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Diffusion dynamics of competing information on networks
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Information diffusion on social networks has been described as a collective outcome of threshold behaviors in
the framework of threshold models. However, since the existing models do not take into account individuals’
optimization problems, it remains an open question what dynamics emerge in the diffusion process when
individuals face multiple (and possibly incompatible) information sources. Here, we develop a microfounded
general threshold model that enables us to analyze the collective dynamics of individual behavior in the
propagation of multiple information sources. The analysis reveals that the virality of competing information
sources is fundamentally indeterminate. When individuals maximize coordination with neighbors, the diffusion
process is described as a saddle path, thereby leading to unpredictable symmetry breaking. When individuals’
choices are irreversible, there is a continuum of stable equilibria where a certain degree of social polarization
takes place by chance.
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I. INTRODUCTION

New technologies, rumors, and political opinions occasion-
ally spread globally through social ties among individuals.
The dynamical processes of complex contagions have been
extensively studied within the framework of threshold models
to understand whether and to what extent a “social meme”
(e.g., a particular technology, opinion, etc.) spreads on a social
network [1–9].

However, it is common in reality that multiple memes
compete with each other, and the popularity of one meme
often affects the virality of another; examples include “format
wars” (e.g., VHS vs Betamax, Blu-ray disc vs HD DVD,
etc.) [10,11], political campaigns (e.g., Democrat vs Re-
publican) [12–17], and vaccination behavior (i.e., pro- and
anti-vaccination) [18–20]. In some cases, only one meme
survives (e.g., VHS and Blu-ray discs), while in other cases,
multiple memes coexist persistently. The interplay between
competing social memes that takes place at both local and
global scales thus plays a key role in understanding actual dif-
fusion dynamics. In the context of simple contagion, in which
infection probability is given by a constant, the spreading
dynamics of two competing viruses or pathogens have been
well studied [21–23]. In contrast, in the literature of complex
social contagion, it is still unknown when and how individuals
collectively spread multiple memes as a result of optimization
behavior.
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Here, we develop a generalized threshold model of global
cascades that allows us to describe the propagation dynam-
ics of competing memes. Our model is “microfounded” in
the sense that individual behavior is optimized; individuals
maximize coordination with their neighbors. In this model,
therefore, any stationary state of the dynamical process, if it
exists, is interpreted as a collective outcome of individuals’
strategic choices, namely, a Nash equilibrium [24–28].

Game theorists have long studied diffusion on networks
that arises from strategic interactions between individuals
connected by social ties [26,29–32]. A pioneering work by
Morris [24] studied a class of 2 × 2 coordination games on
regular graphs and derived a contagion threshold of the payoff
parameter. In the literature on network games [26,29], how-
ever, most of the studies focus on the equilibrium property
rather than the dynamics of diffusion [25,33,34]. In studies
of complex contagion in network science, on the other hand,
individual behavior is often captured by a presumed thresh-
old rule [1,35]. Unless individuals’ optimization is taken into
account, however, any extension of the threshold rule would
be inevitably arbitrarily since there is no fundamental prin-
ciple behind the rule. In the current work, we provide a
framework in which individual behavior is disciplined through
coordination games. Based on the game-theoretic approach,
we endogenously obtain generalized threshold rules that in-
dividuals use to decide whether to accept memes given the
influence from others.

II. A THRESHOLD MODEL OF CASCADES WITH
COMPETING MEMES

Recently, it was shown that the (fractional) threshold
rule used in the Watts cascade model [1] and the opti-
mal strategy in a model of coordination games on networks
[24,26,29] are functionally equivalent [27]. This indicates that
a global cascade may be interpreted as a collective outcome of
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TABLE I. Payoff matrix of a coordination game. We assume
a, b > c > 0. The two memes are complementary (exclusive) when
c̃ < c (c̃ > c).

0 a b ab

0 0,0 0,−c 0, −c 0, −2c̃
a −c, 0 a − c, a − c −c, −c a − c, a − 2c̃
b −c, 0 −c, −c b − c, b − c b − c, b − 2c̃
ab −2c̃, 0 a − 2c̃, a − c b − 2c̃, b − c a + b − 2c̃

a + b − 2c̃

individuals’ optimization behaviors that maximizes their pay-
offs from coordination. However, while this equivalence
provides a microfoundation for the Watts threshold model, the
argument is limited to the case where individuals face a binary
choice problem (e.g., cooperate or do not cooperate, be active
or inactive). In this section, we aim to generalize the binary
threshold rule by introducing nonbinary coordination games.

A. Coordination game with two types of social memes

We consider two types of social memes, labeled a and
b. The memes can be complementary, exclusive, or neutral.
Each individual decides whether to accept a or b or both
(called the bilingual option, denoted by ab), referring to the
popularity of each meme among local neighbors [28,36]. Let
S ≡ {0, a, b, ab} be the set of pure strategies where s = 0
indicates the status quo (i.e., neither meme is accepted). In an
infinitesimal time interval dt , randomly selected individuals
update their strategies (i.e., asynchronous update [3,37]) to
maximize the payoffs of coordination games. The payoff ma-
trix for a bilateral coordination game is presented in Table I.

Each element of the payoff matrix shows the return for
the corresponding strategy pair. For instance, the pair (−c, 0)
in the (2, 1)th element of the matrix indicates that a player
accepting meme a receives the payoff −c while the other
player receives 0 by staying in the status quo. a and b are the
benefits of coordinating with neighbors in adopting strategies
a and b, respectively, and c denotes the fundamental cost of
accepting a meme, where we assume that a, b > c > 0. For
example, two close friends with PCs will be better off using
a common operating system rather than different ones. Here,
a, b > c indicates that the net benefit of coordination (i.e.,
a − c or b − c) is always positive, whereas the net benefit of
failing to cooperate (i.e., −c) is negative; −2c̃ in the bottom
row represents the fundamental cost of adopting the bilingual
strategy ab. c̃ may be larger or less than c, depending on
the extent to which the two memes are complementary or
exclusive. If c̃ � c, then ab will no longer be a plausible
option since the two memes are prohibitively exclusive (e.g.,
Democrat vs Republican, Windows vs Mac). In contrast, when
c̃ is low enough, ab would be preferred to a and b because
accepting a meme reduces the cost of accepting the other (e.g.,
MacBook and iPhone).

Neighbors’ states are represented by the vector m =
(m0, ma, mb, mab)�, where ms denotes the number of neigh-
bors adopting strategy s ∈ S. Note that we have

∑
s∈S ms = k

for nodes with degree k. The total payoff of a player having k
neighbors is given by the sum of the payoffs obtained by play-

ing k independent bilateral games [24–26]. We assume that
the network has a locally treelike structure and that neighbors
of a player are not directly connected. Therefore, in playing a
game with a particular neighbor, the neighbor does not have
an incentive to cooperate with other neighbors. Let v(s, m)
denote the total payoffs of a player adopting strategy s ∈ S
and facing the neighbors’ strategy profile m. We have

v(0, m) = 0, (1)

v(a, m) = −ck + aMa, (2)

v(b, m) = −ck + bMb, (3)

v(ab, m) = −2c̃k + aMa + bMb, (4)

where Ma ≡ ma + mab (Mb ≡ mb + mab) denotes the total
number of neighbors accepting meme a (b), including bilin-
guals. The optimal strategy s∗ is then expressed as a function
of m:

s∗(m) = arg max
s∈S

v(s, m). (5)

In a time interval dt , a randomly chosen fraction dt of N
individuals update their strategies following Eq. (5). It is
assumed that the initial states are kept unchanged for nodes
with k = 0 since isolated nodes do not have a chance to play
the coordination game.

B. Threshold rule as the optimal strategy in coordination games

Based on the payoffs of each strategy (1)–(4), an individual
optimally selects a strategy s∗ such that v(s∗, m) � v(s′, m)
for all s′.

(i) s∗ = a if va > v0, va > vb, and va > vab:

−ck + aMa > 0, (6)

−ck + aMa > −ck + bMb, (7)

−ck + aMa > −2c̃k + aMa + bMb, (8)

where vs is shorthand for v(s, m). In the same manner, we
have the following conditions for s∗ = b and ab.

(ii) s∗ = b if vb > v0, vb > va, and vb > vab:

−ck + bMb > 0, (9)

−ck + bMb > −ck + aMa, (10)

−ck + bMb > −2c̃k + aMa + bMb. (11)

(iii) s∗ = ab if vab > v0, vab > va, and vab > vb:

−2c̃k + aMa + bMb > 0, (12)

−2c̃k + aMa + bMb > −ck + aMa, (13)

−2c̃k + aMa + bMb > −ck + bMb. (14)

When there are “tie” strategies in the simulation (i.e., vs =
vs′ for s �= s′), we randomly select a strategy among the tie
strategies.
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FIG. 1. Schematic of strategic choice in the presence of multiple
social memes.

Given the above conditions, the optimal strategy s∗ for each
individual can be written as the following threshold rules:

s∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a if Ma
k > θa,

Mb
k < (1 − λ)θb, and Ma

Mb
> θa

θb
,

b if Mb
k > θb,

Ma
k < (1 − λ)θa, and Ma

Mb
< θa

θb
,

ab if Ma
k > (1 − λ)θa,

Mb
k > (1 − λ)θb,

and θb
Ma
k + θa

Mb
k > θaθb(2 − λ),

0 otherwise,
(15)

where θa ≡ c/a ∈ (0, 1), θb ≡ c/b ∈ (0, 1), and λ ≡ 2(1 −
c̃/c). λ captures the degree of complementarity (or compat-
ibility) between a and b where λ > 0 (λ < 0) indicates that
the two memes are complementary (exclusive). When λ = 0,
they are mutually independent. In the analysis, we focus on a
reasonable range of parameter values such that Nash equilibria
of bilateral games are given by (0, 0), (a, a), (b, b), and
(ab, ab). In fact, this assumption sets natural constraints for
the threshold values: λ < 1, (1 − λ)θa < 1, and (1 − λ)θb <

1 (see Appendix A for a derivation). Note that even if the
neighborhood profile is the same, the optimal strategy may
differ depending on λ (Fig. 1). If Mb = 0 (Ma = 0), then
the threshold rules reduce to the single threshold condition
appearing in the binary-state cascade model of Watts [1]:
ma/k > θa (mb/k > θb).

C. Simulation procedure

The procedure of numerical simulations is as follows:
(1) For given z and N , generate an Erdős-Rényi network

with a common connecting probability z/(N − 1).
(2) Select seed nodes at random so that there are 	ρa(0)N


nodes adopting strategy a and 	ρb(0)N
 nodes adopting strat-
egy b. The other nodes employ strategy 0 as the status quo.

(3) Choose a fraction dt ∈ (0, 1) of nodes uniformly
at random and update their strategies to maximize their
payoffs v.

(4) Repeat step 3 until convergence, where no nodes can be
better off by changing their strategies.

(5) Repeat steps 1–4.
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FIG. 2. Phase diagram of equilibrium strategies. Relative thresh-
old θa/θb vs (a) mean degree z (λ = 0) and (b) complementarity λ

(z = 4). Each colored area denotes a region within which a particular
strategy is dominant (i.e., ρs > 0.5) in the AME method based on
Erdős-Rényi networks. Black dotted, blue dotted, and red solid lines
respectively indicate the boundaries of the dominant regions for
a, b, and ab obtained by simulation. “n.a.” (shaded in dark gray)
denotes the region in which the parameter constraints are not satis-
fied. (c) Equilibrium share of each strategy obtained by simulation
(symbols) and the AME method (lines). There are three phases of
social contagion, labeled phases i, ii, and iii, depending on λ. We
set a = 4, b = 4 [in (c)], c = 1, and N = 104. The average is taken
over 100 runs with initial seed fraction ρa(0) = ρb(0) = 0.03 and
ρab(0) = 0.

Note that we implement an asynchronous update in step 3,
where a randomly chosen fraction dt of nodes update their
strategies in an infinitesimally small interval dt [3,38]. We set
dt = 0.01 in all simulations.

III. RESULTS

A. Approximate master equation solution

In the present model, any of the three strategies {a, b, ab}
may spread globally, and the shares of each strategy in the
stationary state, denoted by {ρs}, generally vary depending
on the payoff parameters and network structure. This type
of spreading process is considered a multistate dynamical
process, for which the approximate master equation (AME)
method has been used to analytically calculate the dynamical
paths and the stationary state [3,28,38,39] (see Appendix B
for a description of the AME; the MATLAB code is based on
[40]).

Depending on the inherent attractiveness (i.e., a and b), the
degree of complementarity λ, and the mean degree z, there
are three phases related to which strategy is dominant in equi-
librium (Figs. 2(a) and 2(b) and Fig. S1 in the Supplemental
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FIG. 3. Ternary plot for the theoretical and simulated values of (ρa, ρb, ρab) in each phase. Phases i–iii annotated at the top are defined
based on the AME solution [see Fig. 2(c)]. The size of the light-blue circles represents the simulated frequency, while black crosses denote the
AME solution. We exclude simulation runs that did not reach convergence by t = 300. See the caption of Fig. 2 for the parameter values.

Material [41]). We observe that the AME solutions (shaded)
well predict the corresponding simulation results (lines). It
should be noted that the cascade region [1,2] within which we
have 1 − ρ0 � 0 is mostly covered by the combined dom-
inant region (Fig. S2 [41]), suggesting that a strategy often
dominates the others once a global cascade occurs.

While it is natural that the attractiveness parameters a
and b explain the differences in popularity between a and
b [Figs. 2(a) and 2(b)], the following question still remains:
What happens when the two memes are equally attractive
(i.e., a = b) but mutually exclusive? When a = b, we always
have ρa = ρb in the AME solution since there is no intrin-
sic difference between the two memes [black solid line in
Fig. 2(c)].

We find that there are three phases in the AME so-
lutions for the case of a = b: (i) ρa, ρb > 0 and ρab =
0, (ii) ρa, ρb, ρab > 0, and (iii) ρa = ρb = 0 and ρab > 0
[Fig. 2(c)]. It is important to note that while the stationary
values of ρa and ρb are nearly 0.5 in phase i (i.e., λ < −1),
this does not indicate that each of strategies a and b is adopted
by 50% of the population. The average values for simulated
ρa and ρb are nearly 0.5 because the chance of a or b being
a dominant strategy (i.e., ρa ≈ 1 or ρb ≈ 1) is close to 0.5
[Fig. 3(a)]. That is, the popularity of each meme is either
0% or 100% in each simulation [blue circles in the ternary
plot in Fig. 3(a)], although the fractions ρa and ρb averaged
over simulation runs are both 0.5, which corresponds to the
AME value [black cross in Fig. 3(a)]. This indicates that there
is no diversity of memes (i.e., the two memes do not coex-
ist) in a stationary state of a spreading process occurring in
phase i.

In phase ii (i.e., −1 � λ � −0.7), we have a different set of
diffused strategies: {a, ab}, {b, ab}, and {ab} [Fig. 3(b)]. The

memes are neither too complementary nor too exclusive, and
this is the only phase in which strategy diversification may be
observed. The AME solution indicates that ρa and ρb are less
than 0.5 [Fig. 2(c)], but again, strategies a and b do not coexist
in simulation, resulting in a deviation from the theoretical av-
erage [Fig. 3(b)]. In phase iii (i.e., λ > −0.7), the two memes
are not strongly mutually exclusive, so that the only strategy
adopted in the stationary state is ab [Fig. 3(c)]. Since there
is only one strategy that prevails in the network, the model is
essentially the same as the binary-state cascade model, where
the theoretical average is equal to the simulated popularity
of ab in each simulation. These observations suggest that the
intrinsic symmetry between the two types of memes leads to a
symmetric cascade only in phase iii, while symmetry is likely
to be broken in the other phases.

B. Mechanics of symmetry breaking

To understand the fundamental mechanics behind the ob-
served symmetry breaking, we draw phase diagrams based
on a mean-field (MF) approximation using random z-regular
networks (i.e., the degree distribution pk = δkz), for which
it is assumed that the states of neighbors are independent
of each other [7]. In the MF method, the evolution of ρs

for each s ∈ S is described by the following differential
equation [3,38,39]:

ρ̇s = −
∑
s′ �=s

ρs
∑
|m|=z

Mz(m, ρ)Fm(s → s′)

+
∑
s′ �=s

ρs′ ∑
|m|=z

Mz(m, ρ)Fm(s′ → s), (16)
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FIG. 4. Phase diagram of the propagation process on four-regular random graphs. The initial state [ρa(0) = ρb(0) = 0.01, ρab(0) = 0] is
indicated by a red circle. Point A is a saddle equilibrium, and examples of the simulated path are shown at the bottom. The panels show typical
behaviors in (a) phase i, (b) phase ii, and (c) phase iii. We set a = b = 4, c = 1.

where ρ ≡ (ρ0, ρa, ρb, ρab)� and Mz(m, ρ) is the multino-
mial distribution given by

Mz(m, ρ) ≡ z!

m0!ma!mb!mab!
(ρ0)m0 (ρa)ma (ρb)mb (ρab)mab .

(17)

Fm(s → s′) denotes the probability that individuals change
their strategy from s to s′ for a given neighbor’s profile m:
Fm(s → s′) = 1 if s′ = s∗(m) and 0 otherwise. The first term
in Eq. (16) captures the rate at which a node changes its
strategy from s to s′ ( �= s), and the second term denotes the
rate at which a node newly employs strategy s. Note that this
is a system of four differential equations (|S| = 4), but it is
sufficient to use three of them because there is an obvious
constraint

∑
s∈S ρs = 1.

Figure 4 presents phase diagrams in the ρa-ρb space for
three different values of λ, representing phases i–iii defined
above. Note that the theoretical equilibrium (indicated by
point A) is saddle path stable in all three cases, but the
diagrams differ in the size of the region in which ˙ρab > 0
(shaded in gray). When the two memes are highly exclusive
[Fig. 4(a)], there is no chance for strategy ab to gain popular-
ity, so ˙ρab = 0 for any combination of (ρa, ρb). In simulations
on finite-size networks, the saddle-path equilibrium indicated
by the MF and AME methods, (ρa, ρb) = (0.5, 0.5), is not
practically reachable; simulated paths of (ρa, ρb) converge
to (0,1) or (1,0) once they deviate from the stable balanced
path: ρa(t ) = ρb(t ) for all t � 0 [red dotted line in Fig. 4(a),
bottom].

In principle, the symmetric MF or AME solution would
correspond to the “simulated” equilibrium in the limit of
large networks with no structural fluctuations. However, any
synthetically generated networks are generally not free from
finite-size effects and fluctuations, so it is not guaranteed
that ρa(t ) = ρb(t ) for all t � 0 in simulations. Histograms of
simulated values of ρa − ρb at a certain point in time, denoted

by T , reveal the effect of network size on the likelihood
of symmetry breaking (Fig. 5). When N is relatively small,
symmetry breaking occurs in the early stage of spreading pro-
cess, so we often have ρa(T ) = 1 or ρb(T ) = 1 at T = 100
[Figs. 5(a) and 5(b)]. In contrast, when N = 105 or larger, it
is much less likely that either of the strategies is adopted by
most of the population at T = 100, indicating that the intrinsic
symmetry of the memes is more likely to be maintained for
larger networks [Figs. 5(c) and 5(d)].

In phase ii, there arises an area in which ˙ρab > 0
[Fig. 4(b)]. This suggests that the feasible region of (ρa, ρb)
[i.e., {(ρa, ρb) : ρa � 0, ρb � 0, ρa + ρb + ρab � 1}] grad-
ually shrinks as ρab increases as long as the current state of

FIG. 5. Size effect on the frequency of symmetry breaking. a =
b = 1, c = 1, λ = −1.5, z = 4, ρa(0) = ρb(0) = 0.1, ρab(0) = 0,
and T = 100. We run 1000 simulations for each network size.
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TABLE II. Elements of the irreversible response function F̃m(s → s
′
). The unconstrained response function Fm is defined by Eq. (B3).

Rows and columns denote the current states (i.e., s) and the next states (i.e., s
′
), respectively.

s′

s 0 a b ab

0 Fm(0 → 0) Fm(0 → a) Fm(0 → b) Fm(0 → ab)
a (1 − q)Fm(a → 0) 1 − ∑

s �=a F̃m(a → s) (1 − q)Fm(a → b) Fm(a → ab)
b (1 − q)Fm(b → 0) (1 − q)Fm(b → a) 1 − ∑

s �=b F̃m(b → s) Fm(b → ab)
ab (1 − q)Fm(ab → 0) (1 − q)Fm(ab → a) (1 − q)Fm(ab → b) 1 − ∑

s �=ab F̃m(ab → s)

(ρa, ρb) is in the gray-shaded area. In this phase, symmetry
breaking may occur but does not always do so [Fig. 4(b),
bottom]. In the latter case, both ρa and ρb initially increase
and then begin to decrease as the feasible region shrinks in
accordance with a rise in ρab. In phase iii, we always have

˙ρab > 0 [Fig. 4(c)]. This indicates that any path of (ρa, ρb)
will move toward the origin at some point in time as ρab

increases. Therefore, ab will be the only diffused strategy
in equilibrium. The time to reach convergence in simulated
cascades follows a heavy-tailed distribution when symmetry
breaking always occurs (i.e., in phase i), while the spread-
ing process promptly reaches equilibrium in the other phases
(Fig. S3 [41]).

C. Irreversibility of individual behavior

In the model shown above, individuals’ choices are fully
reversible, and past strategies do not affect the current strate-
gic choice [Eq. (5)]. This is the reason why either of the social
memes could dominate the other and there is no possibility
of polarization: ρa � 0, ρb � 0, and ρab = 0 [15,16]. Such
reversible decision-making, however, would be practically in-
feasible when switching costs are high (e.g., switching from
Mac to Windows). To investigate irreversible dynamics, we
introduce a parameter q ∈ [0, 1] representing the degree of
irreversibility; q = 0 and 1 respectively correspond to the
fully reversible and irreversible cases. When q = 1, only the
following five switching patterns are allowed: 0 → a, 0 → b,
0 → ab, a → ab, and b → ab. Thus, once a meme is ac-
cepted, there is no possibility that the meme will be abandoned
(i.e., a � 0, a � b, ab � b, etc.).

The irreversibility parameter q ∈ [0, 1] denotes the rate at
which a strategy will not be reverted. The response func-
tion with irreversibility constraints, denoted by F̃m(s → s′),
is given in Table II.

For nodes with s = 0, there is no constraint in updating
their strategy. For nodes with s = a (s = b), shifting to s′ = b
(s′ = a) or s′ = 0 is restricted, for which the transition prob-
ability is multiplied by a factor of (1 − q). For nodes with
s = ab, any state change is restricted. Note that the uncon-
strained response function is recovered if q = 0.

Let Gs be a function that represents the right-hand side of
the MF equation (16) [i.e., ρ̇s = Gs(ρ)]. A stable (unstable)
equilibrium is defined as an equilibrium at which ρ̇s = 0
for all s ∈ S and the maximum eigenvalue of the Jacobian
of vector G = (G0, Ga, Gb, Gab)� is nonpositive (positive).
We find that introducing a partial irreversibility (i.e., q < 1)
does not qualitatively change the dynamical process; there

are still two symmetric unstable equilibria, (ρa, ρb) = (0, 0)
and (0.5,0.5) [red circles in Fig. 6(a)], and two asymmetric
stable equilibria, (0,1) and (1,0) [blue circles in Fig. 6(a)].
Symmetry breaking always occurs in phase i as in the fully
reversible model [Fig. 6(c)]. Note, however, that for q < 1, the
greater the degree of irreversibility q is, the longer the time to
convergence is (Fig. S4 [41]).

In phase i, where ρab(t ) = 0 for all t , the saddle equilib-
rium disappears when the strategies are fully irreversible (i.e.,
q = 1). Instead, there arises a continuum of stable equilibria
(ρa, ρb) such that ρa + ρb = 1 [Fig. 6(b)]. This indicates that
equilibrium is indeterminate in irreversible dynamics even in
the limit of large networks. Indeed, the simulated equilibria
are continuously distributed, and polarization occurs at each
one [i.e., ρa � 0, ρb � 0, and ρab = 0; Fig. 6(d)]. This is
intuitive given that the state-transition process is no longer
ergodic when q = 1. Due to the irreversibility, the time to

FIG. 6. Equilibrium indeterminacy due to irreversibility. Phase
diagrams for the (a) partially irreversible (q = 0.8) and (b) fully
irreversible (q = 1) cases. Histograms of ρa − ρb for (c) q = 0.8 and
(d) q = 1. The phase diagrams are obtained using the MF method
based on four-regular random graphs, while the histograms at the
stationary state are obtained from simulations using Erdős-Rényi
graphs with z = 4. In (a) and (b), blue and red circles respectively
denote stable and unstable equilibria at which ρ̇s = 0 ∀s ∈ S. We
run simulations 1000 times with ρa(0) = ρb(0) = 0.01, ρab(0) = 0,
a = b = 4, c = 1, and λ = −2 in all panels.
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convergence is minimized at q = 1 (Fig. S4 [41]). We also
find that in phases ii and iii, the bilingual strategy ab promptly
becomes the dominant strategy when q = 1 (Figs. S5 and S6
[41]).

IV. DISCUSSION

We presented a generalized model of complex social con-
tagion with multiple social memes based on a game-theoretic
foundation. The model explains how symmetry breaking and
polarization occur in the spread of competing information
on networks. While the “average” popularity of each meme
can be well approximated by the AME and MF methods,
averaging is not appropriate when symmetry is broken in the
actual spreading process.

There are some issues to be addressed in future research.
First, the proposed model based on coordination games should
be regarded as an example of possible extensions of the
cascade model for which individual behavior is rational-
ized. While the current work provides a microfoundation of
the Watts threshold model from a game-theoretic approach,
different specifications of strategic behavior could lead to
different forms of threshold rules.

Second, we did not consider any nonrandom network struc-
ture, such as the community structure. The absence of the
community structure might be a reason why polarization does
not occur in the case of reversible strategies. Third, unlike
the binary-state cascade models, it is difficult to obtain an-
alytical conditions under which a global cascade can occur.
We exploited the power of AMEs to show the boundary of
the cascade region, but a simple analytical cascade condition
would be useful to predict global cascades.

ACKNOWLEDGMENTS

I acknowledge financial support from JSPS KAKENHI
Grants No. 19H01506, No. 20H05633, and No. 22H00827.
I would like to thank T. Onaga for useful comments.

APPENDIX A: CONSTRAINTS FOR λ

Since we focus on a situation in which the pure strategy
Nash equilibria for each bilateral game are given by (0, 0),
(a, a), (b, b), and (ab, ab), the payoff of strategy s must
be the highest if the opponent’s strategy is s. We have the
following conditions for each of these strategy pairs to be
attained as a Nash equilibrium.

(i) For the strategy pair (0, 0) to be a Nash equilibrium, we
need to have −2c̃ < 0. Since λ = 2(1 − c̃/c), this indicates
that

λ < 2. (A1)

(ii) For the strategy pair (a, a) to be a Nash equilibrium,
we need to have a − c > a − 2c̃. It follows that

λ < 1. (A2)

Note that the condition for the pair (b, b) is the same.
(iii) For the strategy pair (ab, ab) to be a Nash equilibrium,

we need to have a + b − 2c̃ > a − c and a + b − 2c̃ > b − c
(recall that a − c > 0 and b − c > 0). It follows that

(1 − λ)θa < 1, (1 − λ)θb < 1. (A3)

Given the conditions (A1)–(A3), λ must satisfy λ < 1,
(1 − λ)θa < 1, and (1 − λ)θb < 1.

APPENDIX B: AME EQUATIONS

Here, we describe the spreading process of competing
memes based on the AME method. Let ρs

k,m denote the frac-
tion of k-degree nodes belonging to the (s, m) class (i.e.,
k-degree nodes adopting strategy s and facing the neighbor
profile m). Using the AME formalism, the evolution of ρs

k,m
is given by [3,38,39]

ρ̇s
k,m = −

∑
s′ �=s

Fm(s → s′)ρs
k,m

−
∑
r∈S

∑
r′ �=r

mrφs(r → r′)ρs
k,m

+
∑
s′ �=s

Fm(s′ → s)ρs′
k,m

+
∑
r∈S

∑
r′ �=r

(mr′ + 1)φs(r
′ → r)ρs

k,m−er+er′
(B1)

for s ∈ S, where φs(r → r′) denotes the probability that a
neighbor of a node adopting strategy s changes its strategy
from r to r′:

φs(r → r′) =
∑

k pk
∑

|m|=k msρ
r
k,mFm(r → r′)∑

k pk
∑

|m|=k msρ
r
k,m

. (B2)

pk denotes the degree distribution, and the response function
Fm(s → s′) describes the rate at which individuals change
their strategy from s to s′ for a given neighbor’s profile m:

Fm(s → s′) =
{

1 if s′ = s∗(m),
0 otherwise, (B3)

where s∗(m) is the optimal strategy defined in Eq. (5). The
expected fraction of individuals adopting strategy s ∈ S leads
to ρs = ∑

k pk
∑

|m|=k ρs
k,m, where

∑
|m|=k denotes the sum

over all combinations of {ms} such that
∑

s∈S ms = k.
There are four factors that change ρs

k,m over time in
Eq. (B1). Individuals will leave the (s, m) class if (i) their
strategy changes from s to s′ ( �= s) (the first term) or (ii) their
neighbor profile changes from m to m′ ( �= m) (the second
term). Individuals will enter the (s, m) class if (iii) their strate-
gies newly change from s′ ( �= s) to s (the third term) or (iv)
the neighbor’s profile shifts from m′ ( �= m) to m (the fourth
term). The expression m − er + er′ in the fourth term denotes
the neighbor profile that has mr′ + 1 in the r′th element and
mr − 1 in the rth element.

The denominator of Eq. (B2),
∑

k pk
∑

|m|=k msρ
r
k,m, repre-

sents the expected number of (s)-(r) edges. Since the expected
number of (s)-(r) edges that shift to (s)-(r′) in an infinitesimal
interval dt is given as

∑
k pk

∑
|m|=k msρ

r
k,mFm(r → r′)dt , the

probability of an (s)-(r) edge shifting to an (s)-(r′) edge,
denoted by φs(r → r′)dt , is obtained as the ratio of the two,
leading to Eq. (B2). The AME solution is calculated using
MATLAB codes provided in [40].
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