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Synergistic epidemic spreading in correlated networks
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We investigate the effect of degree correlation on a susceptible-infected-susceptible (SIS) model with a
nonlinear cooperative effect (synergy) in infectious transmissions. In a mean-field treatment of the synergistic
SIS model on a bimodal network with tunable degree correlation, we identify a discontinuous transition that
is independent of the degree correlation strength unless the synergy is absent or extremely weak. Regardless
of synergy (absent or present), a positive and negative degree correlation in the model reduces and raises
the epidemic threshold, respectively. For networks with a strongly positive degree correlation, the mean-field
treatment predicts the emergence of two discontinuous jumps in the steady-state infected density. To test the
mean-field treatment, we provide approximate master equations of the present model. We quantitatively confirm
that the approximate master equations agree with not only all qualitative predictions of the mean-field treatment
but also corresponding Monte Carlo simulations.
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I. INTRODUCTION

Infectious diseases and social contagions (the spread of
information, behaviors, and attitudes) are among the most
important network science topics [1,2]. The relationships
between the structures of complex networks and contagion
processes have been extensively reported (see reviews [3–7]
and references therein). Degree inhomogeneity is known to
crucially affect the spreading of an infectious disease. Specifi-
cally, in the susceptible-infected-susceptible (SIS) model on
a network where the infection transmits from an infected
node to a susceptible node via their connection with an in-
fection rate and the infected node recovers spontaneously at
a recovery rate, infectious diseases can survive for a long
time even with an infinitesimally small infection rate if the
degree distribution pk of the network obeys pk ∝ k−γ with the
degree exponent γ � 3 [8,9]. Subsequent works have shown
that the epidemic threshold above which an SIS epidemic
can persist vanishes for quenched networks with any degree
exponent [10,11].

Over the past few years, an increasing body of research has
considered the synergistic effect in contagion processes [7,12–
21]. The synergistic effect represents a nonlinear cooperative
effect in the transmission between an infected-susceptible
pair; that is, infected neighbors around them enhance the
transmission rate. This effect has been experimentally re-
ported in biological contagions such as fungal infection in
soil-borne plant pathogens [13] and tumor growth [22], and
in social contagions such as the spread of behaviors [23]. Re-
cently, St-Onge et al. introduced an epidemic model motivated
by COVID-19, based on temporal heterogeneity of human ac-
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tivity, the higher-order structure of contact networks, and the
minimal infective dose required for being infected [24]. This
model put forward the nonlinearity of infection probability.

The role of synergy in contagions has been investigated
in synergistic SIS models and susceptible-infected-removed
(SIR) models on various networks: lattices, regular ran-
dom graphs, random graphs, and small-world networks. As
Taraskin and Pérez-Reche proved for the synergistic SIS
model on the regular random graph [21], the synergistic effect
can induce an explosive spreading and the emergence of a
hysteresis loop. In the classical SIS model, the infectious dis-
ease becomes extinct or persists if the infection rate is lower
or higher than a specified epidemic threshold. The transition
from the extinct regime to the endemic regime is continuous,
meaning that the infected density in the steady state increases
continuously from zero to some nonzero value as the infection
rate increases. In contrast, the synergistic SIS model predicts
an explosive spread of the disease with a discontinuous jump
in the infected density as the infection rate increases. The
system develops a bistable region (hysteresis loop) in which
the fate of the infection (extinction or endemic persistence)
depends on the initial state. Synergy in a local environment
can drastically change the global spreading behaviors. These
behaviors have recently attracted interest [25], including a
COVID-19 inspired model [24] and social contagions with
higher-order interactions [26].

Besides the degree inhomogeneity, the degree correlation,
defined as the correlation between the degrees of directly con-
nected nodes, is an important measure of complex networks.
Newman [27,28] found that real social networks are assorta-
tive, meaning that nodes are likely to be connected to nodes
of similar degrees. In contrast, biological and technological
networks are disassortative, meaning that nodes are likely
to be connected to nodes of different degrees. The degree
correlation in complex networks also plays an important role
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in epidemic models [29–38]. For the SIS model on correlated
networks, Boguná et al. claimed that on correlated networks,
the epidemic threshold of the SIS model is the inverse of
the largest eigenvalue of the connectivity matrix [30,31]. Fol-
lowing Refs. [30,31], van Mieghem et al. [34] reported that
the epidemic threshold reduces (increases) as the network be-
comes more assortative (disassortative). Very recently, Morita
proposed a solvable SIS model on correlated networks and
analytically showed that the epidemic threshold decreases
with increasing degree correlation [38]. Although degree cor-
relations discernibly affect various processes and network
characteristics [39–45], synergistic epidemics on networks
with degree correlations have been insufficiently investigated.
Therefore, how a degree-correlated structure affects epidemic
spreading combined with the synergistic effect must be dis-
cussed.

We investigate the effect of degree correlation in syn-
ergistic SIS epidemics on networks. In this study, bimodal
networks where degree correlation is tunable in a wide range
are employed as degree-correlated networks. One advantage
of using bimodal networks is that it allows degree-correlated
synergistic SIS epidemics to be analytically tractable. First,
we develop a mean-field treatment of the synergistic SIS to
elucidate its behaviors qualitatively. By counting the number
of fixed points of the mean-field equations, we show that
unless the synergy is absent or extremely weak, the synergistic
SIS model undergoes a discontinuous transition on correlated
bimodal networks. Regardless of synergy (present or absent),
a positive (negative) degree correlation diminishes (enlarges)
the epidemic threshold of the SIS model. Moreover, on a
strongly assortative bimodal network, the mean-field treat-
ment predicts the emergence of two discontinuous jumps.
Next, we develop approximate master equations (AMEs) for
the synergistic SIS model on correlated bimodal networks and
evaluate them numerically to obtain the quantitative under-
standing. The nontrivial behaviors predicted by the mean-field
treatment are confirmed by the AMEs which agree with cor-
responding Monte Carlo simulations.

The remainder of this paper is organized as follows. Sec-
tion II introduces our synergistic SIS model and a bimodal
network with a tunable degree correlation. The first half of
Sec. III provides the mean-field treatment of the synergistic
SIS model on the correlated bimodal networks, and the second
half develops the AMEs of the model. Section IV is devoted
to a summary.

II. MODEL

This study implements a synergistic SIS model on net-
works. Each node in the SIS model is in the susceptible (S)
state or the infected (I) state. In the initial state, a fraction
ρ of randomly selected nodes (seeds) is infected, and the
other nodes are susceptible. The infection is transmitted to a
susceptible node independently by any of its infected neigh-
boring nodes. A susceptible node i connected to m infected
neighbors becomes infected with probability λmmdt within an
infinitesimally small time interval dt . The synergistic effect is
incorporated into the infection rate λm of a susceptible node,
which is an increasing function of the number m of its infected

neighbors:

λm = λ[1 + α(m − 1)], (1)

where λ is the basic infection rate (in the absence of syner-
gistic effect) and α quantifies the strength of the synergy. An
infected node i recovers to susceptible with probability μdt
within a small time interval dt . Recovery is independent of
the neighboring states. The synergistic effect is constructive
(enhances the disease transmission to susceptible nodes) when
α > 0, and destructive (hinders the disease transmission to
susceptible nodes) when α < 0. In our analysis, we assume
α � 0. When α = 0, the present model reduces to the classical
SIS model. The fraction of infected nodes in the long time
limit (t → ∞), i.e., the steady-state infected density i(∞),
characterizes the steady-state of system. The system is gener-
ally either extinct with i(∞) = 0 or endemic with i(∞) > 0.
In the next section, we discuss the transition between these
two states in the present model.

To understand the impact of the degree-degree correlation
on the synergistic SIS epidemics, the present study employs
bimodal networks which consist of two types of nodes with
different degrees: type-1 nodes with degree k1 and type-2
nodes with degree k2 (� k1) [46,47]. A bimodal network takes
a wide range of mixing pattern from assortative to disassor-
tative, by adjusting the fraction of edges between nodes of
different types. It also allows us to analytically treat the model
under the mean-field approximation owing to their simplicity.

We denote the fractions of type-1 and type-2 nodes by p1

and p2 (= 1 − p1), respectively. The degree distribution P(k)
of this network is given by

P(k) = p1δk,k1 + p2δk,k2 . (2)

Let pxy = P(ky|kx ) be the probability that a randomly chosen
neighbor of a degree-kx node has degree ky (x, y ∈ {1, 2}).
This conditional probability pxy satisfies the following con-
ditions:

p11 + p12 = 1, p21+p22 = 1, and k1 p1 p12 = k2 p2 p21.

(3)
The last condition recognizes that both p1k1 p12 and p2k2 p21

represent the number of edges between type-1 and type-2
nodes per node. The probability Pe(kx, ky) that the two ends
of a randomly chosen edge have degrees kx and ky is given as

Pe(kx, ky) = pxyPe(kx ), (4)

where Pe(kx ) is the probability that one end of a randomly
chosen edge has degree kx, i.e.,

Pe(kx ) = kxP(kx )

〈k〉 , (5)

and 〈k〉 is the average degree, i.e., 〈k〉 = ∑
k kP(k) = p1k1 +

p2k2.
The assortativity coefficient r [27,28], which quantifies the

degree of assortative mixing in a network, is defined as

r =
∑

x exx − ∑
x ernd

xx

1 − ∑
x ernd

xx

, (6)

where exy is the probability that a randomly chosen edge in
a given network connects a node of type x to one of type
y, exy = Pe(kx, ky), and ernd

xy = Pe(kx )Pe(ky) is the probability
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(a) (b)

FIG. 1. (a) Possible region (gray area) of the assortativity coefficient r as a function of 〈k〉 with k1 = 20 and k2 = 5. At 〈k〉 = 8 (indicated
by the red-dotted vertical line), the assortativity coefficient r can range from r = −1 (perfectly disassortative) to r = 1 (perfectly assortative).
(b) Left to right: Examples of a disassortative bimodal network (r = −0.9), a neutral bimodal network (r = 0.0), and an assortative bimodal
network (r = 0.9). All networks have N = 103 nodes and 〈k〉 = 8 (or equivalently p1 = 1 − p2 = 0.2) with k1 = 20 and k2 = 5.

that a randomly chosen edge in the corresponding randomized
network connects a node of type x to one of type y. When r >

0, r = 0, and r < 0, the network is assortative, neutral, and
disassortative, respectively. On correlated bimodal networks,
Eq. (6) (after some transformations) simplifies to

r = 1 − 〈k〉
p1k1

p21. (7)

Another assortativity coefficient rkk′ is the Pearson’s correla-
tion coefficient of nearest degrees:

rkk′ = 4〈kk′〉e − 〈k + k′〉2
e

2〈k2 + k′2〉e − 〈k + k′〉2
e

= 〈kk′〉e − 〈k〉2
e

〈k2〉e − 〈k〉2
e

, (8)

where 〈 f (k, k′)〉e = 1
2

∑
k,k′ f (k, k′)Pe(k, k′). The Pearson’s

coefficient rkk′ measures the degree-degree correlations, but
we note that it gives the assortativity coefficient r of a corre-
lated bimodal network [47].

Figure 1(a) plots the assortativity coefficient r as a func-
tion of 〈k〉 on bimodal networks with k1 = 20 and k2 = 5.
The possible region is the gray region in the plot. The max-
imum assortativity of a bimodal network is always rmax =
1. All nodes connect with nodes of the same type, and
there is no interconnectivity between the type-1 and type-2
nodes. The networks are then separated into two components,
one comprising all type-1 nodes and the other consisting
of all type-2 nodes. Meanwhile, the minimum assortativity
of a bimodal network depends on the degree distribution
(2): rmin = −p1k1/p2k2 for p1k1 < p2k2, rmin = −p2k2/p1k1

for p1k1 > p2k2, and rmin = −1 for p1k1 = p2k2. In the fol-
lowing section, we construct bimodal networks with k1 =
20, k2 = 5, and average degree 〈k〉 = 8. On these networks,
p1k1 = p2k2 so the assortativity r values lie within the
range [−1, 1].

The bimodal network with the desired assortativity r is
computationally generated as follows. Prepare N p1 type-1
nodes and N p2 type-2 nodes (N nodes in total). Assign k1

stubs to each type-1 node and k2 stubs to each type-2 node.
Form an edge by randomly selecting a stub from the type-1
nodes and a stub from the type-2 nodes and connecting them.
Repeat this process Nk2 p2 p21 times, where p21 is determined
from Eq. (7) with a given r (note that Nk2 p2 p21 = Nk1 p1 p12

edges exist between the type-1 and type-2 nodes). Form fur-
ther edges by randomly selecting two residual stubs of the
type-1 and type-2 nodes and connecting them until no stubs

remain. Examples of bimodal networks with r = −0.9, 0.0,
0.9 are displayed in Fig. 1(b). The strongly assortative net-
work with r = 0.9 is divided into two separate communities of
type-1 nodes and type-2 nodes. This case leads to double ex-
plosive spreadings in the number of infected nodes, as shown
in the next section.

III. ANALYSIS

This section investigates the effect of degree correlation
on synergistic epidemics through the correlated bimodal net-
works. To establish a qualitative picture, we first develop a
mean-field approximation of the synergistic SIS on bimodal
networks. In this approximation, we assume that the proba-
bility of a node being infected at time t depends only on its
node type x ∈ {1, 2}. Let ix(t ) and sx(t ) [= 1 − ix(t )] be the
probabilities of a type-x node being infected and susceptible,
respectively, at time t . Noting that a type-x node connects to a
type-y node with probability pxy (x, y ∈ {1, 2}), the probabil-
ity qxdt of a susceptible type-x node becoming infected within
a small interval dt is given by

qxdt =
kx∑

l=0

(
kx

l

)
pl

x1 pkx−l
x2

l∑
m=0

(
l

m

)
im
1 (1 − i1)l−m

×
kx−l∑
n=0

(
kx − l

n

)
in
2(1 − i2)kx−l−n(m + n)λm+ndt . (9)

Here λm+n is the infection rate given by Eq. (1), l is a dummy
variable indicating the number of type-x neighbors, and m
and n are dummy variables indicating the numbers of infected
type-1 and type-2 neighbors, respectively. Inserting Eq. (1)
into Eq. (9), we obtain the reduced form

qx = λkx(px1i1 + px2i2) + αλkx(kx − 1)(px1i1 + px2i2)2.

(10)

From Eq. (10), the time evolutions of infected densities i1(t )
and i2(t ) in the synergistic SIS model are respectively deter-
mined as

d

dt
i1(t ) = −μi1(t ) + q1[1 − i1(t )]

= −μi1 + (1 − i1)[λk1(p11i1 + p12i2)

+αλk1(k1 − 1)(p11i1 + p12i2)2], (11a)
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FIG. 2. Mean-field results of the synergistic SIS model on the neutral bimodal network (r = 0). (a) Steady-state infected density i(∞)
when all nodes are initially infected (ρ = 1) and (b) possible infected densities given by the fixed points of Eq. (11). In (a) and (b), the
red-dotted, green-dashed, and blue-solid lines are the results of α = 5, α = 1, and α = 0, respectively. (c) Steady-state infected density i(∞)
of the synergistic SIS model with α = 5 under different initial conditions: ρ = 1 (black-solid line), ρ = 10−1 (red-dotted line), ρ = 10−2

(green-dashed line), and ρ = 10−4 (blue-dotted-dashed line). The vertical thin line is located at λg = 0.08 above which the system is in the
endemic state.

d

dt
i2(t ) = −μi2(t ) + q2[1 − i2(t )]

= −μi2 + (1 − i2)[λk2(p21i1 + p22i2)

+αλk2(k2 − 1)(p21i1 + p22i2)2]. (11b)

Without loss of generality, we set μ = 1. The total density i(t )
of the infected nodes at time t is given as

i(t ) = p1i1(t ) + p2i2(t ). (12)

The total density s(t ) = p1s1(t ) + p2s2(t ) of susceptible
nodes at time t satisfies the conservation law s(t ) + i(t ) =
1. The SIS process starts from a random initial condition
in which each node is initially infected with probability ρ

and is susceptible otherwise, giving i1(0) = i2(0) = i(0) = ρ.
The system evolves and eventually converges to a steady
state. We are interested in the steady-state infected density
i(∞) [the density of infected nodes i(t ) in the long time
limit t → ∞].

To confirm typical behaviors of the synergistic SIS model,
we first simulate the model on the neutral bimodal network
(r = 0). Figure 2(a) plots the steady-state infected density
i(∞) of the synergistic SIS model on the neutral bimodal
network, determined by the mean-field equation when all
nodes are initially infected (ρ = 1). In the presence of synergy
(α = 1, 5), the present model exhibits an explosive spreading;
i.e., i(∞) jumps discontinuously from i(∞) = 0 to i(∞) 	= 0
at a certain λ. On the other hand, in the absence of syn-
ergy (α = 0), i(∞) increases continuously from zero as λ

increases.
The possible values of i(∞) are obtained by solving

Eq. (11) with di1(t )/dt = di2(t )/dt = 0. Figure 2(b) plots
the possible infected densities when α = 0, 1, and 5. The
plot of the synergistic SIS model with α = 5 (red-dotted line)
presents three regions. In region I (0 < λ < λl ≈ 0.0066), a
unique stable fixed point exists at i(∞) = 0, affirming that
the infection becomes extinct. In region II (λ > λg = 0.08),1

an unstable fixed point and a stable fixed point are found

1From the condition that a trivial fixed point (i∗1, i∗2 ) = (0, 0) be-
comes unstable for λ > λg, λg is a solution of rk1k2λ

2 − (p11k1 +
p22k2)λ + 1 = 0.

at i(∞) = 0 and i(∞) > 0, respectively, meaning that the
system reaches an endemic state. In region III (λl < λ < λg),
Eq. (11) generates three fixed points, two stable points located
at i(∞) = 0 and i(∞) > 0 and one unstable point located
between the stable fixed points. Within this bistable region,
hysteresis emerges [16] and the system reaches an extinct
or endemic state depending on the initial ρ. In the model
with synergy [Fig. 2(c)], i(∞) discontinuously jumps at some
ρ-dependent λ. Explosive spreading and hysteresis are also
observed at α = 1 [green-dashed lines in Figs. 2(a) and 2(b)].
In contrast, i(∞) in the classical SIS model [α = 0; see blue-
solid lines in Figs. 2(a) and 2(b)] shows no discontinuity and
no bistability.

By counting the number of fixed points of Eq. (11), we
determine the phase diagrams of the synergistic SIS model on
the correlated bimodal networks [Figs. 3(a)–3(c)]. The neutral
bimodal network has a phase diagram of two boundaries λl

and λg that separate extinct, bistable, and endemic regions
[Fig. 3(a)]. As α increases from a certain value αc ≈ 0.086
in the mean-field approximation, λl decreases but λg remains
constant (λg = 0.08), informing that the bistable region broad-
ens with increasing synergistic strength α. When α < αc, the
bistable region disappears, and one boundary λl = λg sepa-
rates the extinct and endemic regions.

Let us investigate how the phase diagram in the (λ, α)
plane changes when a network has a degree-correlated struc-
ture. Figures 3(b) and 3(c) are phase diagrams of the strongly
disassortative (r = −0.9) and strongly assortative (r = 0.9)
bimodal networks, respectively. In the disassortative case, the
synergistic SIS model behaves qualitatively the same as in the
neutral case (with three regions separated by two boundaries
λl and λg) although the boundaries shift from the neutral
case. Specifically, λl and λg at any fixed α are larger in the
disassortative case than in the neutral case. In contrast, the
phase diagram of the assortative case qualitatively differs from
the other cases and presents two additional boundaries [dotted
lines in Fig. 3(c)]. Figure 4 shows the α dependence of thresh-
old λl (α, r) divided by λl (α = 0, r), which is the epidemic
threshold of the classical SIS model. The red-dotted, green-
dashed, and blue-solid lines plot the results of r = −0.9, r =
0, and r = 0.9, respectively. As seen from Fig. 4, in each value
of α, the red-dotted (blue-solid) line is the lowest (highest)
in the three lines, which means that the synergy acts better
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-0.9

FIG. 3. Phase diagrams in the (λ, α) plane for the synergistic SIS model on the correlated bimodal networks with (a) r = 0.0, (b) r = −0.9,
and (c) r = 0.9. The lines are for different numbers of fixed points of Eq. (11). For the extinct region, infected density reaches a trivial stable
fixed point, ρ(∞) → 0, irrespective of the value of the initial infected density ρ > 0. The infection becomes extinct or persists in the bistable
region depending on ρ, which means two stable fixed points exist. In the endemic region, the infection persists for ρ > 0. In the bistable region
I, the infection becomes persistent in k1 community [see Fig. 1(b)] or extinct depending on the initial condition. Three stable fixed points
emerge in the tristable region. The behaviors are more complex than in other regions [see Figs. 5(b) and 6(c)]. In the bistable region II, the
infection persists in k2 community depending on the value of ρ, while it always persists in k1 community for ρ > 0.

in networks with positive degree correlations than ones with
negative degree correlations.

Figure 5 shows the steady-state infected density of the
synergistic SIS model on the strongly assortative bimodal
network. As the blue-solid and green-dashed lines in Fig. 5(a)
show, an ordinary epidemic spreading and an explosive
spreading are observed even for a strongly assortative bimodal
network when synergy is absent (α = 0) and is weakly present
(α = 1), respectively. The spreading behavior changes under
strong synergy (α = 5): the present model exhibits a discon-
tinuous jump in i(∞) at small λ and another discontinuous
jump of i(∞) at larger λ [see the red-dotted line in Fig. 5(a)].
These two explosive spreadings are actually discontinuous, as
evidenced by the fixed points of Eq. (11) [Fig. 5(b)].

The two jumps, in the case of α = 5, are attributable to
the splitting of the strongly assortative bimodal network into
two communities (a community of type-1 nodes with a large
degree and a community of of type-2 nodes with a small
degree). When starting with ρ = 1, the explosive spreading
occurs and the infection persists in the community of type-1

FIG. 4. α dependence of threshold λl (α, r) divided by λl (α =
0, r), which is the epidemic threshold of the classical SIS model.
The red-dotted, green-dashed, and blue-solid lines plot the results of
r = −0.9, r = 0, and r = 0.9, respectively. The results are obtained
by the mean-field treatment.

nodes at λ ≈ 0.003. However, the infection rate for the first
explosive spreading is still too small for the infection to persist
in the community of type-2 nodes. At a larger value of λ (λ ≈
0.032), the community of type-2 nodes undergoes another ex-
plosive spreading, and the infection becomes endemic in that
community. Also, whether explosive spreading is triggered in
each community depended on the initial seed fraction. Con-
sequently, the system develops complex hysteresis behavior
[Fig. 5(c)].

Let us now explore the effect of degree correlation on
transitions in the synergistic SIS model. Panels (a), (b), and (c)
in Fig. 6 show the phase diagrams in the (λ, r) plane for the
models with α = 0 (without synergy), α = 1 (weak synergy),
and α = 5 (strong synergy), respectively. In panel (a), the
boundary separating the extinct (gray-colored) and endemic
(white-colored) regions is the well-known epidemic threshold
[8,10]. The epidemic threshold is a decreasing function of
the assortativity r. Infectious diseases invade and persist more
easily on assortative bimodal networks than on disassortative
ones. This tendency has been previously reported [34,38].
In Fig. 6(b), the bistable (green-colored) region appearing
between the extinct and endemic regions is attributable to the
synergistic effect. The extinct-bistable and bistable-endemic
boundaries correspond to λl and λg, respectively, in Fig. 3.
Here λl is the threshold above which infectious diseases per-
sist when all nodes are initially infected, and die out when
an infinitesimal fraction of the nodes are initially infected.
The value of this threshold depends on the strength α of
the synergy. Meanwhile, λg is the threshold above which
infectious diseases invade and persist when an infinitesimal
fraction of nodes are infected. This threshold is independent of
α. As occurs in the classical SIS model, assortativity reduces
the positions of both boundaries (λl and λg). As shown in
Fig. 6(c), the SIS model with strong synergy behaves iden-
tically to that of weak synergy except in the case of strong
positive degree correlation. Two discontinuous jumps appear
only when a strong synergistic effect works on a strongly as-
sortative network (r � 0.8). The hysteresis region associated
with the second explosive spreading [red and blue regions in
Fig. 6(c)] shifts toward a larger λ as r increases. Recall that the
second explosive spreading through the strongly assortative
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FIG. 5. Mean-field results of the synergistic SIS model on the strongly assortative bimodal network (r = 0.9). (a) Steady-state infected
density i(∞) when all nodes are initially infected (ρ = 1). The red-dotted, green-dashed, and blue-solid lines plot the results of α = 5, α = 1,
and α = 0, respectively. (b) Possible infected densities determined from the fixed points of Eq. (11) with α = 5. The black-solid and red-dotted
lines indicate stable and unstable fixed points, respectively. (c) Steady-state infected density i(∞) with α = 5 under different initial conditions:
ρ = 1 (black-solid line), ρ = 10−1 (red-dotted line), ρ = 10−2 (green-dashed line), and ρ = 10−4 (blue-dotted-dashed line).

network occurs in the community of type-2 nodes with small
degree k2 (< k1). As r increases, the communities of type-2
and type-1 nodes (in which epidemics are already prevalent)
become more weakly connected, and the number of infectious
transmissions carried from type-1 nodes decreases. Therefore,
as r increases, a larger infection rate is required for the infec-
tion to penetrate or persist in the community of type-2 nodes.

Finally, we employ the Monte Carlo simulations and ap-
proximate master equations (AMEs) [48–50] in order to
confirm the predicted behaviors from the above-mentioned
mean-field treatment quantitatively since the mean-field treat-
ment is a rough approximation. Gleeson [49] formulated
AMEs of the classical SIS model on a network. The AME
approach accurately describes the synergistic SIS dynamics.
For our purpose, we consider the synergistic SIS model in
infinitely large correlated bimodal networks. We denote by
sx,m(t ) and ix,m(t ) the fractions of susceptible and infected
nodes of type x ∈ {1, 2}, respectively, having m infected
neighbors (by implication, kx − m susceptible neighbors) at
time t . Similarly to [49], we obtain the master equations for
the evolution of each state density in the synergistic SIS model
on the correlated bimodal network. The equations are given by

d

dt
s1,m = −λms1,m + μi1,m − βSI

1,S(k1 − m)s1,m

+βSI
1,S(k1 − m + 1)s1,m−1 − μms1,m

+μ(m + 1)s1,m+1, (13a)

d

dt
s2,m = −λms2,m + μi2,m − βSI

2,S(k2 − m)s2,m

+βSI
2,S(k2 − m + 1)s2,m−1 − μms2,m

+μ(m + 1)s2,m+1, (13b)

d

dt
i1,m = −μi1,m + λms1,m − βSI

1,I(k1 − m)i1,m

+βSI
1,I (k1 − m + 1)i1,m−1 − μmi1,m

+μ(m + 1)i1,m+1, (13c)

d

dt
i2,m = −μi2,m + λms2,m − βSI

2,I(k2 − m)i2,m

+βSI
2,I (k2 − m + 1)i2,m−1 − μmi2,m

+μ(m + 1)i2,m+1. (13d)

Here βSI
x,X represents the rate at which a randomly chosen

susceptible neighbor of a randomly chosen type-x node in
state X (X = S, I) switches its state from S to I. As the
present network has assortative mixing, the probability of
a susceptible neighbor of a type-x node being type y is
pxysy/

∑
y′∈{1,2} pxy′sy′ , where sx is the probability of a type-

x node being susceptible at time t . These time-dependent

(a) (b) (c)

FIG. 6. Phase diagrams in the (λ, r) plane for (a) α = 0, (b) α = 1, and (c) α = 5. The regions are divided in terms of the numbers of
stable and unstable fixed points of Eq. (11) (indicated by the first and second numbers within the square brackets, respectively).
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FIG. 7. Comparisons of (quasi-)steady-state infected densities i(∞) determined in the AME calculations (lines) and Monte Carlo simula-
tions (symbols) in the synergistic SIS model on correlated bimodal networks with (a) α = 0, (b) α = 1, and (c) α = 5. The red-dotted lines
(red circles), green-dashed lines (green squares), and blue-solid lines (blue triangles) represent the AME (Monte Carlo) results of r = 0.9,
r = 0, and r = −0.9, respectively. The initial condition is set to ρ = 1.

coefficients are as follows:

βSI
x,S = 1∑

y′∈{1,2} pxy′sy′

∑
y∈{1,2}

pxysyβ
SS
y and

βSI
x,I = 1∑

y′∈{1,2} pxy′sy′

∑
y∈{1,2}

pxysyβ
SI
y , (14)

where βSS
y (βSI

y ) can be approximated as the rate at which an
S-S (S-I) edge whose one end is type y is changed to an S-I
(I-I) edge as

βSS
y =

∑ky

m=0 λmm(ky − m)sy,m∑ky

m=0(ky − m)sy,m

and

βSI
y =

∑ky

m=0 λmm2sy,m∑ky

m=0 msy,m

. (15)

Evaluating Eqs. (13) in the initial state with seed fraction ρ,
given by

sx,m(0) = (1 − ρ)

(
kx

m

)
ρm(1 − ρ)kx−m and

ix,m(0) = ρ

(
kx

m

)
ρm(1 − ρ)kx−m, (16)

for x ∈ {1, 2}, the susceptible and infected densities of each
node type at time t are respectively given by

s1(t ) =
k1∑

m=0

s1,m(t ), i1(t ) =
k1∑

m=0

i1,m(t ),

s2(t ) =
k2∑

m=0

s2,m(t ), i2(t ) =
k2∑

m=0

i2,m(t ). (17)

Figure 7 compares the i(∞)’s obtained by the AME and
Monte Carlo simulations of the synergistic SIS model on
the correlated bimodal networks with (a) α = 0, (b) α = 1,
and (c) α = 5. In each panel, we employ correlated bimodal
networks with r = 0.9 (red-dotted line), r = 0 (green-dashed
line), and r = −0.9 (blue-solid line). All simulations are per-
formed on correlated bimodal networks with N = 104. The
Monte Carlo simulations begin with all nodes being infected
(ρ = 1 at time t = 0) and continued until no infected nodes
remains or until t reaches tmax = 102. For each parameter
setting, we obtain i(tmax) averaged over 100 runs. We treat the
simulation results of i(tmax) (symbols) as the (quasi-)steady
state infected density i(∞). As shown in panels (a)–(c) of
Fig. 7, the results of Monte Carlo simulations well agree
with those of the AME approach, confirming that the AMEs
quantitatively describe the synergistic SIS model on the cor-
related bimodal networks. Comparing Figs. 2, 5, and 7, we
also confirm that the mean-field prediction reproduces the
continuity/discontinuity and other qualitative characters of

(a) (b) (c)

FIG. 8. Color maps of i(∞) in the (λ, r) plane for α = 5. The color-coded values represent (a) i(a), the infected density i(∞) when ρ = 1;
(b) i(b), the infected density i(∞) when ρ = 10−5; and (c) i(a) − i(b). Here i(∞) is evaluated from the AMEs.
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FIG. 9. Monte Carlo results for the synergistic SIS model with synergy strength α = 5 on (a) scale-free networks and (b) Erdős-Rényi
networks with/without degree correlation. Scale-free networks for panel (a) have the degree distribution P(k) ∼ k−γ with the degree exponent
γ = 3, the minimum degree kmin = 3, the maximum degree kmax = √

N , and the number of nodes N = 104; Erdős-Rényi networks for panel
(b) have the Poisson degree distribution with 〈k〉 = 5 and N = 104 nodes. To realize a correlated network, we first prepare an uncorrelated
network and rewire edges based on the local-optimal algorithm [51]. Using the algorithm, we generate assortative scale-free networks with
r = 0.9 and disassortative ones rewired 103N times for panel (a), and assortative Erdős-Rényi networks with r = 0.9 and disassortative ones
with r = −0.9 for panel (b). The red-dotted, green-dashed, and blue-solid lines represent the steady-state infected density i(∞) for the case of
assortative, uncorrelated, and disassortative networks, respectively when ρ = 1. The open black circles in panel (a) represent the result for the
case of uncorrelated scale-free networks with the random initial configuration of ρ = 10−1; those in panel (b) represent the result for the case
of assortative Erdős-Rényi networks with the initial state where nodes with k = 2, 3, and 4 are infected and other nodes are susceptible.

the synergistic epidemics, although the results quantitatively
deviate from the Monte Carlo and AME results. Both the
Monte Carlo simulations and AME calculations predict two
discontinuous jumps when a strong synergistic effect works
on a strongly assortative network [red-solid line in Fig. 7(c)],
as earlier predicted by the mean-field analysis. The AMEs also
predict complex hysteresis behavior in correlated bimodal
networks (Fig. 8). Panels (a) and (b) of Fig. 8 show the
steady-state infected density i(∞) in the (λ, r) plane when
the synergy strength is α = 5 and the initial conditions are
ρ = 1 and ρ = 10−5, respectively, and Fig. 8(c) shows their
difference. The non-blue areas in Fig. 8(c) signify that i(∞)
depends on ρ, confirming the emergence of hysteresis.

IV. SUMMARY

We have investigated the effect of degree correlation on
spreading behaviors of synergistic epidemics through bimodal
networks consisting of two node types with different degrees.
We have developed a mean-field treatment for the synergistic
SIS model on such bimodal networks with a degree corre-
lation. Regardless of the synergy effect (absent or present),
a positive and negative degree correlation in the SIS model
diminishes and enlarges the epidemic threshold, respectively,
affirming that infectious diseases invade and persist more
easily on assortative networks than disassortative ones. The
synergistic SIS model undergoes a continuous transition when
the synergy effect is absent or extremely weak and a discon-
tinuous transition otherwise. On strongly assortative bimodal
networks, and when the synergy effect is sufficiently strong,
the SIS model exhibits two discontinuous jumps (explo-
sive spreading events). Nontrivial behaviors predicted by the
mean-field treatment have been confirmed through extensive
simulations and AMEs.

Two discontinuous jumps would be observed even though
a network is degree uncorrelated. For example, suppose that
the type-1 and type-2 nodes in a bimodal network have the
same degree, k1 = k2, with keeping node type of each node
assigned. As the assortativity coefficient r for node types
of two ends of edges increases, the network is divided into
two communities with the same degree. In a random initial
configuration with i1(0) = i2(0) = ρ, at most, one explosive
spreading can occur for any synergy strength and assortativity.
In contrast, when the initial state is seeded within only one
community [e.g., i1(0) = ρ/p1 (0 < ρ � p1) and i2(0) = 0],
the strong synergistic effect and distinct community struc-
ture induce two explosive spreadings. This is because the
infection rate required for the persistence of epidemics is
smaller than the one required for the invasion in the present
model.

In this work, we have concentrated on a correlated bi-
modal network to investigate the effect of degree-correlated
structure analytically. Empirical networks, in reality, are
more heterogeneous. We briefly discuss the impact of degree
heterogeneity on synergistic epidemic spreadings. Figure 9(a)
shows the Monte Carlo results for the synergistic SIS model
on scale-free networks with degree exponent γ = 3. For un-
correlated scale-free networks, both discontinuous jump and
hysteresis seem to be suppressed due to the degree hetero-
geneity (green-dashed line and open black circles). The data
also show that the steady-state infected density i(∞) contin-
uously increases from zero to a nonzero value, irrespective
of degree correlation. For strongly assortative networks (red-
dotted line) and strongly disassortative networks (blue-solid
line), however, the systems experience multiple discontinu-
ous jumps of i(∞) at larger λ. Strongly assortative networks
consist of one comparatively heterogeneous group (commu-
nity) of large degree nodes and homogeneous groups of same
degree nodes; strongly disassortative networks consist of one
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heterogeneous group of large and small degree nodes and one
comparatively homogeneous group of similar degree nodes
(whose degrees are neither too large nor too small) [52].
For both cases of assortative and disassortative networks, an
epidemic is prevalent in the heterogeneous group containing
large degree nodes by small infectivity, while the infectivity
is too small for the infection to persist in other groups not
containing large degree nodes. It is natural to consider that
multiple jumps of i(∞) at larger infection rates reflect an
explosive spreading occurring within each of homogeneous
groups. Figure 9(b) shows the Monte Carlo results for the syn-
ergistic SIS model on the Erdős-Rényi networks with/without
degree correlation. A discontinuous jump is observed for
uncorrelated networks (green-dashed line) and disassortative
networks (blue-solid line) in that degree variability is small.
The data for assortative Erdős-Rényi networks of ρ = 1 seem
not to show a discontinuous jump of i(∞) (red-dotted line),
whereas we confirm that a hysteresis behavior emerges when
the initial state is adjusted (open black circles). A further
study on synergistic epidemics on correlated networks having
degree inhomogeneity should be needed in that spreading

behaviors depend crucially and sensitively on the initial state
of the system.

The epidemic model in the present study is as simple as
the classical SIS model and does not capture factual situa-
tions like the superspreading events of COVID-19. A recent
paper proposed a model of superspreading in which an in-
fectiousness heterogeneity is incorporated and clarified that
the reduction in contact numbers is more important than that
in contact time to mitigate epidemics with superspreaders
[53]. Future works are left to learn how superspread-
ers act in synergistic epidemics and how the number of
contacts affects synergistic spreadings in degree-correlated
networks.
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