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Interplay between quantum diffusion and localization in the atom-optics kicked rotor
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Atom-optics kicked rotor represents an experimentally reliable version of the paradigmatic quantum kicked
rotor system. In this system, a periodic sequence of kicks are imparted to the cold atomic cloud. After a short
initial diffusive phase the cloud settles down to a stationary state due to the onset of dynamical localization.
In this paper, to explore the interplay between localized and diffusive phases, we experimentally implement a
modification to this system in which the sign of the kick sequence is flipped after every M kicks. This is achieved
in our experiment by allowing free evolution for half the Talbot time after every M kicks. Depending on the value
of M, this modified system displays a combination of enhanced diffusion followed by asymptotic localization.
This is explained as resulting from two competing processes—localization induced by standard kicked rotor
type kicks, and diffusion induced by the half Talbot time evolution. The experimental and numerical simulations
agree with one another. The evolving states display localized but nonexponential wave function profiles. This
provides another route to quantum control in the kicked rotor class of systems.
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I. INTRODUCTION

The kicked rotor (KR) model has been extensively in-
vestigated as a paradigmatic model of both classical and
quantum chaos [1,2]. The atom-optics based kicked rotor
(AOKR) is an experimentally realizable analog of the KR
model in which an ensemble of cold atoms are periodically
kicked by sinusoidal potentials formed by a counterpropa-
gating standing wave of light [3–6]. The classical limit of
AOKR is chaotic for sufficiently strong kick strengths and
exhibits intrinsic stochasticity in its dynamics. In this limit,
KR behaves similar to a random walk. As the kicks impart
energy to the system, diffusive growth of mean energy is
observed. In contrast, the quantum regime entirely suppresses
the classical diffusive growth beyond a short break time due
to destructive quantum interferences [1]. This is the regime of
dynamical localization and is the momentum-space analog of
Anderson localization in real space. This shows up as wave
functions localize in the momentum space ψp ∼ e−p/ξ , where
p labels discrete momentum basis states and ξ is the localiza-
tion length. Furthermore, AOKR and its variants are studied
in other fields—condensed matter physics [7,8], molecular
physics [9,10], and quantum information [11,12]—to explore
quantum correlations to many-body localization. See Ref. [1]
for a recent review of variants and applications of a kicked
rotor system.

For many applications in the emerging areas of quantum
technologies, it is important to be able to control the quan-
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tum effects. In the context of AOKR, the ability to control
localization length and the energy of localized states can be
useful [13]. Dynamical localization is generally destroyed by
the addition of noise through decoherence processes and does
not provide a means of quantum control. For example, it has
been shown that decoherence in the form of noise [14–16],
coupling with the rotor [17], and quantum measurements [11]
can destroy dynamical localization. However, surprisingly,
it was shown experimentally that Levy noise added to kick
sequences of AOKR could control the decoherence rate and
even the mean energy of localization, the Levy parameter in
the noise distribution acting as the control parameter [18].
More conventional routes to exercise control is by manipu-
lating the phases of the initial wave functions. For instance,
it was shown previously that quantum-chaotic diffusion can
be enhanced or suppressed by controlling the phases of the
initial states [19,20]. However, in order to control the local-
ization length, the unitary evolution operator that evolves the
initial state needs to be changed and is not achievable by just
controlling the phase of the initial state. In one such novel
control scheme, introduced by Gong et al. [21], the phase
of the kicking field is flipped periodically. By changing the
sign of the kicking potential after M kicks (corresponds to
introducing a phase shift among rotor momentum states), a
significant change in the dynamical localization and quantum
diffusion was observed. This variant of AOKR is different
from the amplitude-modulated KR systems [22] in which the
kick strength is varied. Quantum control in the context of
AOKR has been experimentally realized by phase modula-
tion [23,24] and in laser-kicked molecular rotors using time
delay [13].

In the present paper, we experimentally realize a protocol
of quantum control (similar in spirit to the one introduced in
Ref. [21]) of diffusive and localized phases by appropriate
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modulation of the perturbations. Effectively, the sign of the
kick strength in the KR system is periodically flipped. This
is achieved using periodic time delayed kicks after a certain
number of standard kicks that induce dynamical localization.
Quite remarkably, this simple modification of kick sequences
in AOKR does not destroy localization but leads to an en-
hancement of quantum energy at which localization takes
place. In contrast to the earlier work [21] that depends on
the presence of classical transporting islands in phase space
for energy enhancements, we show that enhancements arise
from a competition between two time periodic sequences in
the AOKR system.

At this point, we emphasize the crucial differences between
the standard KR and the AOKR. AOKR is a system of kicked
atoms moving on a line, whereas the standard KR can be
visualized as rotors moving on a circle. With a sufficiently
broad initial distribution of momenta, the dynamics of AOKR
involves the play of different quasimomenta β, whereas for
the standard KR it is generally restricted to β = 0. Due to
these differences, the modified kicked rotor (MKR) is pre-
sented as a motivation and a benchmark for the main ideas.
All the experimental results are compared, not with MKR,
but with the simulations of the Floquet operator of the AOKR
averaged over quasimomenta β.

The MKR is introduced in Sec. II, and the modified atom-
optics kicked rotor (MAKR) presented at the end of that
section. The experimental and simulation results are reported
in subsequent sections.

II. MODIFIED ATOM-OPTICS KICKED ROTOR

The system of interest is a modified form of kicked rotor
given by [21]

H = p2

2
+ K cos(x)

∑
n

fM (n)δ(t − n), (1)

where p and x denote the dimensionless momentum and po-
sition, respectively, K is the chaos parameter, and time t is
scaled by the pulse period T such that t → t/T . If fM (n) = 1,
then Eq. (1) is just the standard KR. In this paper, | fM (n)| = 1,
and fM (n) changes sign after every M kicks. In rest of this
paper, Eq. (1) will be referred to as the MKR model, and it
can be thought of as a specific realization of a generalized KR
model in Ref. [25]. By discretizing the Hamilton’s equation of
motion corresponding to Eq. (1), a formal map connecting the
position and momentum variables at time n and n + 2M with
M � 1 can be written down as

xn+2M = F1(xn, pn), pn+2M = F2(xn, pn). (2)

In this, F1(, ) and F2(, ) are the map functions. In general, these
map functions are sufficiently simple for the stardard kicked
rotor but can be get increasingly cumbersome to write down
explicitly for M � 2. However, numerical determination of
the stroboscopic map is straightforward.

In Fig. 1 the classical stroboscopic section of KR (a), MKR
with M = 2 (b), and with M = 3 (c) for kick strength K = 5
is shown. As evident in Fig. 1(a), the phase space is largely
chaotic with a few regular islands. An ensemble of initial
conditions launched from these islands will remain bound
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FIG. 1. Stroboscopic plots of the standard (M = 0) and modified
kicked rotor (M > 0). The parameters are kick strength K = 5 and
(a) M = 0, (b) M = 2, and (c) M = 3. The regular islands in the
chaotic sea in (a) are nontransporting whereas those in (b) are trans-
porting in nature, albeit much smaller in size. The inset in (b) shows
an enlarged view of one of these islands. No regular structures are
visible in (c). The classical energy 〈E〉c growth for various vales of
M at K = 5 is shown in (d).

to these islands. In the case of MKR with M = 2, special
nonchaotic structures called transporting trajectories exist in
phase space as seen in the inset of Fig. 1(b). Transporting
islands are present in many periodically driven dynamical
systems, e.g., standard map [26], Hamiltonian ratchets [27],
atomic KR [28,29], and are usually referred to as the acceler-
ator modes because they support ballistic classical diffusion,
i.e., 〈E〉n ∝ n2, where n is the no of kicks. The quantum
accelerator modes have been realized in cold atom experi-
ments [30–32]. In the MKR, anomalous diffusion is observed
in which 〈E〉n ∝ nγ with 1 < γ < 2. Physically, this situation
arises due to the “stickiness” of the boundary between the
transporting trajectories and the chaotic sea. In contrast, the
phase space is chaotic for M = 3 [Fig. 1(c)] and leads to
normal diffusion. The classical energy 〈E〉c growth versus the
number of kicks is shown in Fig. 1(d) for various M values.
Due to the presence of transporting islands, it is clear that the
classical energy growth is enhanced for M = 2 when com-
pared that for other values of M. It also exhibits anomalous
diffusion compared to other values of M, which shows linear
diffusion. The transporting islands play a significant role in
quantum dynamics even though their area in the phase space
is tiny [21]. The presence of these transporting trajectories is
ambiguous for MKR with larger values of M [21]. Now let us
explore the quantum dynamics of MKR in the parameter space
where transporting trajectories are present in their classical
phase space of MKR with M = 2 as seen in Fig. 1(b) and
compare it with the properties of KR. The quantum dynam-
ics of MKR can be obtained by solving the time-dependent
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FIG. 2. (a) Pulse scheme for the regular and modified kicked
rotor at k = 5 and h̄eff = 1 (K = 5). For M = 2, the sign of K is
flipped alternatively. (b) Simulated energy evolution of KR (dashed
line) and MKR with M = 2 (solid line). The quantum energy 〈E〉q for
M = 2 localizes at a higher energy. Inset plots (on a semilogarithmic
scale) the momentum distribution of for the same at t = 1000.

Schrödinger equation corresponding to the MKR Hamilto-
nian. The split evolution technique is implemented to evolve
the initial state according to the Schrödinger equation [26].

To build the quantum dynamics of MKR, let us consider
the period-1 Floquet operator corresponding to the standard
kicked rotor F̂±

KR for which fM (n) is a constant, i.e., fM (n) is
either +1 or −1 for all n’s.

Thus, the required operator is

F̂±
KR = exp

[
i
h̄eff

2

∂2

∂x2

]
exp

[
∓i

K

h̄eff
cos(x)

]
, (3)

where h̄eff = T h̄ is the scaled Planck’s constant, k = K/h̄eff

denotes the strength of phase modulation imparted by the
kicks. Using this as the building block, the Floquet operator
for MKR can be constructed as M application of F̂+

KR followed
by M application of F̂+

KR. Thus, for MKR, we obtain

F̂MKR = (F̂−
KR)M (F̂+

KR)M . (4)

To implement this Floquet Hamiltonian in an atom-optics
experiment, the sign of the phase modulation must change
with periodicity M as dictated by Eq. (4). The kicking scheme
of Eq. (4) is shown in Fig. 2(a) and simulated time evolution
of mean quantum energy 〈E〉q is shown in Fig. 2(b) for KR
and MKR with M = 2. The inset in Fig. 2(b) represents the
momentum distribution. However, this type of Hamiltonian is

difficult to realize in experiments since it involves an abrupt
sign change of the kicking potential after M kicks. An alterna-
tive method to realize MKR is by introducing controlled time
delays after every M kicks [21]. Consider a wave function of
the system �(x, t ) at any time t . This can be expanded in the
momentum basis as

�(x, t ) =
∑

m

Am〈x|m〉, (5)

with Am being the expansion coefficients. The flipping of the
sign of K can also be thought of as a shift in the spatial
coordinate by π since K cos(x + π ) = −K cos x. Hence, it
is convenient to use x → x + π instead of K → −K . Now, to
see its effect on the momentum basis states, let us consider

�(x + π, t ) =
∑

m

Am〈x + π |m〉

=
∑

m

Am exp i(x + π )m

=
∑

m

(−1)mAm〈x|m〉. (6)

It is clear that the change in sign of kicking strength effectively
introduces a phase difference of π between the neighboring
states. This phase difference can also be generated by intro-
ducing time delays in the system. To see this, consider the
action of a free-evolution operator of MKR for t = T acting
on a momentum state,

exp(ip2T/2h̄)|m〉 = exp(im2h̄T/2)|m〉. (7)

From this, we can estimate the duration of free evolution Td re-
quired to obtain a phase difference of π between neighboring
momentum states. For a phase difference of π , the condition
to be satisfied is exp{ih̄Td [(m + 1)2 − m2]/2} = exp(iπ ), and
from this we get the time duration to be

Td = 2π

h̄
= 2πT

h̄eff
. (8)

This delay corresponds to half the Talbot time and has the
same effect as flipping the sign of the kick strength between
the pulses [21]. Figure 3(a) shows the kicking scheme for
MAKR with M= 2, 3 and 4. including the delay time Td .
Due to the presence of two periods, the system is no longer
periodic with time period T but has an effective period of
T (M − 1) + Td . Thus, the Floquet operator for the modified
atom-optics kicked rotor F̂MAKR is given by

F̂MAKR =
(

exp

[
−i

h̄Td

2
( p̂ + β )2

]
exp

[
−i

K

h̄eff
cos(x̂)

])

×
(

exp

[
−i

h̄eff

2
( p̂+ β )2

]
exp

[
−i

K

h̄eff
cos(x̂)

])M−1

= F̂KRF̂ M−1
KR . (9)

where p̂ = −i ∂
∂x and β is the quasimomentum. In this, F̂ M−1

KR

denotes M − 1 applications of F̂KR for time duration T , and
F̂KR denotes the application of the kicked rotor Floquet oper-
ator with a free propagation time of Td . The existence of two
time periods T and Td in the atom-optics version of the kicked
rotor system makes it different from the standard KR system.
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FIG. 3. (a) Kicking scheme for MAKR with M = 2–4. This
scheme also shows the delay time Td . (b) Mean quantum energy
〈E〉q evolution for different values of M at k = 5 and h̄eff = 1. The
solid lines and markers indicate the numerical simulation and the
experimental data, respectively.

It is worth pointing out that when studying resonance
phenomena for a finite-temperature cloud, we should take
into account β �= 0 since all the quasimomentum subspaces
are initially populated. The Floquet operator governing the
dynamics in each quasimomentum subspace is explicitly de-
pendent on β [see Eq. (9)]. This leads to the overall dynamics
exhibiting significant differences when compared to the case
of standard QKR in which case the dynamics are restricted
to the β = 0 subspace. At antiresonance AOKR exhibits a
significant momentum spread and a diffusive growth of the
particle energy, whereas the energy of the standard QKR is
localized [33]. In a thermal cold atom cloud, atoms have a
non-negligible initial velocity relative to the standing wave
potential, and this noninteger quasimomentum determines the
behavior under half-Talbot time kicking. Before the results are
discussed, a brief review of the experimental procedure is in
order.

III. ATOM-OPTICS EXPERIMENTAL SETUP

First, we discuss the experimental setup. The variables and
parameters of the kicked rotor system and AOKR are re-
lated as follows: x → 2kLx, p → 2kLT p/m, and h̄eff = 8ωrT

where kL, m, and ωr are the wave numbers of the optical
lattice beam, mass of the atoms and recoil frequency, respec-
tively. The amplitude modulation depth or the kick strength
is k = h̄�2τ/8, where �, , and τ are the resonant Rabi
frequency, the detuning of the light used to create the opti-
cal lattice potential, and the pulse duration, respectively. The
experimental setup is the same as described in Ref. [18].
We create a cold thermal ensemble of 87Rb consisting of
2 × 105 atoms every 12 s in a crossed optical dipole trap.
The temperature of the thermal cloud is about 5 μK. Before
the optical standing wave pulses are applied, the atoms are
present in the |F = 1, mF = −1〉 state. The laser used for
realizing the standing wave is locked to the |5 S1/2, F = 2〉 →
|5 S3/2, F ′ = 2〉 D2 transition at 780 nm and is, thus, 6.8 GHz
red-detuned from the atom’s accessible transition. To synthe-
size the MKR Hamiltonian, the off time between the δ pulses
is adjusted. The on-time τ of the standing wave is kept as
100 ns.

The experimental setup and the implementation sequence
is the same as reported in Ref. [18]. The quantum AOKR is
governed by two dimensionless parameters: h̄eff and K . To
keep K fixed, k is adjusted for different values of h̄eff . To
calibrate the kick strength k, we use Raman-Nath diffraction
on an almost ideal zero-momentum state, i.e., a Bose-Einstein
condensate. The number of atoms in the nth momentum state
after undergoing diffraction is a Bessel function J2

n (k). Thus,
k can be accurately determined by measuring the distribution
and fitting it to this Bessel distribution [34]. As mentioned
before, for MKR, we use a time delay of half-Talbot time
(∼33.17 μs for 87Rb and 2π/kL = 780 nm) to introduce ap-
propriate phase relations between the diffracted wave packets.
The timing error fluctuations are on the order of picoseconds
ensuring good control over tuning this phase according to the
Hamiltonian. The optical lattice is arranged in a retroreflected
configuration, making it more stable against vibrational phase
noise.

IV. EVOLUTION OF MEAN ENERGY

In experiments, the initial state consists of an ensemble
of atoms with a finite momentum spread. In order to model
a thermal cloud of cold atoms, numerical simulations are
performed using Eq. (9) operating on a Gaussian distributed
momentum state,

|ψ (t = 0)〉 =
∫ 1/2

−1/2
dβ

∞∑
p=−∞

Dp(β )1/2|p + β〉, (10)

where p ∈ Z, and Dp(β ) = 1
w

√
2π

exp(− (p+β )2

2w2 ) is the Gaus-
sian momentum distribution with zero mean and stan-
dard deviation w as a function of quasimomenta β ∈
(−1/2, 1/2) [33]. In practice, the summation over p in this
equation is carried out over only a finite set of momentum
basis states.

A. M = 2 case

The kicking scheme for MKR is shown in Fig. 3(a). The
time evolution of mean quantum energy from the numerical
simulations of MKR using Eq. (4) is shown in Fig. 3(b).
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For the standard KR, the mean energy displays the expected
linear increase for short times (within break-time tb of order
K2/2). For t > tb, the quantum effects become significant,
and dynamical localization is realized. For the same set of
parameters as that for KR except that M = 2 a pronounced
enhancement in the saturated energy is evident in this figure.
Dynamical localization occurs for M = 2 as well. In the case
of MKR with M = 2 and K = 5, transporting trajectories are
present in phase space as seen in Fig. 1(b). Thus, as argued in
Ref. [21] in the quantum regime, the mean energy correspond-
ing to MKR is enhanced with respect to the standard KR.
Furthermore, the width of momentum distribution [shown as
the inset in Fig. 2(b)] is also significantly enhanced for MKR
compared with KR. For other parameters as well, transport-
ing islands lead to an enhancement in quantum energy upon
depending on the size of the island [21]. In this paper, due
to experimental constraints, we will work with the parameters
used in Fig. 2 along with M = 3, 4.

Now, we will compare this phenomenology with the ex-
perimental results. Figure 3(a) shows the kicking scheme for
MAKR with M = 2–4 including the delay times Td . Fig-
ure 3(b) displays the corresponding results for mean energy
evolution from our atom-optics experiment. This figure shows
both the experimental data (solid symbols) as well as the
numerical simulations (lines) of MAKR obtained using the
Floquet operator in Eq. (9). A good agreement is observed
between the experimental and numerical simulations. At first
sight, it is tempting to attribute the energy enhancement seen
in the experiment entirely to the presence of transporting
islands. However, these islands exist in phase space only over
a small range of K . In the experiment, the value of kick
strength K suffers from approximately 10% error that washes
out most of the contribution arising from transporting islands.
Furthermore, the quantum contribution depends on the value
of effective Planck’s constant h̄eff relative to the classical
phase space structure whose effect is being probed [35]. In our
case, the values chosen for h̄eff are large relative to the small
area of transporting islands. Hence, the quantum contribution
of these island structures is not very significant. Bulk of the
enhancement arises due to the presence of two timescales T
and Td in the MAKR system. An interesting interplay between
the two time periods T and Td is seen. The time evolution
with a pulse period of T along with the kick strength k is
arranged such that it induces localization in the system. For
an initial state with significant momentum spread (w � 1) a
pulse period corresponding to half-Talbot time Td leads to
a linear diffusive growth in energy [6,33]. The dynamics of
MAKR is governed by the competition between these con-
trasting behaviors of localization and diffusion.

In our experiments, the MAKR system can be evolved
only up to 60 kicks due to constraints of the experimental
arrangement. For a finite number of total kicks N applied
to the atomic cloud, the number of the (diffusion inducing)
free-evolution phase with time period Td is Nd = N/M. The
number Nl of the localization-inducing evolution phase with
time period T is Nl = (M − 1)Nd . Thus, if M  1, then
Nl  Nd . In this scenario, localization effects dominate, and
diffusion is suppressed. This corresponds to the standard KR
limit [the lowermost curve (red curve) in Fig. 3(b)]. In the
other limit, as M → 1, diffusive growth of energy is strongly

favored over localization. The competition between these pro-
cesses determines the enhancement of saturated energy in the
MAKR system. In a short timescale, the localization is de-
stroyed by antiresonance, but eventually localization sets into
the system due to destructive interference in the momentum
space. In particular, the contribution of classical transporting
islands is not very significant. For M = 1, diffusion is dom-
inant, and localization is completely suppressed. For M = 2,
we get Nd = Nl . Hence, we can anticipate localization as well
as the diffusive phase. Consistent with this constraint, both the
experiment and the numerics [blue color in Fig. 3(b)] show
an enhancement induced by the diffusive phase as well as
localization in the form of saturated mean energy.

In particular, we emphasize that the contribution of classi-
cal transporting islands is not very significant for M = 2. This
argument presented above also implies that the enhancement
in saturated energy should be seen for M = 3, 4 as well even
though classically no transporting islands are present in phase
space [see Fig. 1(c)]. We will consider these cases in the next
section.

B. Case of M > 2

For M > 2, Nl > Nd . This guarantees that localization can
be seen for all M > 2’s. However, since Nd decays as M
increases, the diffusive phase weakens. Hence, at any given
number of kicks, the highest energy reached for M > 2 will
always be less than that for M = 2. Figure 3(b) displays
quantum energy 〈E〉q against the number of kicks for K = 5
and h̄eff = 1 for MAKR for M = 3 and M = 4. Even for
M = 3, 4, a significant enhancement in the energy is seen.
This is purely attributed to the half-Talbot time evolution’s
Td in the kicking sequence as the classical phase space is
completely chaotic. As argued in the previous section, two
competing effects are at play—localization induced by the
evolution over time-period T and diffusion due to time delay
Td . The long-time behavior of MKR would exhibit complete
localization [21], even though it is not apparent in Fig. 3(b)
due to the small number of kicks in the experiment.

From Fig. 4(a) of the momentum distribution in the semi-
logarithmic scale for KR and MAKR with M = 2–4 deduced
from absorption images shown in Fig. 4(b). It is clear that the
width of the distribution is larger for M = 2–4 as compared
to that of standard KR. This is also visible in the absorption
images that carry more weight in the higher momentum states.
After many kicks, numerical simulations begin to deviate
from experimental data in Fig. 4 due to errors in deducing the
number of atoms in the higher momentum states via absorp-
tion imaging. The experimental momentum distribution for
M = 2–4 are qualitatively similar and show a nonexponential
profile. Hence, the localization length is not a good measure
to quantify the extent of localization.

For a wave function (in momentum representation) 〈m|ψ〉,
one of the commonly used localization measures is the inverse
participation ratio (IPR), defined as [36]

ID =
D∑

m=1

|〈m|ψ〉|4, (11)
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denote experimental and simulated momentum profiles, respectively.
M = 2 clearly shows enhanced localization length. (b) Absorption
images for different values of M with h̄eff = 1 and K = 5.

where D is the dimension of the Hilbert space in which 〈m|ψ〉
resides. A localized wave function will have ID ∼ 1, whereas
for a completely delocalized wave function ID ∝ 1/D. Smaller
values of ID correspond to wave functions spread over larger
set of basis states. As evident in Fig. 5, the IPR for M = 2–4
all have a much lower value compared to the KR, implying the
spread in the momentum distribution and energy enhancement
compared to KR. But ID for M = 2–4 are very close to each
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FIG. 5. IPR for experimental data as a function of M for different
values of h̄eff whereas maintaining the kick strength constant at K =
5. Errors bars for experimental data lie within the marker, hence, they
are not shown here.

other, indicating that the spread is almost the same for all
of them. As transporting islands of significant size are only
present in the case of MKR with M = 2 (k = 5), one would
expect to have a maximum energy enhancement and momen-
tum distribution spread for M = 2 [21]. But in our case, we
observe the momentum distribution to be very close to each
other for all the M = 2–4. This implies that the enhancement
in the localization length or momentum distribution spread
arising from transporting islands for M = 2 is less signifi-
cant in MAKR. The dynamics is largely determined through
the interplay of two time periods in the system. It has been
shown that very small changes to the system parameters (k
and h̄eff ) can lead to the destruction of transporting islands
present in the classical phase space and nonexponential shape
of quantum momentum distribution [21]. This change in the
line shape for dynamical localization even occurs without
causing an obvious difference in energy absorption behav-
ior. A similar type of enhancement of dynamical localization
length and energy absorption is observed for various values
of M and for a range of parameters k and h̄eff in the MKR
model. The only requirement being that k should be suffi-
ciently large for dynamical localization to take place in the
system. As in the standard KR, the experimental data in Fig. 5
shows that for a fixed M, a decrease in h̄eff is associated with
broadening of the wave function profile. Hence, ID increases
as h̄eff → 0.

V. CONCLUSIONS

In this paper, we have studied a modified kicked rotor
model as well as its experimental implementation in an equiv-
alent atom-optics based test bed. The model considered here
is the modified atom-optics kicked rotor model in which the
sign of the kick strength (in the standard KR) is flipped after
every M kicks. In the experiment, the modified atomic kicked
rotor is realized by introducing appropriate time delays (equal
to half-Talbot time) in the kicking sequence, which is equiv-
alent to flipping the sign of the kick strength. Introduction of
periodic time delays in the KR system creates drastic changes
in the dynamics as a result of two competing effects—one is
the localization effects induced by periodic kick sequences of
time period T and the other is the diffusive effects induced by
sequences with delay time Td equal to the half-Talbot time.
It is shown that the modified atom-optics kicked rotor system
with M = 2–4 shows enhanced quantum mean energies when
compared to the standard kicked rotor model. The competition
between the two time periods, T and Td , explains the observed
mean energy dynamics and it is not dependent on the pres-
ence or absence of the transporting islands in classical phase
space. Whereas quantum mean energy enhancement can be
engineered by taking advantage of the presence of transport-
ing islands in classical phase space, it provides a somewhat
restrictive framework. In contrast, this paper emphasizes that
quantum mean energy enhancement is possible without reply-
ing on classical features in the atom-optics kicked rotor. This
is shown through numerical simulations of AOKR and in the
experiments.

These results are of intrinsic interest in the quantum chaos
of kicked rotor, but also in the broader context of quantum
control. Techniques to control the quantum systems with
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classically chaotic behavior has become an active area of
research interest over the years. Through this paper, we have
demonstrated a control over the best-known phenomenon ex-
perimentally in quantum chaos. The dynamical localization
can be enhanced over a wide range of parameters provided the
system is classically chaotic. Apart from the atom-optics real-
ization of KR and MKR, it would also be interesting to explore
the dynamics of a molecular version of KR and MKR, i.e., di-
atomic cloud periodically kicked by strong microwave fields.
Another promising direction to look at is the experimental
realization of KR and MKR in a square-well potential [37].
Along this direction, an interesting model (which is very
different from the one discussed here) has been proposed for
the study of classical and quantum anomalous diffusion [38].

These efforts might lead to a broader understanding of dif-
fusion and localization in time-dependent chaotic quantum
systems.
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