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Efficient reconstruction of directed networks from noisy dynamics using stochastic force inference
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We consider coupled network dynamics under uncorrelated noises that fluctuate about the noise-free long-
time asymptotic state. Our goal is to reconstruct the directed network only from the time-series data of the
dynamics of the nodes. By using the stochastic force inference method with a simple natural choice of linear
polynomial basis, we derive a reconstruction scheme of the connection weights and the noise strength of each
node. Explicit simulations for directed and undirected random networks with various node dynamics are carried
out to demonstrate the good accuracy and high efficiency of the reconstruction scheme. We further consider the
case when only a subset of the network and its node dynamics can be observed, and it is demonstrated that the
directed weighted connections among the observed nodes can be easily and faithfully reconstructed. In addition,
we propose a scheme to infer the number of hidden nodes and their effects on each observed node. The accuracy
of these results is illustrated by simulations.

DOI: 10.1103/PhysRevE.106.034302

I. INTRODUCTION

The past decades have marked the rise of the big data era
[1] with immense increase in the available recording data in a
wide range of scientific, engineering, social, and financial ar-
eas. This is partly due to the huge increase and reliability in the
capacity in the storing devices and partly due to the abundance
and convenient availability of these data accessed through
the internet. These technologies have enhanced the research
activities of data science and complex networks [2–4], espe-
cially in the fields of biology and medicine such as systems
biology and the associated protein interaction networks [5],
metabolism network, food web, and gene regulatory networks.
We are in a stage in which the data accumulation rate exceeds
tremendously the data to knowledge digestion rate. One of
the major ultimate goals in science is to achieve a logical
understanding of the phenomenon and hopefully to uncover
the basic principles behind and be able to make prediction for
the system. Machine learning may be very helpful in sum-
marizing these vast data volumes and classifying them into
patterns or structures, but a knowledge-based approach to the
analysis of the data can do a much better job in understanding
the reasoning behind the data and modeling the system or
discovering scientific laws buried in the vast data mines.

The relations between different entities in the data set
can often be described in terms of a network consisting of
nodes and links. It is a highly nontrivial task to construct
the connection topology and link strengths of a network that
can faithfully represent the underlying interactions among the
network elements. Often the rules for assigning a connection
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and its strengths between two nodes lack rigorous scientific
reasons or are not well justified. Often the connections or their
strengths are not known, but the behavior of the nodes can be
monitored or measured. One challenging inverse problem is
to retrieve the network connection weights or node-node in-
teractions from the passively observed dynamics of the nodes
which are often accessible or measurable. In the network
reconstruction problems developed in recent years [6–8], with
the help of noise, which accounts for external disturbances
leading to fluctuating dynamics in a network, it is possible to
identify the network connectivity solely from the time-series
dynamics of the nodes [9–11]. This noise-bridging approach,
among many other methods, is part of a broader research area
on the network reconstruction problem [12].

Although it has been demonstrated in simulations that the
network reconstruction from noisy node dynamics is rather
successful, there are still some problems with current recon-
struction methods that must be overcome in practice. For
example, the reconstructed connection weight can become
a complex number if the quality of the time-series data is
not very high. Also some reconstruction methods need to
compute the higher-order derivatives of the time-series data
and will demand the sampling rate and quality of data to
be very high. Another issue in practice is the problem of
hidden nodes and/or connections because often not all the
nodes in a network can be accessed in reality. Although
there was attempt to reconstruct undirected network with
hidden nodes [13], the problem of reconstructing a directed
network with hidden nodes remains unsolved. On the fun-
damental side, often the dynamical model of a complex
network can be quite arbitrary or artificial; the relationship be-
tween the associated fluctuating noisy dynamics and possible
physical nonequilibrium systems is still unclear and largely
unexplored.
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On the other hand, for physical systems such as Brown-
ian dynamics, one aims to uncover the underlying governing
equation of motion from the observed time-series data of the
trajectories. The recent inverse problem of reconstructing the
force field and the noise from an analysis of experimental
noisy dynamics is of immense interest because of the ad-
vances in experimental recording techniques that lead to the
availability of reliable observational data in complex inter-
acting systems of many degrees of freedom. For example,
in systems described by the overdamped Langevin equation,
recently developed techniques make it possible to efficiently
reconstruct the dynamics from observed stochastic trajecto-
ries [14–16]. It was recently shown, using communication
theory of information capacity, that such trajectories contain
information which can be exploited to fit the force field with
a linear combination of some appropriate basis functions.
Such a stochastic force inference (SFI) approach [16] provides
a powerful and data-efficient solution to reconstructing the
force field from the fluctuating Brownian noisy dynamics,
which could be applied to the noisy network dynamics in the
network reconstruction problem here.

In this paper, we implement the SFI on the network re-
construction problem and devise a scheme to reconstruct the
connection weights and the noise variances acting on the
nodes of a directed network. The validity of our theoreti-
cal results will be checked with numerical simulations for
known network structures. We also demonstrate that the SFI
scheme works well even for reconstructing directed networks
with hidden nodes as well as for higher-dimensional intrinsic
node dynamics but with only a single component of intrinsic
node dynamics observed. Furthermore, we propose a practical
scheme to retrieve the number of hidden nodes and the effect
of the hidden connections on an individual observed node. The
theoretical results are further verified by carrying out explicit
simulations on directed and undirected random weighted net-
works.

II. FLUCTUATING DYNAMICS OF COUPLED NOISY
NETWORKS

Consider a network with N nodes whose intrinsic one-
dimensional dynamics at time t , xi(t ), is governed by the
nonlinear function fi(xi ). Nodes i and j are connected by
directed and weighted links given by the matrix W and there is
no self-connection (Wii = 0). In many situations, the weighted
matrix takes the form Wi j = gi jAi j , with the adjacency matrix
of elements Ai j = 0 or 1, and connection weights gi j . We use
an overdot to denote time derivative and prime for derivative
with respect to the network (spatial) variable x. Assuming
the nodes are subjected to temporally uncorrelated noises, the
equation of motion of the network dynamics is

ẋi = fi(xi ) +
N∑

j �=i

Wi jh(xi, x j ) + ηi(t ), (1)

where ηi is zero-mean Gaussian white noise with (spatial)
correlation σi j that acts on the node i,

ηi(t ) = 0, ηi(t )η j (t ′) = σi jδ(t − t ′), (2)

where h is the coupling function. The overbar stands for
ensemble average over the noise, which can be obtained in
practice by a time average over the asymptotic dynamics
over an extended period of time, denoted by 〈· · · 〉. In the
presence of noises, the system approaches some asymptotic
dynamics and xi(t ) fluctuates around the noise-free solution
Xi. We assume that the noisy dynamics fluctuates around some
stable noise-free solution, and that f and h can be linearized
about the noise-free solution. Denote the deviation from Xi by
δxi ≡ xi − Xi; then one has

δ �̇x = Qδ�x + �η(t ), (3)

Qi j ≡ Wi j∂2h(Xi, Xj ) +
[

f ′
i (Xi ) +

N∑
m=1

Wim∂1h(Xi, Xm)

]
δi j,

(4)

where ∂1h and ∂2h denote the partial derivatives with respect
to the first and second independent variables in h, respec-
tively. We take h to be of the form h(x1, x2) = h(x2 − x1)
with h(−z) = −h(z) and h′(0) > 0; i.e., the coupling tends
to synchronize the dynamics of the nodes. For convenience,
we will take h′(0) = 1 (or absorbed into the definition of Wi j)
hereafter.

The network reconstruction scheme for networks under
white noise using the time-lag correlations is summarized in
Appendix A [see Eqs. (4) and (A4) for the reconstruction
formula].

III. NETWORK RECONSTRUCTION USING SFI

For the fluctuating dynamics about the stationary noise-
free fixed point �X described by Eq. (3), it is natural to
choose an order-1 (linear) polynomial basis, i.e., nb = N +
1 with the set of basis functions b = {bα (�x)}α=1,...,nb =
{1, x1, x2, . . . , xN } for SFI for the force field �F (�x) = Q(�x −
�X ). To carry out the SFI from the recorded time-series data of
length Nstep, at times tk , k = 1, 2, . . . , Nstep, one computes the
average over the time-series data sampled separated with time
intervals �tk ≡ tk+1 − tk , denoted by 〈· · · 〉. To reconstruct the
connection and noise matrices, one only needs to compute the
following averages or correlation functions:

Bαβ ≡ 〈bα (�x)bβ (�x)〉 ≡ 1

Nstep

Nstep∑
k=1

bα (�x(tk ))bβ (�x(tk )), (5)

Mjβ ≡
〈
�x j

�t
bβ

〉
≡ 1

Nstep − 1

Nstep−1∑
k=1

�x j (tk )

�tk
bβ (�x(tk )), (6)

〈
�xi�x j

�t
bβ

〉
≡ 1

Nstep − 1

Nstep−1∑
k=1

�xi(tk )�x j (tk )

�tk
bβ (�x(tk )),

(7)

〈bα〉 ≡ 1

Nstep

Nstep∑
k=1

bα (�x(tk )), i, j = 1, 2, . . . , N,

α, β = 1, 2, . . . , N + 1, (8)
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where �x j (tk ) ≡ x j (tk+1) − x j (tk ). Hence from the SFI
scheme (see Appendix B), we have the reconstructed Q and
σ:

Qi j = (MB−1)i j+1, (9)

σi j =
nb∑

β,γ

〈
�xi�x j

�t
bβ

〉
B−1

βγ 〈bγ 〉, (10)

(Q �X )i = −(MB−1)i1. (11)

The above SFI network reconstruction formulas will be tested
by simulations with time-series data generated by known in-
trinsic node dynamics with nodes acted on by white noises
and connected by a known connection matrix.

A. Reconstruction of undirected and directed network
connection weights and noise strengths

To examine the validity of the proposed reconstruction
method, we carry out simulations by generating networks with
a total of N nodes. Specifically, we generate bidirectional
and directed weighted random (denoted by BWR and DWR,
respectively) Erdős-Rényi (ER) networks [17,18] with edge
connection probability p. The weights of the edges are ran-
domly chosen from a Gaussian distribution of mean μW and
standard deviation σW . The nodes of the entire network are
subjected to white noise given by the matrix σ, and we take
σi j to be diagonal with the elements σii uniformly distributed
in [σ 2/2, σ 2]; i.e., each node is subjected to a noise of dif-
ferent noise strengths. The intrinsic dynamics of each node
is heterogeneous of the logistic form f (xi ) = rixi(1 − xi ). In
most cases, we take h(z) = z unless otherwise stated. In the
simulations, the values μW = 2, σW = 1 or μW = 10, σW = 2
are used in the edge weights so that there are positive and
negative weights, ri is randomly chosen in [8,12], and a noise
strength σ 2 = 1 or 0.1 is used. In most cases, we simulate
networks of sizes N = 100 and 200 for several values of p.
The network stochastic dynamics are solved by the Euler
method with a time step of 5 × 10−4 for a long time (typically
2 × 103 to 104). And for the measurement of various statistical
averages they are sampled with a time interval of �t = 10−4

to 10−3. It should be noted that the SFI reconstruction involves
the inversion of the matrix B that may not be possible if it is
rank deficient, which may occur if the time series is too short.
We tested the minimal length of the time series such that the
inversion of the matrix B has a problem. We found that, for all
the cases we looked into, the minimal length is rather short;
for example, in the logistic or FitzHugh-Nagumo (FHN) node
dynamics case, the minimal time-series length is less than
0.05. The minimal length for B to be noninvertible is much
less than the time-series lengths for reasonable reconstruction
accuracy, which can be estimated using Eqs. (B13) or (B14).

Figure 1 shows the reconstruction results using SFI against
the corresponding actual values for weighted random BWR
and DWR networks with connection probability p = 0.2 and
N = 100, with a coarsened sampling interval of �t = 2δt =
10−3. The SFI reconstructed connection weights between dif-
ferent nodes, Wi j = Qi j (i �= j) as given by Eq. (9), show good
agreement with the actual values for both the BWR and DWR
networks as shown in Fig. 1(a). The reconstructed diagonal

elements Qii [which are theoretically given by ri − ∑N
k Wik

from Eq. (4)] also agree very well with the predicted values
[Fig. 1(b)]. The reconstructed noise matrix (diagonal) ele-
ments as given by Eq. (10) show perfect agreement with the
actual heterogeneous noise variance on the nodes [Fig. 1(c)].
Finally, as a consistency check, the components of the vector
Q �X are plotted against the prediction from the SFI scheme in
Eq. (11) as displayed in Fig. 1(d), showing perfect agreement.
The accuracy of the reconstruction can be accessed by eval-
uating the root-mean-square error of the reconstructed Wi j .
Figure 2 shows the root-mean-square error, δW , as a function
of � and the length of the time series (τ ) for the BWR and
DWR networks. δW increases with sampling interval �t for a
fixed total time-series data length as shown in Fig. 2(a). On the
other hand, δW decreases with τ for a fixed �t , and saturates
to a value limited by �t [Fig. 2(b)]. Notice that δW is small
compared to the mean of the connection weights (μW = 10) if
the data length is sufficiently long and the sampling frequency
is relatively high.

B. Network reconstruction of higher-dimensional and
nonstationary dynamics

We use the FitzHugh-Nagumo model for the two-
dimensional node dynamics with the fast and slow variables
u and v, respectively. We consider coupled networks of the
same type of dynamical variables; i.e., ui’s are coupled among
themselves with the network W(u) and vi’s are coupled with
W(v). The dynamics of the entire system is given by

u̇i = 1

ε

(
ui − u3

i

3
− vi

)
+

N∑
j �=i

W (u)
i j h(ui, u j ) + η

(u)
i (t ),

(12)

v̇i = ui + αi +
N∑

j �=i

W (v)
i j h(vi, v j ) + η

(v)
i (t ), (13)

where ε controls the difference in time scales between the fast
and slow variable and αi controls the intrinsic excitability of
the ith isolated node: the node is excitable (oscillatory) if α >

1 (α < 1). η
(u)
i (t ) and η

(v)
i (t ) are the independent zero-mean

white noises that act on ui and vi, respectively. If both the
time series of ui(t ) and vi(t ) are recorded, then one just simply
adopts SFI reconstruction for the dynamics in 2N phase space
and employs the basis b = {1, u1, u2, . . . , uN , v1, v2, . . . , vN }
to reconstruct the networks W(u) and W(v) together with the
noises as given by Eqs. (9) and (10). However, in many prac-
tical situations, often only the dynamics of one component of
the intrinsic node dynamics (say, vi) is recorded and the rest
are not (the ui are “hidden” degrees of freedom). Remarkably,
the SFI scheme can still faithfully reconstruct the network
and the noise information of the observed degree of freedom.
To demonstrate this, we generate BWR and DWR networks
with FHN node dynamics with only the time-series data vi(t )
are used for reconstruction. Figure 3 displays the SFI recon-
struction results for the network [W (v)

i j , Fig. 3(a)] and noise

strengths [σ (v)
ii , Fig. 3(c)] of the observed degree of freedom,

showing faithful reconstruction performance. In addition the
diagonal elements Qii and the prediction (11) for the observed
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FIG. 1. Network reconstruction of weighted random bidirectional (BWR) and directed (DWR) networks using the SFI method. Sampling
interval �t = 2δt = 10−3 is used. Noisy network dynamics is generated with logistic node dynamics and Gaussian distributed connection
weights with μW = 2, σW = 1 and noise variance on nodes uniformly distributed in [0.5,1.5]. The total duration of the time-series data is 2000.
The dashed straight line marks the y = x line. (a) The reconstructed connection weights between different nodes vs the actual ones. (b) The
reconstructed diagonal elements of Q vs the actual ones. (c) The reconstructed noise variance on each node vs the actual ones. (d) (MB−1)i1

plotted against (Q �X )i, verifying the SFI reconstruction scheme in Eq. (11).

degree of freedom are also well verified. It is worth noting that
one needs to have better statistics (longer data length or higher
sampling frequency) in order to achieve a similar reconstruc-
tion accuracy as the case of no hidden degree of freedom (as in
Fig. 1). The success of the reconstruction of the network of the
observed degree of freedom regardless of the hidden dynamics
can in fact be understood from the theoretical framework of
SFI [16]: the fact that some degrees of freedom are hidden is
completely equivalent to having a projection basis in which
the hidden degrees of freedom are missing and SFI can still

capture the dynamics projected on the observed degrees of
freedom with the hidden degrees of freedom being averaged
over. Hence the network and noises of the observed degrees
of freedom can be accurately reconstructed by SFI.

The two-dimensional and nonlinear intrinsic dynamics for
each node allows the possibility for limit cycle periodic
dynamics and hence one can explore the SFI reconstruc-
tion scheme for noisy network dynamics fluctuating about
a nonsteady noise-free state. By setting the parameters αi <

1, the noise-free dynamics undergoes nonlinear periodic
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FIG. 2. The root-mean-square error of reconstructed Wi j (a) as a function of the normalized �t for τ = 6000, and (b) as a function of
the total data time length τ for �t = 2δt = 10−3, for weighted random bidirectional (BWR) and directed (DWR) networks of μW = 10 and
σW = 2, with logistic node dynamics using the SFI method.

oscillations. We carry out SFI reconstruction for the observed
dynamics of vi(t ) but with ui being hidden, similar to the
case in Fig. 3. Figure 4 displays the SFI reconstruction results
for the network [W (v)

i j , Fig. 4(a)] and noise strengths [σ (v)
ii ,

Fig. 4(c)] of the observed degree of freedom, showing faithful
reconstruction performance. The diagonal elements Qii and
the prediction (11) for the observed degree of freedom are also
well verified. The reason why the SFI network reconstruc-
tion works well for the time-dependent noise-free state �X (t )
is presumably because the reconstructed force captures the
projected observed dynamics, effectively averaging over �X (t )
which can be thought of also as hidden degrees of freedom.

The fact that SFI can capture the dynamics projected on
the observed degrees of freedom suggests that one can accu-
rately reconstruct the noises and network among the observed
degrees of freedom, regardless of the network and noises of
the hidden variables. To verify this, we generate noisy FHN
dynamics with both ui and vi coupled by their own (but
different) networks, and this time we choose ui to be the
observed variable and vi are hidden ones. Figure 5 displays
the SFI reconstruction results for the observed network [W (u)

i j ,

Fig. 5(a)], the associated diagonal elements [Q(u)
ii , Fig. 5(b)],

and the noise strengths [σ (u)
ii , Fig. 5(c)] of the observed nodes,

showing accurate reconstructions.
We further look into more complex network dynamics

allowed by higher-dimensional intrinsic node dynamics. We
consider the node dynamics to be the Rössler dynamics of
three-dimensional state variables with nonlinear coupling:

ẋi = −yi − zi +
∑
j �=i

Wi jh(xi, x j ) + ηi(t ), (14)

ẏi = xi + ayi +
∑
j �=i

Wi jh(yi, y j ), (15)

żi = b + zi(xi − c) +
∑
j �=i

Wi jh(zi, z j ). (16)

Here the coupling networks and functions for the three
variables are chosen to be the same for simplicity. And the pa-
rameters are chosen with a = b = 0.2 and c = 9 such that the
intrinsic dynamics is chaotic without the network coupling.

We take the simple consensus coupling function h(x1, x2) =
x2 − x1, and the noise-free synchronized state with the chosen
parameter is also chaotic. Only the variables xi(t ) are the
observed time series with yi and zi being hidden degrees of
freedom. The SFI reconstruction results for the BWR and
DWR networks are displayed in Fig. 6. The weights of the
observed network [Fig. 6(a)], the associated diagonal ele-
ments Qii [Fig. 6(b)], and the noise strengths [Fig. 6(c)] of
the observed degree of freedom can be faithful reconstructed.

C. Performance comparison with the time-lag
correlation method

To demonstrate the superiority of the SFI reconstruction
method, we compare its performance with the time-lag cor-
relation reconstruction method (summarized in Appendix A)
in terms of the root-mean-square (rms) errors for various
node dynamics, as shown in Table I. For a fair comparison,
no preprocessing (such as a smoothing filter) of the time
series is carried out, and the same raw time series generated
from the same bidirectional random network are used for
both methods. The rms errors of the reconstructed network
connection weights (δW ) and that of the reconstructed noise
matrix elements (δσ ) are measured for logistic and various
FHN node dynamics of different time-series lengths (τ ). For
shorter time series, the time-lag correlation method suffered
from the unphysical complex constructed weights (denoted
by ∗ in the table), whereas the SFI method can still produce
reconstruction with decent accuracy. In all cases, the SFI
method has a significantly smaller δW . The SFI reconstruction
of the noise matrix elements is particularly accurate [which
can be observed in results in previous sections such as in
Fig. 1(c)] whose δσ is more than ten times smaller than that of
the time-lag correlation method.

IV. NETWORK RECONSTRUCTION WITH HIDDEN
NODES

In many realistic situations, it is often that not all nodes and
their associated connections can be observed. The behavior
(dynamics) of the observed network is strongly influenced by
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FIG. 3. Network reconstruction of weighted random bidirectional (BWR) and directed (DWR) networks with FHN dynamics (with α =
1.05) using the SFI method. Only vi are coupled by the network with Gaussian distributed connection weights with μW = 10, σW = 2 and
h(x, y) = tanh(y − x). Noise variances on nodes are uniformly distributed in [0.5,1.5]. Only the time-series dynamics vi(t ) are observed. Total
time of the series is τ = 6000. �t = 5 × 10−4. (a) The reconstructed connection weights between different nodes vs the actual ones. (b) The
reconstructed connection weights between different nodes vs the actual ones. (c) The reconstructed noise variance on each nodes vs the actual

ones. (d) (MB−1)i1 plotted against −(Q �̄V )i, verifying the SFI reconstruction scheme in Eq. (11).

the hidden nodes through their links to the observed nodes
[19]. Thus reconstructing the network connections among
the observed links solely from the dynamics of the observed
nodes with the presence of hidden nodes and links is a chal-
lenging problem. And so far there is no satisfactory method
to achieve the reconstruction of the observed network with
hidden nodes for the case of directed networks. It has been re-
cently demonstrated that the effect of the hidden information
can be viewed as temporally and spatially correlated noises
acting on the observed nodes [19]. Such correlations are due

to the hidden nodes that were interacting with the observed
ones. Furthermore, deducing the information on the entire
network with only observations from the partial subnetwork
of the observed nodes and links is even more challenging,
and constitutes the so-called network completion problem
[20–22].

The present framework of SFI network reconstruction can
be readily extended to the situations where some of the nodes
and their connections are not observed, i.e., reconstructing the
network of the observed nodes in the presence of hidden nodes
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FIG. 4. Network reconstruction of weighted random bidirectional (BWR) and directed (DWR) networks with FHN dynamics (with α =
0.95) using the SFI method. Other parameters are the same as in Fig. 3. (a) The reconstructed connection weights between different nodes vs
the actual ones. (b) The reconstructed connection weights between different nodes vs the actual ones. (c) The reconstructed noise variance on
each node vs the actual ones.

(and their links). Suppose we have a network that consists of
a total of N nodes but only the dynamics of M < N nodes
can be measured. For simplicity, we consider one-dimensional
intrinsic node dynamics xi(t ). By appropriately relabeling the
nodes such that the M observed node dynamics are xα (t ),
α = 1, . . . , M, we investigate the effect of the unobserved
nodes and links on the dynamics of the observed nodes. Here-
after, the observed nodes will be labeled using greek subscript
indices. The rest of the unobserved (hidden) node dynamics
are xm(t ), m = M + 1, . . . , N .

The major difficulty of reconstructing the observed subnet-
work using the time-lag covariance matrix [see Eq. (A4)] is
the following: First notice that although the covariance matrix
of the observed nodes is the submatrix of the covariance
matrix for the entire network (Kτ ), the reconstruction of Q

involves the inverse of the equal-time covariance matrix K−1
0

that mingles the contributions from the hidden connections
with the observed ones. Similar to the approach in the pre-
vious section, we consider fluctuating dynamics about the
noise-free state, and the equation of motion [see Eq. (3)] for
the linearized dynamics of the fluctuations of the observed
nodes can be written as

δ̇xα =
M∑

β=1

Qαβδxβ +
N∑

m=M+1

Wαmδxm + ηα (t ),

α = 1, 2, . . . , M. (17)

The effect of the extra contributions from the unobserved
nodes to xα has been shown to be similar to a correlated noise
[19]. The goal here is to infer the M × M submatrix Qαβ

FIG. 5. Network reconstruction of a bidirectional weighted random network (BWR) with FHN dynamics (with α = 1.05) using the SFI
method. Both ui and vi are coupled by their own (different) networks, i.e., 0 �= W(u) �= W(v) �= 0. The noises act on ui and only the time-series
dynamics ui(t ) are observed, and the vi(t ) are hidden. The dashed straight line marks the y = x line. (a) The reconstructed connection weights
of the network W (u)

i j between different nodes vs the actual ones. (b) The reconstructed diagonal elements of Q vs the actual ones. (c) The
reconstructed noise variance on each node vs the actual ones.
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FIG. 6. Network reconstruction of bidirectional (BWR) and directed (DWR) networks with Rössler dynamics using the SFI method. Only
the time-series dynamics xi(t ) are observed, and the yi(t ) and zi(t ) are hidden. The dashed straight line marks the y = x line. Rössler dynamics
with a = 0.2, b = 0.2, c = 9; μW = 10 and σ 2

W = 2 for the edge distribution. Both the noise-free dynamics and the noisy dynamics are chaotic
attractors. (a) The reconstructed connection weights between different nodes vs the actual ones. (b) The reconstructed diagonal elements of Q
vs the actual ones. (c) The reconstructed noise variance on each nodes vs the actual ones.

TABLE I. Comparison of the reconstruction performance using
the SFI method (denoted by the superscript SFI) and time-lag cor-
relation method (denoted by the superscript corr) [see Eqs. (A4) and
(A5) in Appendix A] for the weighted random bidirectional networks
(N = 100 and p = 0.2) with logistic and FHN node dynamics for
time series of length τ . The time series is sampled with a time interval
of �t = 10−3. FHN dynamics with only the v components connected
by the network are denoted respectively by FHNv (as in Figs. 3 and
4), whereas FHNuv denotes FHN dynamics with both the u and v

components separately coupled by their own network, but only the
u components of the node dynamics are observed (as in Fig. 5). A
time lag of �t is used in the calculation of the correlation function.
The root-mean-square errors of the reconstructed Wi j (i �= j) and σi j

are denoted respectively by δW and δσ . When the time-series length
is not long enough for accurate calculation of the correlation, the
time-lag correlation method would result in an unphysical complex
reconstruction network matrix and is denoted by an asterisk.

Dynamics τ δSFI
W δSFI

σ δcorr
W δcorr

σ

Logistic 100 1.97 3.18 × 10−3 * *
1000 0.767 1.01×10−3 * *
2000 0.533 7.62 × 10−4 0.784 1.39 × 10−2

5000 0.632 4.88 × 10−4 0.634 1.21 × 10−2

FHNv (α = 1.05) 100 1.93 3.17 × 10−3 * *
1000 0.757 1.01 × 10−3 0.942 1.25 × 10−2

2000 0.626 7.29 × 10−4 0.720 1.16 × 10−2

5000 0.531 4.93 × 10−4 0.569 1.13 × 10−2

FHNv (α = 0.95) 100 1.93 3.17 × 10−3 * *
1000 0.759 1.01 × 10−3 0.951 1.18 × 10−2

2000 0.626 7.29 × 10−4 0.733 1.14 × 10−2

5000 0.530 4.93 × 10−4 0.678 1.12 × 10−2

FHNuv (α = 1.05) 100 2.03 4.77 × 10−3 * *
1000 0.770 1.06 × 10−3 * *
2000 0.636 7.49 × 10−4 0.967 1.45 × 10−2

5000 0.39 4.99 × 10−4 0.681 1.23 × 10−2

of the N × N matrix Q of the entire network and the noise
covariance of ηα from the time series of the observed nodes
xα (t ). Under the SFI framework, the contributions from the
fluctuations of the hidden nodes [the

∑N
m=M+1 Wαmδxm term

in Eq. (17)] are treated as hidden degrees of freedom and the
SFI reconstruction will capture the projection of the dynamics
on the observed degrees of freedom.

To investigate the performance of the reconstruction of
the connections and the noises of the observed nodes, we
generate networks of a total of N nodes and focus on the
M observed node dynamics and implement the SFI recon-
struction scheme on these observed nodes. Figure 7 shows
the reconstructed results against the actual ones for different
numbers of observed nodes for BWR and DWR networks
with heterogeneous intrinsic logistic node dynamics with
consensus coupling, demonstrating that the network between
the observed nodes can still be faithfully reconstructed by
SFI. The accuracy of the reconstruction depends on the
number of hidden nodes, and can be accessed by evaluating
the root-mean-square error of the reconstructed Wi j and σi j .
Figures 8(a) and 8(b) show respectively the root-mean-square
errors of Wi j and σi j as a function of M for the BWR and
DWR networks. The reconstruction error increases with the
number of hidden nodes as expected. In a similar spirit, the
method can be easily applied to the case when the nodes
are governed by multicomponent (high-dimensional) intrinsic
dynamics and there are both hidden degrees of freedom of
the node dynamics as well as hidden nodes. In this case, the
network couplings and noise variances of the observed nodes
can still be reconstructed by SFI.

Finally, if the information of the dynamics and connections
of the observed nodes are available, one can infer the effects
of the hidden nodes on the observed one and even deduce
the number of hidden nodes in the system. To achieve this
goal, one first reconstructs the network connection matrix of
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FIG. 7. Network reconstruction with M observed nodes in a network with a total of N nodes with heterogeneous logistic intrinsic
node dynamics and consensus coupling h(x1, x2) = x2 − x1 using the SFI method. The dashed straight line marks the y = x line. (a) The
reconstructed connection weights between different nodes vs the actual ones for the BWR network. (b) The reconstructed diagonal elements
of Q vs the actual ones for the BWR network. (c) The reconstructed noise variance on each node vs the actual ones for the BWR network.
Panels (d)–(f) are similar to panels (a)–(c) but for the DWR network.

FIG. 8. The root-mean-square error of reconstructed (a) Wi j and (b) σi j as a function of number of observed nodes, M, for weighted random
bidirectional (BWR) and directed (DWR) networks with logistic node dynamics using the SFI method for τ = 2000 and �t = 2δt = 10−3.
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FIG. 9. �αα vs Sα for BWR and DWR networks with N = 100 and p = 0.2. The dashed line is a linear fit. (a) Logistic node dynamics
with μW = 2 and σW = 1. (b) FHN node dynamics with only the u components (FHNu) or only the v components (FHNv) connected by the
network. μW = 10 and σW = 2.

the observed nodes QRecon by SFI, and compares with the
observed connections Qobs [defined similar to Eq. (4) for the
observed subnetwork] given by

Qobs
αβ ≡ Wαβ +

[
f ′
α (Xα ) −

M∑
γ=1

Wαγ

]
δαβ. (18)

Then one can infer the effects of the hidden nodes such as
the strength of hidden connections on each observed node and
the total number of hidden nodes. Notice that the off-diagonal
element of Qαβ is the same as that of the observed one: Qαβ =
Qobs

αβ = Wαβ (α �= β ), but their diagonal element differs by the
contributions from the hidden connections, namely, Qobs

αα −
Qαα = Sα ≡ ∑N

m=M+1 Wαm, which is the weighted contribu-
tion of the hidden connections to the observed node α. As
discussed above, QRecon can faithfully find the submatrix of
Q of the whole network. But the diagonal elements of Qobs

differ from the diagonal elements of Q since Qobs
αα does not

include contributions from the connections from the hidden
nodes as revealed in Eq. (18). One expects that, if there are
more hidden nodes, the difference between QRecon

αα and Qobs
αα

would be larger. Thus by invoking Eq. (18) one can obtain
quantitative information on the hidden nodes by examining

�αα ≡ Qobs
αα − QRecon

αα 	 Sα. (19)

The key point is that now one can give an accurate estimate for
the effect (weighted sum of the connections) of hidden nodes
on the observed node α simply from the value of �αα which
can be computed from the observed information. To further
investigate the dependence of �αα on the hidden connections,
we simulate random networks with one-dimensional logistic
and two-dimensional FHN node dynamics under white noise
and compute �αα . As shown in Fig. 9, �αα displays a rather
precise proportional relation with Sα with a universal propor-
tional constant 	1 that appears to be independent of M, N ,
and the connection probability p of the ER network.

The effect of hidden nodes on the local observed node α

can be revealed from Eq. (19), while the information on how

many hidden nodes out there can be obtained from the average
of �αα over the observed nodes is defined as

[�]obs ≡ 1
M

M∑
α=1

�αα ≈ [Sα]obs (20)

≈ W (N − M ), (21)

where the last equation follows from the assumption of no bias
in the choice of hidden nodes.

Furthermore, if there is no bias in the hidden nodes for the
underlying network (then W can be accurately approximated
by sampling over the observed link weights, [W ]obs), Eq. (21)
can be used to estimate the number of hidden nodes from the
measurement of the observed network of M nodes to give N −
M 	 [�]obs

[W ]obs
, or the fraction of observed nodes can be estimated

as (M

N

)
est

	 M

M + [�]obs
[W ]obs

. (22)

Table II displays the estimated observed fraction of nodes
for BWR and DWR networks of node dynamics from one
dimension to three dimensions with various values of N and
M, showing good agreement with the actual values.

V. CONCLUSION AND OUTLOOK

By adopting the SFI method for overdamped Brownian
dynamics, we developed the network reconstruction scheme
to uncover the connection weights and the noise strengths on
the node for a general directed network. The fluctuating noisy
dynamics of the nodes allowed a simple natural choice of
linear polynomial basis for SFI. The only input is the passive
recording of the time-series data of the dynamics of the nodes.
The accuracy of the reconstruction is illustrated by explicit
generation of undirected and directed random networks of
known connection weights and noise variances, and verified
by simulations for various intrinsic node dynamics of one
to three dimensions. Furthermore, it was demonstrated that
even if there is only one observed degree of freedom in the
node dynamics and the rest of the degrees of freedom are
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TABLE II. Table of the estimated fraction of observed nodes
( M

N )est for weighted random bidirectional (BWR) and directed
(DWR) networks of logistic, FHN, and Rössler node dynamics. FHN
dynamics with only the u components or only the v components
connected by the network are denoted respectively by FHNu and
FHNv. Total node number N = 100 and p = 0.2 and number of
observed nodes, M. The estimated values ( M

N )est are obtained from
Eq. (22) and average over five different network realizations.

Dynamics M M
N BWR ( M

N )est DWR ( M
N )est

Logistic 20 0.2 0.20 ± 0.03 0.21 ± 0.02
50 0.5 0.52 ± 0.03 0.51 ± 0.02
80 0.8 0.82 ± 0.03 0.81 ± 0.02

FHNu 20 0.2 0.20 ± 0.03 0.21 ± 0.03
50 0.5 0.51 ± 0.02 0.51 ± 0.02
80 0.8 0.81 ± 0.01 0.80 ± 0.01

FHNv 20 0.2 0.22 ± 0.04 0.20 ± 0.02
50 0.5 0.52 ± 0.03 0.51 ± 0.02
80 0.8 0.82 ± 0.02 0.80 ± 0.01

Rössler 20 0.2 0.21 ± 0.03 0.21 ± 0.02
50 0.5 0.52 ± 0.03 0.51 ± 0.01
80 0.8 0.81 ± 0.01 0.80 ± 0.01

hidden, the SFI reconstruction for the network and noises of
the observed node variables still performs faithfully.

The SFI reconstruction of a network can overcome several
problems encountered in noisy network reconstructions. As
mentioned, the time-lag correlation method involved taking
the principal logarithm of a matrix as given by Eq. (A4) that
can lead to the constructed network weights becoming com-
plex numbers, and often some sort of trial and error smoothing
filter is needed to preprocess the data to suppress the noise in
order to render the reconstructed weights to be real valued.
Such a smoothing filter preprocess on the time-series data
might lead to uncontrolled effects on the reconstruction of the
noise matrix σi j using the time-correlation method. There is
no such problem at all for the SFI reconstruction method due
to its straightforward formulation. The other problem in some
reconstruction methods is the need to compute higher-order
derivatives of the dynamical variables from the time-series
data, whose accuracy requires a very high temporal resolu-
tion and data sampling rate that can be difficult to achieve,
especially in the presence of noise. On the other hand, only
first-order time differences are required in the SFI reconstruc-
tion method. As for the hidden node or connection problem,
an estimated reconstruction scheme for undirected networks
was proposed in [13] which involves sophisticated data and
correlation matrix manipulations, whereas the principle in the
SFI reconstruction naturally takes into account the effects of
hidden degrees of freedom in terms of projection onto the
observed one and hence can be applied to the hidden node
problem for general directed networks in a straightforward
manner.

One advantage of using SFI network reconstruction is that
the SFI framework provides a convenient evaluation of the
quality of the reconstruction from the self-estimate of the error
of reconstruction solely from the data (without knowing the
true values) using error estimation results (B13) and (B14)
in Appendix B. For example, the error of noise variance can

be estimated from Eq. (B14) to be δσ 	 σm2N
√

�t/τ , and
with τ = 2000, �t = 10−3, N = 100, and mean noise vari-
ance σm = 0.01 [these are the parameters used in Fig. 8(b)],
one gets δσ 	 1.4 × 10−3 which is of the same order as the
measured result from simulation [the M = 100 data points in
Fig. 8(b)].

One can further improve the reconstruction accuracy by
inferring the adjacency matrix using clustering methods to
identify node pairs into either connected or disconnected
groups (as in [6,7,9,10]). This can be achieved by arranging
the reconstructed elements of Wi j (i �= j) in ascending order
for fixed i, and employing some cluster algorithm to separate
the elements into two clusters, one can identify those nodes j
that connect to i. Thus one can identify the zero and nonzero
Wi j and hence the adjacency matrix. Such a procedure is
expected to greatly reduce false connections.

By interpreting the noisy dynamics of a complex network
as a Brownian system under stochastic force field, one can
broaden the view of network dynamics in more physical
terms and calculate the phase space velocity or flow, entropy
production rate [see Eq. (B11) in Appendix B], and make
connection to stochastic thermodynamics whose concepts and
well-developed techniques can be helpful in network dynam-
ics research and vice versa.

In this work, we assumed the dynamics fluctuates about
some stable attractor and the system can be linearized about
some noise-free state. However, in some situations the intrin-
sic dynamics can be highly nonlinear or the coupling function
is not linearizable: for example, if h(xi, x j ) = (x j − xi )3 the
leading-order network coupling term about the synchronized
state is nonlinear. In this highly nonlinear situation, network
reconstruction based on SFI can still be carried out by em-
ploying higher-order basis functions. And the SFI framework
also provides a criterion for choosing the order of the ba-
sis functions in terms of the information rate [as defined in
Eq. (B12) in Appendix B] to avoid overfitting [16] to ensure
good reconstruction quality.

The present work focused on network dynamics subjected
to temporally uncorrelated additive white noise; it can also be
easily generalized to multiplicative white noises in which the
noise strength on the node depends on the dynamical state of
the node. A diffusive drift will result from the multiplicative
noises and SFI can handle the situation equally well [16].
Furthermore, the network reconstruction problem is more
challenging if the noises acting on the nodes are temporally
correlated, and more sophisticated schemes involving longer
time-lag covariances are required which also suffered from
the problem of a complex reconstructed connection matrix
[11]. In this case, the SFI network reconstruction scheme
would be more straightforward since the Ornstein-Uhlenbeck
process for the correlated noises can be introduced as an extra
dynamical variable subjected to white noise. And this extra
variable can be viewed as a hidden degree of freedom as
discussed in Sec. III B; then the SFI network reconstruction
can be implemented relatively easily.

On the other hand, in some situations where the nature or
the source of the noises is unknown, or the time-series data are
prone to an unknown source of errors and may even be unre-
liable, then one may employ an empirical approach using the
Bayesian method [23] to reconstruct the underlying network
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structure with optimal likelihood. These methods require the
input of data and network models and have been demonstrated
[24–26] to work well even with scarce data. By comparing
the reconstructed network structures using the SFI or time-lag
correlation methods with that of Bayesian network inference,
one can gain some insight on the nature of the noises or errors
in the network dynamics.

Finally, since the noisy node dynamics considered in this
work is quite general, there is a broad area of possible ap-
plications. In particular, our method should be most relevant
to infer network structures resulted from complex physical
interactions in which the nodes have some sort of direct phys-
ical interaction or direct influence with other nodes. Some
possible applications involve networks or interacting systems
in which the dynamical time-series data have been measured
experimentally. Some examples include functional magnetic
resonance imaging (fMRI) time-series measurement [27] for
brain function networks, multielectrode array recordings [28]
for in vitro neuronal networks, gene expression time-series
data for gene regulatory networks [29,30], membrane recep-
tors or proteins interaction from diffusion dynamics on living
cells [31,32], intercellular communication networks in cells
[33], or bacteria colonies [34].
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APPENDIX A: SUMMARY FOR THE TIME-LAG
CORRELATION METHOD OF NETWORK

RECONSTRUCTION FOR COUPLED NOISY NETWORK

Consider a network with N nodes whose intrinsic one-
dimensional node dynamics xi(t ) is described by Eq. (1) and
the corresponding fluctuating dynamics governed by Eqs. (3)
and (4). Assuming the matrix Q in Eq. (4) is time independent
(which is true if the asymptotic noise-free solution is time
independent, i.e., the system fluctuates around a stable station-
ary solution), then the information of the network connections
can be retrieved by measuring the long-time limit of the time-
lag correlations of the node dynamics [9–11]:

Kt ≡ lim
t ′→∞

〈[�x(t ′ + t ) − 〈�x(t ′ + t )〉][�x(t ′) − 〈�x(t ′)〉]ᵀ〉. (A1)

In practice, the noise-free solution can be approximated by
Xi 	 〈xi〉. Network connections contained in the matrix Q can
be retrieved by measuring the long-time limit of the time-lag
correlations of the node dynamics defined in Eq. (A1). From
[9], the reconstruction formula for a directed network is

Kt = etQK0. (A2)

For the special case of undirected network, i.e., symmetric Q
and uniform uncorrelated noises, σ = σ 2I, one has [6,7]

Q = −σ 2

2
K−1

0 . (A3)

However, the properties of the white noise are usually not
known and need to be reconstructed also. Therefore, in gen-
eral, for directed or undirected networks under white noises,

the matrix Q can be constructed from the measurement of the
time-lag covariance matrices via

Q = 1

t
ln(Kt K−1

0 ), (A4)

and the noise matrix is then reconstructed from the Lyapunov
equation

σ = −QK0 − K0Qᵀ. (A5)

For the situations that the noise-free solution is not stationary,
such as periodic dynamics (limit cycle) or even chaotic, it
has been demonstrated numerically [7,9] that the above re-
construction scheme can still work rather well.

The above covariance-relation-based method [Eq. (A4)]
involves a calculation of the principal matrix logarithm, which
is very sensitive to the noise in the data. For example, when
applied directly to the multielectrode array data for neuropo-
tential time-series recordings, an unphysical complex Q is
obtained. A similar complex matrix was also found when this
covariance relation was used directly to estimate directed con-
nectivity for fMRI measurements [27]. In some cases, such a
complex matrix problem can be avoided if a low-pass filter
(such as a moving average filter) is first applied to the data to
reduce the random noises [28].

APPENDIX B: SUMMARY FOR STOCHASTIC FORCE
INFERENCE OF OVERDAMPED BROWNIAN DYNAMICS

Consider an overdamped stochastic system with Nd -
dimensional phase-space coordinates xi governed by Brow-
nian dynamics under the force field �F (�x) (with the mobility
tensor absorbed in its definition) and obeying the following
Langevin equation:

�̇x = �F (�x) + �η(t ), (B1)

�η(t )�ηᵀ(t ′) = 2Dδ(t − t ′), �η(t ) = 0, (B2)

where D is the d × d diffusion tensor. In general the zero-
mean white noise �η can be multiplicative with a spatially
dependent diffusion field D(�x), in which an extra drift term
∇ · D should be added to the right-hand side of Eq. (B1) when
it is written in Itô form. Based on the communication-theory
notion of capacity, Frishman and Ronceray showed that these
stochastic trajectories contain a limited amount of informa-
tion, and SFI exploits such information to fit the force field
accurately with a linear combination of some appropriately
chosen basis functions [16]. By choosing a suitable projection
basis bα (�x) (α = 1, . . . , nb, a set of nb fitting functions), the
method of stochastic force inference takes the discrete time-
series data of �x(tk ) as input, and returns with the inferred
force field �F (�x), phase-space velocity field �v(�x), and diffusion
field D(�x). The SFI method is described briefly as follows;
the detailed information-theoretic foundation, derivations, and
examples in various physical systems can be found in [16].

Here we simply give the calculation steps with the stochas-
tic trajectories as the time-series data together with a chosen
projection basis as input. First construct the nb × nb matrix
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B and the Nd × nb matrix M from the average of the basis
vectors evaluated from the time-series data:

Bαβ = 〈bα (�xi )bβ (�xi )〉 ≡ 1

Nstep

Nstep∑
k=1

bα (�x(tk ))bβ (�x(tk )), (B3)

Mjβ = 〈�x j

�t
bβ〉 ≡ 1

Nstep

Nstep∑
i=k

�x j (tk )

�tk
bβ (�x(tk )). (B4)

Then the force field can be inferred as

�F (�x) 	 MB−1�b(�x). (B5)

And the diffusion tensor field can be inferred as

Di j (�x) 	
nb∑
βγ

〈�xi�x j

2�t
bβ〉B−1

βγ bγ (�x), (B6)

〈�xi�x j

2�t
bβ〉 ≡ 1

Nstep

Nstep∑
k=1

�xi(tk )�x j (tk )

2�tk
bβ (�x(tk )). (B7)

For the purpose of network reconstruction considered in this
paper, D is taken to be spatially independent. For the case of
a spatially independent diffusion tensor, Eq. (B6) is given by
the average over the time-series samples:

Di j =
nb∑
βγ

〈�xi�x j

2�t
bβ〉B−1

βγ 〈bγ 〉,

〈bγ 〉 ≡ 1

Nstep

Nstep∑
k=1

bγ (�x(tk )). (B8)

The phase-space velocity field can be inferred as

�v(�x) 	 MSB−1�b(�x), (B9)

MS
jβ ≡ 1

Nstep

Nstep∑
i=k

�x j (tk )

�tk
bβ

( �x(tk+1) + �x(tk )

2

)
. (B10)

The average entropy production rate and information rate
along the trajectory are given by

Ṡ = �S

τ
	 1

Nstep

Nstep∑
k=1

�vᵀ(�xk )D−1(�xk )�v(�xk ), (B11)

Ib

τ
	 1

4Nstep

Nstep∑
k=1

�Fᵀ(�xk )D−1(�xk ) �F (�xk ). (B12)

The SFI method can also provide a self-consistent estimate of
the errors of the inferred force and diffusion fields from the
time-series data as follows [16]:(

δF

F

)2

= Nd nb

2Ib
, (B13)(

δD

D

)2

= 4Nd nb�t

τ
. (B14)

Note that the above relative errors can be obtained solely
from the data without the knowledge of the correspond-
ing actual values, which is essential in practice and
also can provide valuable information on the inference
quality.
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