0 < C/(C − VH ) and other points
are always unstable.

After obtaining the Jacobian matrices at these fixed points,
we can carry out the following stability analysis

Case 1:

(2 + θ )C

C − VL
>

C

C − VH
, (B2)

which is required condition one, C � 2VH − VL, θ >
−C+2VH −VL

C−VH
, or two, C > 2VH − VL.

(a) If

0 < R0 <
C

C − VL
,

there are four fixed points 4–7, and only point 5 is stable.
(b) If

C

C − VL
< R0 <

C

C − VH
,

there are five fixed points 1 and 4–7, and only point 5 is stable.
(c) If

C

C − VH
< R0 <

(2 + θ )C

C − VL
,

there are six fixed points 1, 2, and 4–7, and only point 2 is
stable.

(d) If

(2 + θ )C

C − VL
< R0 <

(2 + θ )C

C − VH
,
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there are seven fixed points 1–7, and both points 1 and 2 are
stable.

(e) If

R0 >
(2 + θ )C

C − VH
,

there are six fixed points 1, 2, and 4–7, and only point 1 is
stable.

Case 2:
(2 + θ )C

C − VL
<

C

C − VH
, (B3)

which is required C < 2VH − VL and 0 < θ < −C+2VH −VL
C−VH

.
(a) If

0 < R0 <
C

C − VL
,

there are four fixed points 4–7, and only point 5 is stable.
(b) If

C

C − VL
< R0 <

(2 + θ )C

C − VL
,

there are five fixed points 1 and 4–7, and only point 5 is stable.
(c) If

(2 + θ )C

C − VL
< R0 <

C

C − VH
,

there are six fixed points 1 and 3–7, and both points 1 and 5
are stable.

(d) If

C

C − VH
< R0 <

(2 + θ )C

C − VH
,

there are seven fixed points 1–7, and both points 1 and 2 are
stable.

(e) If

R0 >
(2 + θ )C

C − VH
,

there are six fixed points 1, 2, and 4–7, and only point 1 is
stable.

APPENDIX C: ATTRACTION BASIN

Based on the above analysis, we obtain seven fixed points and find three cases of two stable fixed points at the same time,
such as case 1(d), and cases 2(c) and 2(d). These three cases show that whatever the initial state is, the final state will reach either
fixed point 1 or 2, provided that R0 fulfills the conditions.

The internal fixed point 3 ( θ+1
θ+2 ,−C(2−R0+θ )+R0VL

R0(VH −VL ) ), in which (2+θ )C
C−VL

< R0 < (2+θ )C
C−VH

, is a saddle point because its corresponding
matrix has two eigenvalues: one is positive and the other is negative. The attraction basin of the two stable fixed points on the
boundary is separated by a curve passing through the internal unstable fixed point 3. In the vicinity of fixed point 3, the curve
dividing the attraction basin can be approximated as the eigenvector corresponding to the negative eigenvalue of the Jacobian
matrix of this point. We calculate two eigenvalues of its Jacobian matrix as follows:

λ1 = [ − C(θ + 1)(VHθ + 2VH − VLθ − 2VL ) − ( − (VH − VL )(θ + 1)(θ + 2)
(
4C2R2

0 − 8C2R0θ − 16C2R0 − C2VHθ2

− 3C2VHθ − 2C2VH + C2VLθ2 + 3C2VLθ + 2C2VL + 4C2θ2 + 16C2θ + 16C2 − 4CR2
0VH − 4CR2

0VL + 4CR0VHθ

+ 8CR0VH + 4CR0VLθ + 8CR0VL + 4R2
0VHVL

)) 1
2
]
/[2R0(VHθ + 2VH − VLθ − 2VL )],

λ2 = [ − C(θ + 1)(VHθ + 2VH − VLθ − 2VL ) + ( − (VH − VL )(θ + 1)(θ + 2)
(
4C2R2

0 − 8C2R0θ − 16C2R0 − C2VHθ2

− 3C2VHθ − 2C2VH + C2VLθ2 + 3C2VLθ + 2C2VL + 4C2θ2 + 16C2θ + 16C2 − 4CR2
0VH − 4CR2

0VL + 4CR0VHθ

+ 8CR0VH + 4CR0VLθ + 8CR0VL + 4R2
0VHVL

)) 1
2
]
/[2R0(VHθ + 2VH − VLθ − 2VL )],

where λ1 > 0 and λ2 < 0. Then the eigenvector corresponding to negative eigenvalue λ2 is η = [η1, 1]T , where

η1 = − R0
(
C(θ + 1)(VHθ + 2VH − VLθ − 2VL ) − ( − (VH − VL )(θ + 1)(θ + 2)

(
4C2R2

0 − 8C2R0θ − 16C2R0 − C2VHθ2

− 3C2VHθ − 2C2VH + C2VLθ2 + 3C2VLθ + 2C2VL + 4C2θ2 + 16C2θ + 16C2 − 4CR2
0VH − 4CR2

0VL + 4CR0VHθ

+ 8CR0VH + 4CR0VLθ + 8CR0VL + 4R2
0VHVL

)) 1
2
)(

V 2
H − 2VHVL + V 2

L

)/[
2(VHθ + 2VH − VLθ − 2VL )

(
C2R2

0θ + 2C2R2
0

− 2C2R0θ
2 − 8C2R0θ − 8C2R0 + C2θ3 + 6C2θ2 + 12C2θ + 8C2 − CR2

0VHθ − 2CR2
0VH − CR2

0VLθ − 2CR2
0VL

+ CR0VHθ2 + 4CR0VHθ + 4CR0VH + CR0VLθ2 + 4CR0VLθ + 4CR0VL + R2
0VHVLθ + 2R2

0VHVL
)]

.

In the vicinity of fixed point 3, the curve of case 1(d) can be described by f (x, n) = f (x∗, n∗) + (x∗, n∗)η approximately. Our
purpose is to determine which stable fixed point has a larger attraction basin. Thus, for the linear approximation n = kx + b for a
large parameter region, i.e., x, n ∈ [0, 1], it is acceptable to evaluate which stable regime has a larger attraction basin. The slope
k and intercept b of the linear equation are given by

k = −(2(2 + θ )2(C(2 + θ − R0 ) + R0VH )(C(2 + θ − R0 ) + R0VL ))/
(
R0(VH − VL )

(
(2 + 3θ + θ2 )C(VH − VL ) +

√
(2 + 3θ + θ2 )(VH − VL )

×
√

−4R2
0VHVL − 4C(2 + θ − R0 )R0(VH + VL ) + C2(θ (−16 + 8R0 + 3VH − 3VL ) + θ2(−4 + VH − VL ) − 2

(
8 − 8R0 + 2R2

0 − VH + VL
))))

,

b = (
(C(2 + θ − R0 ) + R0VL )

(
4R0VH + 6θR0VH + 2θ2R0VH + (2 + 3θ + θ2 )C(4 + 2θ − 2R0 − VH + VL )
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−
√

−(2+ 3θ+ θ2 )(VH − VL )
(
4R2

0VHVL + 4C(2+ θ − R0 )R0(VH + VL )+ C2
(
θ2(4 − VH + VL )+ 2

(
8 − 8R0+ 2R2

0 − VH + VL
)+ θ (16 − 8R0 − 3VH + 3VL )

))))/
(
R0(VH − VL )

(
(2 + 3θ + θ2 )C(VH − VL ) +

√
(2 + 3θ + θ2 )(VH − VL )

×
√

−4R2
0VHVL − 4C(2 + θ − R0 )R0(VH + VL ) + C2

(
θ (−16 + 8R0 + 3VH − 3VL ) + θ2(−4 + VH − VL ) − 2

(
8 − 8R0 + 2R2

0 − VH + VL
))))

.

The existence of saddle point 3 implies that the basic reproductive number R0 is not too large but guarantees that the disease
spreads in the individuals and does not disappear naturally; that is, 1 < (2+θ )C

C−VL
< R0 < (2+θ )C

C−VH
. There are two stable fixed points

in this dynamics model. At this time, we adjust these five parameters C, VH , VL, θ , and R0 to stabilize as many initial points as
possible at the stable fixed point 1 (1 − C

R0(C−VL ) , 0) that we try to find the mechanisms to give rise to higher vaccination level
and lower perceived vaccination risk.
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