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Stochastic resetting causes kinetic phase transitions, whereas its underlying physical mechanism remains to be
elucidated. We here investigate the anomalous transport of a particle moving in a chaotic system with a stochastic
resetting and a rough potential and focus on how the stochastic resetting, roughness, and nonequilibrium noise
affect the transports of the particle. We uncover the physical mechanism for stochastic resetting resulting in
the anomalous transport in a nonlinear chaotic system: The particle is reset to a new basin of attraction which
may be different from the initial basin of attraction from the view of dynamics. From the view of the energy
landscape, the particle is reset to a new energy state of the energy landscape which may be different from
the initial energy state. This resetting can lead to a kinetic phase transition between no transport and a finite
net transport or between negative mobility and positive mobility. The roughness and noise also lead to the
transition. Based on the mechanism, the transport of the particle can be tuned by these parameters. For example,
the combination of the stochastic resetting, roughness, and noise can enhance the transport and tune negative
mobility, the enhanced stability of the system, and the resonant-like activity. We analyze these results through
variances (e.g., mean-squared velocity, etc.) and correlation functions (i.e., velocity autocorrelation function,
position-velocity correlation function, etc.). Our results can be extensively applied in the biology, physics, and

chemistry, even social system.
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I. INTRODUCTION

Of particular interest is stochastic resetting in various
research fields. Thus it has extensively been investigated in
both natural [1,2] and artificial [3,4] systems since the early
2010s. Examples of stochastic resetting include the optimal
search time [3], diffusion [5], mean first passage time (MFPT)
[4], fluctuating interfaces [6], work fluctuations and Jarzynski
equality [7], and protein searching for specific binding sites
on the DNA [8]. Another example is that the process of RNA
polymerization is frequently interrupted by backtracking
[9,10], where RNA cleavage should be considered as a
stochastic resetting process. In statistical physics, there also
exist several works about stochastic resetting. Examples
include nonergodicity [11,12] and restoring ergodicity [13]
for the resetting of the Brownian motion. For a equilibrium
system, a stochastic resetting breaks its detailed balance
and drives the system into an out-of-equilibrium state
[14]. Therefore, paradoxical situations can occur in the
system since the laws of thermodynamics no longer possess
validity. Namely, the anomalous transport arise in such
out-of-equilibrium systems.

The anomalous transports (e.g., anomalous diffusion, neg-
ative mobility, etc.) have extensively been investigated in
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several systems with different conditions. The noise of a
chaotic system can lead to anomalous transports, such as
negative mobility [15] and anomalous diffusions [16]. It is
well known that the dynamical behavior of a chaotic system
is sensitive to initial states [17] and system parameters [18].
It should be noted that a stochastic resetting can give rise to
anomalous diffusion [19]. In brief, the anomalous phenom-
ena have intensively been investigated in out-of-equilibrium
systems. However, it is unclear whether a stochastic resetting
in chaotic system leads to anomalous transport (e.g., noise-
enhanced stability [20] and resonant excitation [21]) or not.
Tremendous progress has recently been made toward the
stochastic resetting in several research fields. Most previous
works about stochastic resetting studied that the particle is
generally reset to its starting point at a specified rate. How-
ever, it is worth mentioning that the stochastic resetting by
a random amplitude was investigated in a recent work [22].
From an applied perspective, this resetting provides great
hope to address some challenges that numerous scientific
disciplines are currently facing, such as geophysical layering
[22], population dynamics [23], financial markets [24,25],
and germs affected by antibiotic treatment [26]. In fact, the
stochastic resetting of a particle is a process for the change
of the energy in a system. Namely, the stochastic resetting
of the position is the change of the potential energy in the
potential energy landscape of a system, in which there exist
numerous types, e.g., random potential [27,28], random walk
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[29], random force (noise) [30], random field [31], and so on.
Notice that an earlier work [32] demonstrated that the inherent
structure mapping divides up the potential energy landscape
into basins of attraction surrounding the minima. Additionally,
another work [33] investigated the diffusion in a potential
landscape with a stochastic resetting, including stable and
unstable potential energy landscapes. Numerous works were
done in various system with random energy models for 40
years [34-36]. Anomalous features of diffusion were studied
in a substrate potential added a random potential modeled by
unbiased Gaussian distribution [37]. This random potential
results from how binding energy correlations affect the diffu-
sion along with DNA. Therefore, a random potential may be
considered as a stochastic resetting by a random amplitude.
On the other hand, notice that several works have studied the
anomalous transport of particles moving in several systems
with rough potentials [38—41]. In a word, the transports in-
duced by stochastic resetting are extensively investigated in
various systems. However, the transport of a particle, moving
in an out-of-equilibrium system with the stochastic resetting
of a random amplitude and roughness, remains to be eluci-
dated. What are the dynamics in the system with the stochastic
resetting, and how do the resetting and roughness affect the
MFPT, diffusions, or correlation functions corresponding to
these transports?

The MFPT is a key quantity in physical, chemical, and
biological systems. Consequently, it has intensively been in-
vestigated in numerous research fields, such as optimization
[4], the transport in a disordered media [42], diffusion-limited
reactions [43], spreading of diseases [44], target search pro-
cesses [45], and the escape rate of an active Brownian particle
[46]. Therefore, remarkable progress has been done by a
growing number of theoretical investigations in understanding
MFPT and its application for 20 years [47]. Stochastic reset-
ting is extensively investigated in MFPT [48-51], the mean re-
covery time of RNA cleavage [10], the first-arrival statistics of
random motion [52], and continuous-time random walks un-
der Markovian resetting [53]. These studies also demonstrated
that the stochastic resetting can affect kinetics behaviors.

Moreover, diffusion is well described by the theory of
Brownian motion [30]. It is frequently obtained through a
mean-squared displacement (MSD), corresponding to the
second-order moment of the probability distribution. Namely,
the MSD corresponds to the variance of the position and is
frequently used to investigate the diffusion of the particle.
Besides the second-order moment, the third- and fourth-order
moments of a probability distribution, corresponding to
skewness and kurtosis, respectively, are extensively employed
to investigate various diffusions. For example, earlier works
employed the excess kurtosis and/or skewness to study
the ergodicity of diffusion [30] and identified whether the
angle-averaged non-Gaussian parameter is Gaussian [54].
These quantities have excellently described the types of the
diffusion of the particle. Examples include the skewness for
instantaneous current fluctuations in a dusty plasma exper-
imentally [55] and the universal relation between skewness
and kurtosis in complex dynamics [56]. Additionally, to our
knowledge, except for MSD and the mean-squared velocity,
no previous works investigate the diffusion via the mean-
squared acceleration and the variance of the position-velocity,

position-acceleration, or velocity-acceleration. It is unclear
whether these variances characterize the types of diffusion.

Another important quantity characterizing the diffusion
is the correlation function. The positive and negative val-
ues for the correlation function of the velocity indicate
superdiffusion and subdiffusion, respectively. And no corre-
lation corresponds to normal diffusion [57,58]. Most previous
works studied anomalous transports or diffusions through the
position autocorrelation function [59] or the velocity auto-
correlation function [57]. Moreover, the space-time velocity
correlation functions were used to experimentally study cold
atom dynamics in an optical potential and charge trans-
port on micro- and nanoscales [29]. The spatiotemporal
velocity-velocity correlation function was employed to study
a turbulence [60]. Interestingly, the position-velocity correla-
tion was used to investigate anomalous diffusion in a recent
work [61]. Additionally, the potential correlation function
and density-density correlation function were employed to
study probing entanglement in a many-body-localized sys-
tem [62]. Furthermore, the near-neighbor spatial correlation
is used to characterize critical slowing down [63]. How-
ever, to the best of our knowledge, no previous works study
the correlation functions of the acceleration-acceleration,
position-acceleration, and velocity-acceleration in anomalous
transports. Therefore, to our knowledge, whether the kinds of
diffusion are featured via these correlation functions remains
poorly understood in the system.

The mentioned above raise the natural question: Can the
stochastic resetting of a random amplitude lead to a kinetic
phase transition or anomalous transport? If the answers are
positive, what is the underlying mechanism behind these
results? To address these questions, we here focus on the
mechanism for the transport of the particle moving in a system
with roughnesses and the stochastic resetting of a random
amplitude. The system is also driven by out-of-equilibrium
driving forces, i.e., an external time-periodic force, an ex-
ternal constant bias, and a nonequilibrium noise. Here we
introduce a general numerical method that constructs the
phase-space map, which guides our understanding of how a
particle moves on the energy landscape of a chaotic system
with the stochastic resetting and roughnesses. The method
identifies the transition state between the energy barriers.

The structure of the rest paper is as follows. We first
introduce a system with a rough potential and stochastic re-
setting of a random amplitude and present the method of
our numerical simulation. We then analyze the dynamics
via the bifurcation diagram, basin of attraction, and rugged
energy landscape for the deterministic system and provide
the physical mechanism of the transport. Then, based on
the mechanism, the transport of the particle is tuned via the
stochastic resetting, roughness, and noise. Furthermore, we
analyze our findings through several variances (i.e., mean-
squared velocity, etc.) and normalized correlation functions
(NCFs) corresponding to anomalous transports. We present
our conclusions at the end.

II. THE MODEL

We here consider an inertial particle moving in a system
with a rough potential and stochastic resetting by a random
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amplitude. It is driven by a nonequilibrium fluctuation, an
external constant bias F, and an external time-dependent pe-
riodic force A cos(wt) with the amplitude A and the angular
frequency w. Thus the particle evolves as [38,39]

dU[x(1)]
dx(t)
where x(¢), v(t), and a(t) are the position, velocity, and ac-
celeration of the particle at time ¢, respectively. m and y
denote the mass of the particle and the friction coefficient,

respectively. £(¢) is a Gaussian color noise and its statistical
properties are as follows:

ma(t) + yv(t) = +Acos(wt)+F +&(t), (1)

, D [t — 1|
(@) =0, (EMEW) = —exp | — ,
To To
where D and 1 are the intensity of the noise and the corre-
lation time, respectively. The system consists of a substrate
potential Us(x) and a rough potential U,(x), namely U (x) =
Us(x) 4+ U,(x). They are given by [40,41]

Us;(x) = AU sin(Qrwpx), U,.(x) = —ecos(wix), e K AU.

Here AU and ¢ is the potential barrier and the amplitude of
the roughness, respectively. wy and w; are the frequencies of
the substrate potential and the rough potential, respectively.
It is required to be wy < w; to ensure that U,(x) oscillates
rapidly. Therefore, here we assume w; = 100 and wy = 1.
We fix AU=10m=1.0,y =09, 1=1.0,A =4.2, and
w = 4.9, unless otherwise stated. All quantities are in dimen-
sionless units.

The Fokker-Planck equation corresponding to the
Langevin equation (1) cannot be solved in general [15,64].
Therefore, we investigate the transports and the corresponding
statistical properties of the particle moving in the system
through numerical simulation. We employ the fourth-order
stochastic Runge-Kutta algorithm [65] with time step
At = 1072 to discretize the Eq. (1). Then, at each step,
the particle can either reset or it can evolve according
to the Eq. (1). Therefore, (i) the inertial particle follows
the Langevin dynamics given by Eq. (1) with probability
1 —rAt (r is the rate of stochastic resetting) and (ii) the
stochastic resetting of the particle occurs with complementary
probability rAt, namely,

X(tip1) = x(1;) +n(1). 2

Here n(z) is a random amplitude of stochastic resetting,
modeled by Gaussian white noise with zero mean and unit
variance. Namely, the random amplitude of stochastic reset-
ting [22] is employed in our work.

To characterize the anomalous transports and their statisti-
cal properties, we first analyze the dynamical behaviors of the
system for the deterministic dynamics through the basin of
attraction, bifurcation diagram, and energy landscape. Then
we focus on anomalous phenomena via the average velocity.
We analyze the result through the phase-space map, NCFs,
and various variances. For initial conditions, the initial posi-
tions x(0) and velocities v(0) are uniformly distributed over
the intervals [—1, 1] and [—2, 2], respectively. The calculated
data of the average velocity include 500 trajectories. To obtain
the convergent result, 10° time steps of the initial transient
state are removed and 107 time steps of the steady state are

used for statistics of each trajectory. For NCFs and variances,
the ensemble average contains 10* trajectories. Here NCFs are
given by [66]

(x()x( + 7))

Cxx(f) =

VEO) @+ 1)
v+t

Cp(t) = \/(128)((1)20 73>f))’
ta(lt+t

Caa(T) = \/(i;((t;?;a%t —i>r))’
v+t

Cu(t) = \/()(;E,;);M(t ~|2>t))’

Cua(7) = \/:ﬁg;{;i;f ?m’

CualT) = Wf}iﬁjﬁj’fiiﬁl»‘

Here Cix(7), Cou(7), Caa(T), Cio(7), Cra(t), and Cya(7)
denote the position autocorrelation function, velocity
autocorrelation function, the acceleration autocorrelation
function, the position-velocity correlation function,
the position-acceleration correlation function, and the
velocity-acceleration correlation function, respectively.
Moreover, MSD, mean-squared velocity, the mean-squared
acceleration, the variances of position and velocity, position
and acceleration, and velocity and acceleration are given by

(AXP()) = ([x(t) — (x()T?),
(A (1)) = ([v(t) — ()T,

(

(Ad*(1)) = ([a(t) — (a()]?),
(Ax()Av()) = ([x(t) — (xO)[v(E) — (E)]),
(Ax()Aat)) = ([x(t) — (xO)[at) — (a®))]),
(Av)Aa(t)) = ([v(t) — (O)lalt) — (a®)]),

respectively.

To illustrate the anomalous transport of the particle, we
analyze the findings through the energy landscape. The energy
depending on the initial position xy and initial velocity vy is
defined by

i 1
= — E ) 4+ —mv?
E = N{ (U(x,)—i— 2mvl>}. 3)

i=1

Here N is the iterations of the dynamical evolution. We here
use 10* time steps of the steady state for each trajectory to
calculate the energy. Through the energy E, we can present
the energy landscape depending on the initial conditions. We
also present the power for the stochastic resetting, which is
defined by P = Wieset/t, Where Wieer 18 given by Wieger =
SV AU (xia) — U(xip)}. Here U (x;) and U (x3) indicate the
potential energies after the ith stochastic resetting and before
it, respectively. Namely, Wi is the sum of potential energies
after stochastic resettings minus those before stochastic reset-
tings with total time ¢.
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FIG. 1. The bifurcation diagram for different roughnesses ¢ = 0.0 (a), 0.003 (b), and 0.010 (c), the basins of attraction of the velocity for
different roughnesses ¢ = 0.0 (d), 0.003 (e), and 0.010 (f) with F = 0.4 for the deterministic dynamics (D = 0.0).

III. THE RESULTS AND DISCUSSIONS

To understand the dynamical properties of the determin-
istic model (D = 0.0) with the roughness and without the
stochastic resetting, we present the bifurcation diagram and
basins of attraction in Fig. 1. The bifurcation diagram is usu-
ally used to characterize the chaotic system, suggesting that
the dynamical behaviors are sensitive to the trivial variation of
the system parameters. In comparison, the basin of attraction
is used to characterize the dynamical properties that are sen-
sitive to the trivial variation of initial conditions. Figure 1(a)
shows that the increase of the bias F' leads to the existence
of period-doubling bifurcations, chaotic bands, and attractor-
merging crisis for the system without the roughness. For
e = 0.003, Fig. 1(b) shows that the widths of chaotic bands
are larger than those without the roughness. Furthermore,
Fig. 1(c) shows that the chaotic bands for ¢ = 0.010 are wider
than those for ¢ = 0.003. These findings suggest that chaotic
behaviors occur in the system, and thus the trivial variation
of the system parameters leads to the nontrivial changes of
the dynamical behaviors. Additionally, we present the basin
of attraction in Figs. 1(d)-1(f). Figure 1(d) shows that there
exist two types of stable basins for the system without rough-
ness. One is the cyan regime which denotes a running state
v ~ —0.24, and the other is the blue regime which denotes
a running state v >~ —0.62. This finding suggests that the dy-

namical behavior is sensitive to the initial condition. However,
with the increase of the roughness, these basins gradually lose
their stabilities, and the running states are mixed, as shown in
Figs. 1(e) and 1(f). Let us now discuss the reason we get these
results.

Figure 2 shows the rugged energy landscapes depending on
initial position and velocity, which correspond to the basins of
attraction in Figs. 1(d)-1(f). Notice that with identical system
parameters, the structure of the energy landscape in Fig. 2(a)
is identical to that of the basin of attraction in Fig. 1(d).
Namely, £ >~ —0.79 and 0.92 in Fig. 2(a) correspond the
basins of attraction with running states v >~ —0.24 and —0.62,
respectively. These results reveal that energy landscapes lead
to the appearance of the basins of attraction. Namely, different
energies give rise to different running states of the velocity.
With the increase of the roughness, the structure of the energy
landscape gradually loses its stability and becomes a mixture
of states, as shown in Figs. 2(b) and 2(c). Figure 2(c) displays
that for ¢ = 0.01, the rugged energy landscapes have an in-
finitely large population of blue spikes at low energy. Locating
at these spikes, the particle cannot move, suggesting that no
transport arises.

To see how the stochastic resetting affect the trans-
port of the particle moving in the system, we present the
phase-space maps of trajectories for different r in Fig. 3.
The initial position x(0) and initial velocity v(0) of all

034208-4



ANOMALOUS TRANSPORT TUNED THROUGH ...

PHYSICAL REVIEW E 106, 034208 (2022)

FIG. 2. The rugged energy landscape depending on the initial position and velocity for different roughnesses ¢ = 0.0 (a), 0.003 (b), and

0.010 (c). The parameters are identical to those in Figs. 2(d)-2(f).

trajectories are both 0.0. For different r, Figs. 3(a)-3(d) and
3(e)-3(h) show the phase-space map without and with the
roughness from ¢ = 0 to 100, respectively. Figure 3(a) shows
that the particle moves between x(¢) = —1 and 8. For r =
0.05, Fig. 3(b) displays that it moves between x(f) = —4 and
7. Notice that the horizontal line in phase-space map denotes
the stochastic resetting, such as the mark in red arrow. With
r = 0.1, Fig. 3(c) shows that it moves between x(¢) = —1
and 22, meaning that the particle moves farther than that for
r = 0.05. It should be noted that as r increases, there may be
a kinetic phase transition from negative to positive mobility.
However, Fig. 3(d) shows that the distance for r = 0.2 is
smaller than that for » = 0.1. Therefore, these results reveal
that the stochastic resetting can affect kinetics behaviors.

Let us turn to the system with roughness. For ¢ = 0.2,
Fig. 3(e) shows that the particle stays in the initial well with-
out stochastic resetting. However, the particle moves in the
system with stochastic resetting. For example, at r = 0.05,
the particle moves between x = —5 and 1. Notice that there
are trivial fluctuations in the trajectory due to the existence
of the rough potential. On the contrary, the trajectories are
smooth in the system without the roughness [Figs. 3(a)—
3(d)]. With r =0.10, the particle moves between x = 0.0
and 5.0 [Fig. 3(g)]. As r further increases (r = 0.20), the
particle moves between x = —5 to 5 [Fig. 3(h)]. These find-
ings reveal that through stochastic resetting, the particle may
be reset to a basin where the particle moves in the nega-
tive direction of the position, to a basin where the particle
moves in the positive direction, or to a basin where it cannot
move.

To better understand how the energy affects the transport
of the particle, we present the phase-space map and the input
power of stochastic resetting in Figs. 3(1)-3(p) from ¢t =0
to t = 1000. Without stochastic resetting (r = 0.0), Fig. 3(1)
shows that for F' = 0.4, the particle moves from x ~ 0.0 to
—350.0. This suggest that an anomalous mobility arises. At
r = 0.05, Fig. 3(j) displays that the particle moves between
x = —120 to 50. We also calculate the power of the stochastic
resetting and obtain P ~ 0.082. For r = 20, Fig. 3(k) shows
that the particle moves between x = —130 to 340. The cor-

responding power P is approximatively 0.559. On further
increasing r (e.g., r = 50), the particle moves between x =
—110 and 230. This means that its distance is smaller than that
of r = 20. The corresponding power is nearly 0.16, which is
also smaller than that of r = 20. In fact, the power may not
be convergent for a finite sampling of the stochastic resetting
(e.g., t = 1000).

With the roughness ¢ = 0.2, Fig. 3(m) shows that for
r = 0.0, the particle stays in the initial well and no transport
occurs. This is the case where the particle locates at the
blue spike of the energy landscape in Fig. 2. However, for
r = 0.05, Fig. 3(n) displays that the particle moves between
x = —20 and 20 and the transport of the particle occurs. This
means that there may be a kinetic phase transition from no
transport to a finite net transport [67,68]. The correspond-
ing power of the stochastic resetting is nearly 0.125. This
finding reveals that the energy of the particle increases with
the increase of the stochastic resetting. At r = 20, Fig. 3(o)
shows that the particle moves between x = —190 and 210.
And the power is approximately 0.664. However, as r further
increases, the transport decreases. For example, with r = 50,
Fig. 3(o) shows that the particle moves between x = —160
and 150. The corresponding power is nearly 0.426. We ana-
lyze these findings as follows.

These findings raise the natural question: What is the
underlying mechanism behind the occurrence of these phe-
nomena? Why the stochastic resetting leads to a kinetic phase
transition and suppresses the motion of the particle? These
results mentioned above show that through the stochastic re-
setting, the particle, located in a basin with a running state of
a large velocity, may be reset to a basin with a running state
of a small velocity. From an energy point of view, a particle,
located at a low-energy regime of the energy landscape, is
reset to a high-energy regime. Moreover, the particle moving
from the left to the right is reset from the right to the left well
or from the left to the right well. Overall, when the resettings
from the right to left well are more than those from the left
to the right well, the distance of the moving particle becomes
smaller than that without this resetting with the identical time.
Surely, there exists another possibility that the particle, lo-
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FIG. 3. The phase map with ¢ = 0.0 for different resetting probabilities » = 0.0 [(a) and (i)], 0.5 [(b) and (j)], 20 [(c) and (k)], and 50
[(d) and (1)] for = 100 and 1000, respectively. The phase map with ¢ = 0.2 for different resetting probabilities r = 0.0 [(¢) and (m)], 0.5 [(f)
and (n)], 20 [(g) and (0)], and 50 [(h) and (p)] for = 100 and 1000, respectively. Other parameters are D = 0.0 and F = 0.4.

cated at a basin with a running state of the small velocity,
may be reset to a basin with the running state of the large
velocity. Therefore, our results uncover that the choice of this
initial state is the reason we obtain these results. Namely, due
to the existence of the basins of attraction in the system, the
unpredictability of the system results from the random initial
states.

In brief, to answer the question of what is the underlying
mechanism behind the occurrence of these phenomena, we
present the phase-space map of trajectories to interpret these
phenomena in Fig. 3. Based on the above analyses, we pro-
pose the predominant mechanism behind these phenomena.
The significance of the mechanism is twofold. From a dy-
namical point of view, the particle, moving in the system with
basins of attraction, is reset to a basin with a running state of
a small or large velocity, which is different from the initial
running state. From the energy point of view, the particle is
reset to a new energy state (i.e., a high-energy state), which
is different from the initial energy state (i.e., a low-energy
state). Therefore, this resetting can lead to a new running state
of the particle, meaning that it can result in a new state of
motion which is different from the initial state of motion. Thus

we employ this mechanism to explain the transports of the
particle below.

To understand the transport of the particle moving in the
system with the stochastic resetting and the roughness, Fig. 4
shows the two-dimensional (2D) maps of the average velocity.
Figures 4(a)-4(c) show the velocity as a function of ¢ and F
for different ». Without r, Fig. 4(a) shows that there exists
a negative mobility for the system without or with trivial
roughness &, and no transport arises for ¢ > 0.045. Addition-
ally, we also find that the roughness enhances the transport
in certain regimes. For example, at ' = 0.5, the flux is neg-
ative first (blue) and then becomes zero (green), furthermore
positive (red), and finally zero (green) with the increase of the
roughness. These findings reveal that the roughness ¢ weakens
and eliminates negative mobility and also enhances and van-
ishes the transport in certain parameter regimes. At r = 0.1,
Fig. 4(b) shows that negative mobility is almost eliminated
and the roughness enhances the transport in certain parameter
regimes. Interestingly, this resetting can induce the emergence
of the transport in the system with large roughness (e.g.,
& > 0.045), where no flux appears for ¢ > 0.045 in Fig. 4(a).
The reason we obtain this finding is the underlying mechanism
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FIG. 4. Two-dimensional map of the average velocity (v) of the particle as a function of the bias F' and the roughness ¢ corresponding to
resetting probabilities » = 0.0 (a), 0.10 (b), and 1.0 (c). Two-dimensional map of (v) as a function of the bias F' and resetting probabilities r
with different roughnesses ¢ = 0.0 (d), 0.01 (e), and 0.05 (f). Two-dimensional map of (v) as a function of the bias F and the noise intensity

D with different resetting probabilities » = 0.0 (g), 0.01 (h), and 1.0 (i).

we proposed in Fig. 2 and 3, which the stochastic resetting
may be the process of the particle reset from a running state
v 2~ 0 to one with v # 0. Namely, it drives the system into
an out-of-equilibrium state which leads to the occurrence of
the flux. For » = 1.0, Fig. 4(c) shows the flux still appears
at ¢ = 0.3 where no flux arises in Fig. 4(b) for r = 0.1. In
brief, the findings reveal that the roughness and stochastic
resetting can weaken or eliminate negative mobility and en-
hance or vanish the transport. Moreover, the roughness also
weakens and eliminates transport. The mechanism of Fig. 3
can explain why the system with the stochastic resetting ap-
pears transport where no transport arises in the system without
this resetting. More insight into these findings is presented in
Figs. 4(d)-4(f).

We present a 2D map of the velocity as a function of r
and F for different roughnesses ¢ in Figs. 4(d)—4(f). With-

out the roughness (¢ = 0.0), Fig. 4(d) shows that negative
mobility appears in trivial stochastic resetting and disappears
in large stochastic resettings. For ¢ = 0.01, Fig. 4(e) dis-
plays that negative mobility is weakened. As the roughness
increases, negative mobility disappears, as shown in Fig. 4(f).
In a word, the stochastic resetting could weaken or elimi-
nate negative mobility. It also enhances the transport of the
particle.

To settle the question of how the noise affects the transport
of the particle moving in the system, we present a 2D map
of the velocity as a function of D and F in Figs. 4(g)-4(1).
Without the stochastic resetting (r = 0.0), Fig. 4(g) shows that
the negative mobility appears for a weak noise and disappears
for a strong noise. With r = 0.01, Fig. 4(h) displays that the
negative mobility is weakened for a weak noise and rapidly
disappears with the increase the the noise. For » = 1, Fig. 4(i)
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FIG. 5. The average velocity (v) and MFPT of the particle as functions of the stochastic resetting probability » with different roughnesses
¢ [(a) and (d)] for D = 0.0001. The average velocity (v) and MFPT of the particle as functions of the roughness ¢ with different resetting
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different roughness ¢ [(c) and (f)] for r = 0.0, respectively. The other parameter is F = 0.4. Log(MFPT) denotes the natural logarithm of

MFPT.

shows that the negative mobility totally disappears. In a word,
the noise can weaken or vanish negative mobility. It also
enhances the transport of the particle in certain parameter
regimes.

Next, we investigate the MFPT and kinetic phase transition
in Fig. 5. We calculate the MFPT using the method in the
earlier work [69], where the exit time of the particle is the
escape time through either one of the box boundaries. The exit
time is equivalent to the first passage time. Based on the initial
and final positions of the work [41], MFPT is the ensemble
average time from the starting point xo = arccos(F/2m)/(2m)
with vy = 0.0 to the left or to the right boundary located at
XL.r = Xo F L, where L is the period of the substrate potential.
Figure 5(a) shows the MFPT as a function of r for different ¢.
Without the roughness (¢ = 0.0), the MFPT increases first and
then decreases with the increase of r. This implies that there
exists a maximum. Namely, the stochastic resetting leads to
the enhanced stability of the system. However, with the rough-
ness (i.e., ¢ = 0.005), the MPFT is a constant first and then
decreases with the increase of r. On further increasing &, the
MFPT almost decreases with increasing r (i.e., ¢ = 0.030).
Namely, the roughness weakens and eliminates the stability
of the system. Figure 5(b) displays the MPFT as functions of
the roughness ¢ for different ». Without or with a small reset-
ting rate (i.e., r = 0.001 or 0.010), the MFPT increases first,
then decreases, and finally increases with the increase of the
roughness ¢. That is, there exists a maximum and a minimum
for varying e. The finding reveals that the roughness leads
to the enhanced stability of the system and the resonant-like
activation. At r = 0.100, the MFPT decreases first and then
increases. This means that the roughness-enhanced stability
of the system vanishes and the resonant-like activation still
occurs. As the probability r increases (e.g., r = 1.0), both

phenomena do not arise. Figure 5(c) shows the MFPT as
a function of the noise intensity for different roughnesses.
Without &, MFPT shows that there exists a maximum for
varying D. Namely, the noise leads to the enhanced stability
of the system. As the roughness increases, this phenomenon
vanishes.

To gain more insight into the kinetics corresponding to
these findings, we present their fluxes in Figs. 5(d)-5(f). With-
out ¢, Fig. 5(d) shows there exists a current reversal with
varying probability r. From the view of kinetics, a kinetic
phase transition from negative flux to positive flux occurs, and
this is continuous (second order). As the roughness increases,
the negative mobility disappears, and the flux increases with
the increase of r. We also find that all curves almost overlap
in the regime r ranging from 0.03 to 10. This suggests that
the stochastic resetting is dominant in this regime for the
motion of the particle. By comparison, then combination of
¢ and r is dominant in other regimes. Figure 5(e) shows the
flux as a function of & for different ». Without r or trivial
resetting probability (i.e., r = 0.001 or r = 0.010), there exist
negative mobilities in trivial roughness and current reversals
for the varying roughness. As r increases (i.e., r = 1.0), the
flux monotonically decays with the increase of ¢. In brief, the
roughness leads to a kinetic phase transition from negative to
positive mobility. This is, it weakens and eliminates negative
mobility. These findings are excellently in agreement with the
enhanced stability of the system and resonant-like activation
of the MFPT in Fig. 5(b). Figure 5(f) shows the flux as a func-
tion of the noise intensity for different roughness . Without r,
there exists a current reversal for varying D. Namely, a kinetic
phase transition from negative flux to positive flux arises.
As the roughness increases, the negative mobility disappears
and the flux increases monotonically with increasing D (i.e.,
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& = 0.005). On further increasing ¢ (i.e., € = 0.05), there is
no flux first and a finite net flux arises with the increase of
D. Namely, there exists a kinetic phase transition from no
flux to a finite net flux. All in all, the stochastic resetting, the
roughness, and the noise can lead to a kinetic phase transition
from negative to positive mobility or from no transport to a fi-
nite net transport. These transitions suggest that the stochastic
resetting, the roughness, and the noise should tune enhanced
stability of the system and resonant-like activation.

The Kramers escape theory, frequently characterized by
MFPT, is of great importance in several research fields. To
provide a full description of the MFPT, we present its prob-
ability distributions in Fig. 6, which correspond to certain
points in Fig. 5. Figure 6(a) shows that as the probability r
increases, the peaks of the distributions shift from the small
MFPT to the large one and then from the large MFPT to the
small one. Moreover, the height of the peaks transits from
the high to the low first and then from the low to the high
with an increase of r. This finding leads to the enhanced
stability of the system and well agrees with that for ¢ = 0.0
in Fig. 5(a). For a small r, despite the results of Fig. 6(b)
are basically identical to those of Fig. 6(a), the shift and the
height of the distributions are smaller than those in Fig. 6(a).

By comparison, they are identical to each other for the large
r. These results are consistent with those for ¢ = 0.003 in
Fig. 5(a). Figures 6(c) and 6(d) show that as r increases, the
peaks shift from the large MFPT to the small one only. These
findings imply that the MFPT monotonously decreases with
the increase of r.

Figures 6(e)—6(h) correspond to several points in Fig. 5(b).
As the roughness ¢ increases, Fig. 6(e) shows that the peaks
of the distributions shift from the small MFPT to the large
one first, then from the large MFPT to small one. However,
for r = 0.010 and 0.100, Figs. 6(f) and 6(g) show that the
peaks of the distributions transit from a small MFPT to a
large one. Moreover, Fig. 6(h) shows that for » = 0.100, the
peaks of the distributions shift from the large MFPT to the
small one only. These results are in agreement with those in
Fig. 5.

Figures 6(i)-6(1) correspond to certain points in Fig. 5(c).
For ¢ = 0.0, Fig. 6(i) shows the peaks of the distributions shift
from the small MFPT to the large one first and then from
the large MFPT to the small one. As ¢ increases, Figs. 6(j)
and 6(k) show that the peaks of the distributions transit
from the large MFPT to the one only. For ¢ = 0.050, the
peaks and the heights of the distributions trivially change.
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These findings are consistent with those in Fig. 5(c). In
brief, the probability distributions of MFPT also demonstrate
that the stochastic resetting, roughness, and noise can tune
the enhanced stability of the system and the resonance-like
activation.

We now turn to several variances characterizing diffusions
of the particle. It is well known that in previous works, most
diffusions are characterized via the MSD. Actually, the vari-
ances, the skewness, and the kurtosis of the position, velocity,
and acceleration are related to each other, and thus of par-
ticular interest are these physical quantities to understand the
dynamical behaviors. We present several variances in Fig. 7
with and without r for different e. Figure 7(a) shows that,
without the roughness (¢ = 0.0), the MSD scales as 2 at
intermediate time (e.g., ¢ ranging from 30 to 90) and then
becomes a constant at long time limit. We note that the flux
arises for this parameter setup in Fig. 4. Therefore, this implies
that the particle moves in a quasilinear or linear response
regime, in which the motion of the particle is dominated by
the bias, and the effect of the periodic potential is trivial. For
& = 0.03, the MSD scales as time, meaning that the diffu-
sion is normal at long times. Moreover, for a large ¢ (e.g.,
e = 0.07), the MSD scales as t* (1.0 < a < 2.0) at interme-
diate time and then becomes a constant at long time. The

and F = 0.4.

result indicates that the diffusion is superdiffusive at interme-
diate time and subdiffusive at long time and finally converges
to zero. Of special interest is that one wonder whether the
other variances (i.e., mean-squared velocity, etc.) can also
qualitatively characterize these behaviors (e.g., subdiffusion,
superdiffusion, ballistic diffusion, etc.). Therefore, we now
turn to other variances. Figure 7(b) shows that (AV2(1)) per-
sistently oscillates with an nontrivial amplitude for ¢ = 0.00,
suggesting that the this oscillation corresponds to the point
A in Fig. 4(a) that shows a negative mobility. (Av?(z)) for
& = 0.03 remain persistent oscillation with a trivial ampli-
tude, suggesting that this oscillation corresponds to the normal
diffusion. As ¢ further increases (i.e., £ = 0.07), (Av2(t))
oscillates in intermediate time and then decays to zero, which
correspond to superdiffusion, subdiffusion, and no diffusion,
respectively. Let us see (Ax(#)Av(t)) with time for differ-
ent ¢ in Fig. 7(c). For ¢ = 0.00, (Ax(t)Awv(t)) is zero. For
& = 0.03, the amplitudes for the oscillation of (Ax(¢)Av(¢))
increase with time, suggesting that this behavior corresponds
to the normal diffusion in Fig. 7(a). For a large ¢ (e.g., ¢ =
0.05), the oscillating amplitude of (Ax(¢z)Av(t)) increases
first, then decreases, and converges to zero, which correspond
to superdiffusion, subdiffusion, and no diffusion, respectively.
The behaviors of (Aa?(t)) in Fig. 7(d) are almost identical
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to those in Fig. 7(b), except their amplitudes are differ-
ent. Moreover, the behaviors of (Ax(f)Aa(r)) in Fig. 7(e)
are almost same as those of (Ax(#)Av(¢)) in Fig. 7(c),
except their amplitudes are different. Figure 7(f) shows that
for ¢ = 0.00, (Av(t)Aa(?)) nontrivially oscillates with zero
crossings. For ¢ = 0.03, (Av(t)Aa(t)) trivially oscillates with
zero crossings, and the oscillation tends to the positive di-
rection, implying that positive mobility arises. Finally, with
a large ¢ (¢ =0.05), (Av(¢)Aa(t)) trivially oscillates first
and then decays to zero, corresponding to superdiffusion
and no diffusion, respectively. In summary, when (Av?(¢))
or (Ad?(t)) converges to zero, the corresponding diffusions
also converge to zero. By contrast, when they remain non-
trivially persistent oscillations, the corresponding diffusions
are normal. Additionally, when (Ax(#)Av(t)), (Ax(t)Aa(t)),
and (Av(t)Aa(t)) coverage to zero, the corresponding dif-
fusions are zero. When the amplitudes of their oscillations
decrease, linearly increase, or exponentially increase with
time, the corresponding diffusions are subdiffusive, normal,
or superdiffusive, respectively. In brief, besides the MSD,
mean-squared velocity, mean-squared acceleration, and the
variance of the position-velocity, the position-acceleration,
and the velocity-acceleration can also characterize the types of
diffusions.

We now turn to the variances with a stochastic resetting.
Figures 7(g)-7(1) show several variances with r = 0.01 for

‘and F = 0.4.

different ¢. We present MSDs for different ¢ in Fig. 7(g).
All curves basically scale as ¢ at long time, which are dif-
ferent from those without stochastic resetting, most of which
converge to a constant at long time limit. This finding sug-
gests that a particle can move in the system with stochastic
resetting, whereas it remains a well of the system without
this condition. Thus the corresponding (Av?(¢)) in Fig. 7(h),
(AG%(1)) in Fig. 7(G), and (Av(t)Aa(t)) in Fig. 7(1) per-
sistently oscillate with time. Moreover, the amplitude of
the oscillation for corresponding (Ax(¢#)Awv(t)) in Fig. 7(i)
and (Ax(t)Aa(t)) in Fig. 7(k) linearly increase with time
at long times. These findings suggest that the diffusion is
normal.

To better understand how the roughness and the stochas-
tic resetting affect the dynamics of the system, we now
turn to the position autocorrelation function, velocity au-
tocorrelation function, acceleration autocorrelation function,
position-velocity correlation function, position-acceleration
correlation function, and velocity-acceleration correlation
function in Fig. 8. These correlation functions correspond to
several points in Fig. 4 [the black line in Fig. 4(a) and the red
line in Fig. 4(b)] and part of which correspond to anomalous
transport. Without the stochastic resetting, Fig. 8(a) exhibits
that for ¢ = 0.0, the correlation function trivially oscillates
nearly 1.0, which corresponds to the negative mobility in
Fig. 4(a). By contrast, for ¢ = 0.01 and 0.03, the correlation
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functions decrease with time, corresponding to finite net trans-
ports in Fig. 4(a). The correlation function corresponding to a
large ¢ (i.e., ¢ = 0.05) equals 1.0, corresponding to no flux
in Fig. 4(a). In fact, this finding results from that the particle
remains in a well of the system with time evolution. We now
also present other correlation functions. Figure 8(b) shows the
velocity autocorrelation function for different ¢. The veloc-
ity autocorrelation functions corresponding to ¢ = 0.01 and
0.03 exhibit nonmonotonic decay with zero crossings, while
they for ¢ = 0.05 and 0.07 oscillate and their amplitudes
do not decay. Thus these findings suggest that the velocity
autocorrelation function, which oscillates and does not decay,
corresponds to no transport. However, there being an non-
monotonic decay with zero crossings, it corresponds to the
occurrence of the flux. Cy,(7) in Fig. 8(c), C,,(7) in Fig. 8(d),
Cyq(7) in Fig. 8(e), and C,,(7) in Fig. 8(f) also demonstrate
two key results. One is that these correlation functions exhibit
an nonmonotonic decay, which corresponds to an finite net
transport. The other is that they do not decay, which corre-
sponds to no flux. The underlying reason we obtain these
results is the following. For a particle jumping from a well
to another well in the system, the corresponding correlation
between two different moments is smaller than 1. On the
contrary, for a particle remaining in a well of the system, this
correlation equals 1 due to the autocorrelation of the identical
quantities.

In the presence of stochastic resetting r = 0.01, these cor-
relation functions are presented in Figs. 8(g)-8(1). Figure 8(g)
displays that correlation functions with stochastic resetting
decay faster than those without stochastic resetting in Fig. 8(a)
with time. The reason is that the positions after stochastic
resetting are not directly related to those before stochastic re-
setting. We also note that for a large ¢ (e.g., ¢ = 0.07), Cy(7)
in Fig. 8(g) and C,,(7) in Fig. 8(h) with the stochastic reset-
ting are different from those in Fig. 8(a) and Fig. 8(b) without
the stochastic resetting, respectively. These results suggest
that without the stochastic resetting, the particle maybe re-
main in the initial well and no flux thus arises. On the contrary,
with the resetting, the particle can move from a well to another
well and the flux consequently occurs. These findings agree
with those in Fig. 4(b) (the red line). Furthermore, we find
that other correlation functions with the stochastic resetting in
Figs. 8(h)-8(1) decay faster than those without it in Figs. 8(b)—
8(f), respectively. This results imply that the diffusion of the
former is larger than that of the latter.

IV. CONCLUSION

We numerically investigate the anomalous transport of a
particle in a system with a rough potential and the stochastic
resetting by a random amplitude. The system with nonequi-
librium fluctuation is driven by an external time-periodic
force and an external bias. We analyze the transport of the
particle via the chaotic dynamics, the basin of attraction,
rugged energy landscape, phase-space map, average velocity,
mean first passage time, various variances, and correlation
functions.

The chaotic dynamics, basin of attraction, rugged energy
landscape, and phase-space map show how the stochastic
resetting leads to kinetic phase transitions, which is continu-

ous. From the perspective of dynamics, through the stochastic
resetting, a particle, located in a basin of attraction with a
running state of the initial velocity (e.g., a small velocity),
may be reset to a basin of attraction with a running state
of the new velocity (i.e., a large velocity), which may be
different the initial state. From the perspective of the en-
ergy landscape, the particle, located at an initial energy
state (i.e., the low-energy state), may be reset to a new
energy state (i.e., the high-energy state). The phase-space
map shows how the particle is reset to a new state. These
behaviors can lead to the resonant-like activation, the en-
hanced stability of the system, and kinetic phase transitions
from no transport to a finite net transport or from nega-
tive mobility to positive mobility. Compared with the early
works about the energy landscape with stochastic resetting
[33], our results are twofold. First, it narrows the gap be-
tween a stochastic resetting leading to transports and the
underlying physical mechanism. Second, it provides more
insight into the process of the stochastic resetting and
the transports.

We also discuss how the roughness and noise affect the
transport. Our results reveal that the roughness can weaken,
eliminate, and lead to the flux of the particle. These findings
result from the chaotic properties and basin of attraction,
implying that the dynamics is very sensitive to the trivial
variations of the initial states and system parameters. The
above mention results are interpreted through the basin of the
attraction or rugged energy landscape. Finally, our results also
reveal that noise can tune negative mobility and the flux.

Here we analyze our results via several variances (e.g.,
mean-squared velocity, the variance of the position-velocity,
etc.) and find that all of them can qualitatively characterize the
types of diffusion. There exist four behaviors in the variances
of the position-velocity and the position-acceleration, which
correspond to four types of diffusion. First, the case that
the amplitude of their oscillation linearly increases with time
denotes normal diffusion. Second, the case that they decrease
with time indicates a subdiffusion. Third, the case that they
exponentially increase is superdiffusion. The last that there
exists no oscillation corresponds to zero diffusion. Moreover,
the mean-squared velocity or acceleration oscillating with
time corresponds to a finite net transport, whereas it with no
oscillation with time is no diffusion. Furthermore, we also
analyze our findings through several correlation functions,
i.e., velocity autocorrelation function, the position-velocity
correlation function, and so on. Due to the presence of peri-
odic potential, the correlation functions exhibit nonmonotonic
decay with zero crossings or no zero crossing. These findings
reveal that stochastic resetting can give rise to the occurrence
of the flux. The larger the power-law exponent of diffusion,
the faster the oscillation of correlation functions. Therefore,
these variances and correlation functions also characterize the
transports and diffusions of the particle.

In conclusion, we numerically investigate anomalous mo-
bilities and diffusions of the particle moving in a system with
a rough potential and stochastic resetting. We focus on how
the roughness, stochastic resetting, and noise affect mobility
and diffusion and propose an underlying mechanism behind
these transport and diffusion. The physical mechanism of our
work can be generalized to a wide range of systems, such as
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financial crashes owing to a fall in stock prices [70], a sudden
reduction in population size owing to catastrophes [71], and a
stochastic biological system modeling the excursions by un-
correlated random jumps [8]. It can also be extended to apply
in social system. For example, the job hopping is important
in computer clusters because it facilitates the reallocation of
talent and resources toward firms with superior innovations
[72]. This job hopping should be viewed as a stochastic reset-
ting. Thus, a deep understanding of our work will actually be
important to analyze the evolution in social system.
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