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Despite the prevalence of biological and physical systems for which synchronization is critical, existing theory
for optimizing synchrony depends on global information and does not sufficiently explore local mechanisms that
enhance synchronization. Thus, there is a lack of understanding for the self-organized, collective processes that
aim to optimize or repair synchronous systems, e.g., the dynamics of paracrine signaling within cardiac cells.
Here we present “grass-roots” optimization of synchronization, which is a multiscale mechanism in which local
optimizations of smaller subsystems cooperate to collectively optimize an entire system. Considering models
of cardiac tissue and a power grid, we show that grass-roots-optimized systems are comparable to globally
optimized systems, but they also have the added benefit of being robust to targeted attacks or subsystem islanding.
Our findings motivate and support further investigation into the physics of local mechanisms that can support
self-optimization for complex systems.
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I. INTRODUCTION

The ability for large systems of dynamical units to self-
organize and produce robust collective behavior continues to
drive a large body of research [1,2]. Applications include car-
diac dynamics [3], brain dynamics [4], cell signaling [5], and
power grids [6]. Weak synchronization and desynchronization
events often lead to pathological behavior, e.g., spiral wave
breakup in cardiac tissue [7,8] and black outs in power grids
[9], thereby motivating optimized systems for strong, robust
synchronization.

While man-made systems such as power grids can be
designed using global structural and dynamical information
[10,11], such information is likely unavailable to biologi-
cal processes that are known to rely on local interactions,
such as cell-to-cell paracrine signaling among cardiac cells
[12]. While a great deal is known about how biological sys-
tems function, comparatively little is understood about the
self-optimization processes responsible for constructing and
maintaining or repairing such systems. Moreover, it is rea-
sonable to hypothesize that optimization is itself a collective,
coordinated behavior. A stronger theoretical understanding
of mechanisms for collective self-optimization may deepen
our understanding of diverse biological systems and has the
potential to revolutionize the way we engineer systems (or
rather, design systems to engineer themselves). Collective
optimizations constitute an underexplored family of collective
behavior and there is a lack of multiscale optimization theory
to provide insight into how local optimizations might coordi-
nate to globally optimize both synchronous and other kinds of
systems.

*persebastian.skardal@trincoll.edu

In this paper, we explore grass-roots optimization for cou-
pled oscillator networks, whereby the parallel optimization
of smaller subsystems can be coordinated to collectively
optimize the global synchronization properties of the entire
system. In general, subsystems can be defined in a variety
of ways: community structure [13], spatially distinct regions
in a geometric network [14], or other partitions of a net-
work after a geometric embedding [15]. Such locally defined
subsystems are consistent with the tissue microenvironments
that emerge via paracrine signaling in cardiac tissue un-
dergoing stem cell therapy [12]. Our main finding is an
intuitive multiscale mechanism for grass-roots optimization of
synchronization that involves two steps: local subsystem opti-
mization, whereby subsystems are independently optimized in
parallel; and global subsystem balancing, whereby the subsys-
tems are balanced with one another. Grass-roots optimization
coordinates two seemingly contrasting ideas whereby (i) opti-
mized networks tend to connect dissimilar oscillators and (ii)
similarity between two oscillators promotes their entrainment.
Specifically, a multiscale approach allows subsystems to be
treated as near-identical “macrooscillators” while preserving
and taking advantage of heterogeneity on a microscopic scale.

We demonstrate the utility of grass-roots optimization
across a range of networks where subsystems arise naturally:
random networks with communities, a power grid, and a
geometric network model. Moving beyond phase oscillators,
we also use a nonlinear cardiac pacemaker model for which
we optimize voltage and gating variables of pacemaker cells
[16]. In addition to successfully optimizing synchronization
dynamics, grass-roots-optimized systems also have the added
benefit of being more robust to subsystem dismantling un-
der a targeted attack or intentional islanding than globally
optimized systems. These experiments highlight grass-roots
optimization as a viable mechanism by which diverse types
of systems can robustly self-optimize, providing a plausible
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FIG. 1. Grass-roots optimization for a network of heterogenous phase oscillators. (a) Visualization of Kuramoto order parameter r ∈ [0, 1]
and mean field ψ ∈ [0, 2π ) for a set {θ j} of oscillator phases with θ j ∈ [0, 2π ). Strong phase synchronization occurs when θi ≈ θ j for any i
and j, which yields r ≈ 1. (b) Synchrony-optimized networks that maximize r can be obtained using the synchrony alignment function (SAF)
[22], which reveals two microscale, intuitive mechanisms that promote synchronization: positive correlations between an oscillator’s natural
frequency ωi and its associated node degree di; and negative correlations among the frequencies ωi and ω j of neighboring oscillators i and j.
(c) Here, we develop grass-roots optimization to reveal a multiscale mechanism for optimization with two steps: the mean frequency 〈ω(s)〉
within each subsystem s is balanced across the subsystems; and subsystems are separately optimized.

mechanism to support biological systems as well as decentral-
ized engineering strategies for complex man-made systems.

The remainder of this paper is organized as follows. In
Sec. II we summarize some preliminaries and present our
main result: a grass-roots optimization framework for network
synchronization. In Sec. III we present numerical experiments
to highlight the effectiveness of this framework, and in Sec. IV
we conclude with a discussion of our results.

II. MAIN RESULTS

Here, we review a synchronization optimization frame-
work in Sec. II A, present a local approximation theory
for optimization in Sec. II B, and develop a grass-roots-
optimization framework for synchronization in Sec. II C. We
visualize visualize synchrony optimization and our grass-
roots approach in Fig. 1.

A. Synchrony alignment function

We begin by reviewing the synchrony alignment function
for the optimization of networks of heterogeneous oscillators.
Consider a network of coupled, heterogeneous phase oscilla-
tors whose dynamics are given by

θ̇i = ωi + K
N∑

j=1

Ai jH (θ j − θi ), (1)

where θi and ωi are the phase and natural frequency of oscilla-
tor i = 1, . . . , N , parameter K is the global coupling strength,
the network structure is encoded in an adjacency matrix A,
and H is a 2π -periodic coupling function. Here, we focus on
the case of unweighted, undirected networks with Ai j = 1 if
oscillators i and j are connected and 0 otherwise, although
these properties may be relaxed without much trouble. We

also use classical Kuramoto coupling [17], i.e., H (·) = sin(·),
but emphasize that one may choose other functions H pro-
vided that H ′(0) > 0 and H (�θ ) = 0 for some �θ near zero.
Notably, phase oscillator models such as Eq. (1) were found to
be suitable models for naturally occuring phenomena such as
chromosomal coordination [18] and integrate and fire dynam-
ics of cardiac pacemakers [19], as well as mechanical systems
such as power grids [20,21].

The degree of synchronization is measured by the magni-
tude r ∈ [0, 1] of the Kuramoto order parameter

reiψ = N−1
N∑

j=1

eiθ j , (2)

which we illustrate for a strongly synchronized state in
Fig. 1(a). By linearizing around the synchronized state one
obtains

r ≈ 1 − J (ω, L)

2K2
, (3)

where

J (ω, L) = 1

N

N∑
j=2

〈v j,ω〉2

λ2
j

(4)

is the synchrony alignment function (SAF) [22]. The SAF
utilizes the alignment of the natural frequencies ω with the
eigenvalues {λ j}N

j=1 and eigenvectors {v j}N
j=1 of the combina-

torial Laplacian, L = D − A, where D = diag(k1, . . . , kN ) is a
diagonal matrix that encodes the nodal degrees ki = ∑N

j=1 Ai j .
Synchronization is optimized (i.e., r is maximized) by mini-
mizing J (ω, L), which may be done by aligning ω with the
eigenvectors of L that are associated with larger eigenvalues.
The SAF framework was utilized across several optimiza-
tion scenarios, including undirected and directed networks
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[22,23], finding optimal perturbations and network rewirings
[24,25], synchronizing phase-coherent chaotic oscillator net-
works [26], and dealing with frequency uncertainty [27].

Minimizing the SAF with ω ∝ vN also reveals intuitive key
properties of synchrony optimized systems including degree-
frequency correlations and anticorrelations between neighbor-
ing frequencies [22]. These are illustrated in Fig. 1(b), as
neighboring oscillators tend to have frequencies with opposite
signs, and high-degree nodes tend to be substantially faster or
slower (i.e., larger or smaller natural frequencies) with respect
to the average. While such local properties are associated
with optimization, they alone do not guarantee it, nor do they
offer insight toward mesoscale or multiscale properties and
mechanisms enabling collective optimization.

B. Local approximation for networks with two subsystems

Here, we present a local approximation of the SAF, which
which we will use to identify a multiscale mechanism under-
lying grass-roots optimization. For simplicity, here we only
consider the case of a network with two subsystems, leaving
further generalization to the Appendix. The three subsystem
case is detailed in Appendix A, and generalization to an arbi-
trary number of subsystems is discussed in Appendix B.

Writing the adjacency matrix as A = [ A(1) B(12)

B(12)T A(2) ], where

A(1) ∈ RN1×N1 , A(2) ∈ RN2×N2 , B(12) ∈ RN1×N2 , and N1 and N2

are the sizes of the respective subsystems, the Laplacian is
given by L = L0 + LB, where L0 = diag(L(1), L(2) ), L(1,2) =
D(1,2) − A(1,2), and LB = [ DB(12) −B(12)

−B(12)T DB(12)T
] with diagonal ma-

trices DB(12) and DB(12)T whose entries are row sums of B(12)

and B(12)T , respectively. We assume B(12) to be sparser than
A(1) and A(2) so that ‖LB‖ 	 ‖L0‖ under a suitable ma-
trix norm (e.g., the Frobenius norm). We then define �L =

(‖L0‖/‖LB‖)LB so that L(ε) = L0 + ε�L recovers the origi-
nal network structure for the choice ε = ‖LB‖/‖L0‖ 	 1.

Next, we discuss the spectral properties of L0. Since this
matrix encodes the two subsystems in isolation, its eigenvalue
spectrum is the union of the eigenvalue spectrum of L(1)

and L(2). Specifically, ordering the eigenvalues of L(1) and
L(2), respectively, 0 = μ1 < μ2 � · · · � μN1 and 0 = ν1 <

ν2 � · · · � νN2 (where we assume that the subsystems are
themselves connected), this implies that L0 has two zero
eigenvalues, λ1 = λ2 = 0, with the rest positive, so that the
nullspace of L0 requires some care. Rather than choosing
eigenvectors v1 ∝ [1, 0]T and v2 ∝ [0, 1]T , whose entries are
constant within one subsystem and zero within the other, it
is advantageous to instead choose v1 = 1√

N
[1, 1]T and v2 =

√
N1N2

N [1/N1,−1/N2]T so that v1 is independent of ε and char-
acterizes the nullspace of L(ε), and v2 is associated with an
eigenvalue that converges to 0 as ε → 0, but is strictly posi-
tive for ε > 0. The other N − 2 eigenvectors of L0 are given
by {v j}N

j=3 = {[u j, 0]T }N1
j=2

⋃{[0, x j]T }N2
j=2, where {u j}N1

j=1 and

{x j}N2
j=1 are the eigenvectors of L(1) and L(2).

Considering 0 < ε 	 1, each eigenvalue of L(ε) varies
continuously with ε [28], so we may write λ j (ε) = λ j +
εδλ

(1)
j + ε2δλ

(2)
j + O(ε3). We similarly assume v j (ε) = v j +

εδv j(1) + ε2δv j(2) + O(ε3). Since λ2(ε) 	 1 and λ j (ε) ∼ 1
for j = 3, . . . , N , the term associated with j = 2 needs to be
treated separately, so we write

J[ω, L(ε)] = 1

N

〈ω, v2(ε)〉2

λ2
2(ε)

+ 1

N

N∑
j=3

〈ω, v j (ε)〉2

λ2
j (ε)

. (5)

Upon expanding the N − 1 terms contributing to the SAF in
Eq. (5), we find that they all take a similar form except for a
factor of ε,

( 〈ω, v j (ε)〉
λ j (ε)

)2

= εα j

( 〈ω, v j〉2

(λ j )2

)
+ ε1+α j

(
2〈ω, v j〉〈ω, δv j(1)

〉
(λ j )2

− 2δλ
(1)
j 〈ω, v j〉2

(λ j )3

)

+ ε2+α j

(〈
ω, δv j(1)

〉2 + 2〈ω, v j〉〈ω, δv j(2)
〉

(λ j )2
− 4δλ

(1)
j 〈ω, v j〉〈ω, δv j(1)

〉
(λ j )3

+
(
3
(
δλ

(1)
j

)2 − 2λ jδλ
(2)
j

)〈ω, v j〉2

(λ j )4

)

+ O(ε3+α j ), (6)

where α j = −2 when j = 2, but is otherwise zero. Due to the different scaling with ε, the terms associated with j = 2 are larger
than those for j � 3. Inserting Eq. (6) into Eq. (5) yields

J[ω, L(ε)] = ε−2N−1

(
〈ω, v2〉2(
δλ

(1)
2

)2

)
+ ε−1N−1

(
2〈ω, v2〉〈ω, δv2(1)

〉
(
δλ

(1)
2

)2 − 2δλ
(2)
2 〈ω, v2〉2(
δλ

(1)
2

)3

)

+ N−1

(〈
ω, δv2(1)

〉2 + 2〈ω, v2〉〈ω, δv2(2)
〉

(
δλ

(1)
2

)2 − 4δλ
(2)
2 〈ω, v2〉〈ω, δv2(1)

〉
(
δλ

(1)
2

)3 +
(
3
(
δλ

(2)
2

)2 − 2δλ
(1)
2 δλ

(3)
2

)〈ω, v2〉2(
δλ

(1)
2

)4

)

+ η1J (ω1, L1) + η2J (ω2, L2) + εN−1
N∑

j=3

(
2〈ω, v j〉〈ω, δv j(1)

〉
(λ j )2

− 2δλ
(1)
j 〈ω, v j〉2

(λ j )3

)
+ O(εN−1, ε2), (7)
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where we used that 1
N

∑N
j=3

〈ω,v j〉2

λ2
j

= η1J (ω(1), L(1) ) +
η2J (ω(2), L(2) ) and ηs = Ns/N is the fraction of nodes in
subsystem s ∈ {1, 2}. We note that Eq. (7) diverges in the
limit ε → 0, as does Eq. (5) and, in fact, so does the original
SAF in Eq. (4). However, in this limit the network becomes
disconnected, so we are interested in the behavior of Eq. (7)
for finite, but small ε.

While Eq. (7) may appear daunting, the key insight is
that the inner product 〈ω, v2〉 appears in several leading-
order terms. Recalling the structure of v2, and writing ω =
[ω(1),ω(2)]T , where ω(1) and ω(2) are the frequency vectors
corresponding to the two subsystems, we have that 〈ω, v2〉 =√

η1η2(〈ω(1)〉 − 〈ω(2)〉). Thus, if the subsystems’ mean fre-
quencies can be engineered to match 〈ω(1)〉 = 〈ω(2)〉 then
many terms vanish to yield

J[ω, L(ε)]

= η1J
(
ω(1), L1

) + η2J
(
ω(2), L2

)
+ εN−1

N∑
j=3

(
2〈ω, v j〉〈ω, δv j(1)

〉
(λ j )2

− 2δλ
(1)
j 〈ω, v j〉2

(λ j )3

)

+ N−1

〈
ω, δv2(1)

〉2
(
δλ

(1)
2

)2 + O(N−1ε, ε2), (8)

which has the leading-order approximation

J[ω, L(ε)] ≈ η1J
(
ω(1), L1

) + η2J
(
ω(2), L2

)
. (9)

Thus, when the subsystems’ mean frequencies are equal, or
nearly equal, we find that the SAF of the full system can be
approximated as the weighted average of the SAFs for the
subsystems. A generalization of this theory is presented in
Appendixes A and B, and we discuss and utilize these results
in the next section.

C. Grass-roots optimization of phase synchronization

We now present a method for grass-roots optimization of
synchronization, including a multiscale mechanism in which
subsystems coordinate local optimizations to optimize a sys-
tem’s global synchronization properties. Consider a network
that can be partitioned into C subsystems such that the adja-
cency matrix A may be rewritten in a block form A = AD + B,
where AD = diag(A(1), . . . , A(C) ) is a block-diagonal matrix
containing the subsystems’ adjacency matrices, and the off-
diagonal blocks of B encode edges between subsystems. We
assume that the blocks in B are sparser than the diagonal
blocks in AD and that the diagonal blocks in B are matrices
of zeros. For each subsystem s, we define its associated com-
binatorial Laplacian matrix L(s) and its associated vector ω(s)

of frequencies.
As we show in the Appendixes, under the condition where

the subsystems’ mean oscillator frequencies are equal, the
SAF for the full system may be approximated by a linear
combination of the subsystem-specific SAFs

J (ω, L) ≈ η1J
(
ω(1), L(1)

) + · · · + ηCJ
(
ω(C), L(C)

)
, (10)

where ηs is the relative size of subsystem s. This result
leads to the following multiscale mechanism for grass-roots
optimization:

(i) Global balancing of subsystems: Achieve a balanced
set of local mean frequencies across all C subsystems, i.e.,
minimize maxs,s′ |〈ω(s)〉 − 〈ω(s′ )〉|;

(ii) Local optimization of subsystems: Optimize the local
SAFs, i.e., minimize each J (ω(s), L(s) ).

These two steps are illustrated in Fig. 1(c), where the
network is divided into disjoint subsystems which are then
balanced and separately optimized. This framework is flexi-
ble and fits a wide range of application-specific constraints.
These two intuitive steps help fill the theoretical gap between
existing global optimization theory and local heuristics that
promote synchrony.

III. NUMERICAL EXPERIMENTS

In this section we present numerical experiments to high-
light the utility of grass roots optimization for network
synchronization. In Sec. III A we show that globally opti-
mized and and grass-roots-optimized systems have similar
synchronization properties. In Sec. III B we show that grass-
roots-optimized networks have the added advantage of being
robust to subsystem islanding or fragmentation. In Sec. III C
we highlight how the framework is also effective for optimiz-
ing a cardiac dynamics model that does not fit the precise form
of Eq. (1).

A. Grass-roots optimization for three network examples

We now illustrate the effectiveness of grass-roots opti-
mization across three classes of networks: (i) networks with
community structure (generated by the stochastic block model
[29] with two communities of sizes N (1;2) = 100 and mean
intra and interdegrees 〈k(1;2)〉 = 5 and 〈k(12)〉 = 1); (ii) the
RTS 96 power grid [30]; (iii) and noisy geometric networks
[31] (with N = 200 nodes placed randomly in a 4 × 1 box
with 95% of links placed between the closest possible nodes
pairs and the other 5% of links placed randomly, with a
mean degree of 〈k〉 = 8). As shown in Figs. 2(a) to 2(c), we
partition the three classes of networks into two, three, and
four subsystems, respectively. (The four subsystems of the
geometric networks are defined by the ± sign combinations
in the first two nontrivial eigenvectors of L.) For each net-
work, we assume that natural frequencies are given and cannot
be modified, but may be rearranged. Thus, a global balance
between subsystems [step (i)] may be obtained by shuffling
frequencies between subsystems, while the subsystems may
be locally optimized [step (ii)] by then shuffling frequencies
within each subsystem. To optimize each network, we use an
accept-reject algorithm, proposing 5 × 104 switches between
randomly chosen pairs of frequencies and accepting switches
that decrease the SAF.

In Figs. 2(d) to 2(f), we plot r versus K for systems with
randomly allocated (green triangles), globally optimized (blue
circles), and grass-roots-optimized (red crosses) frequencies
for the three classes of networks. All data points are averaged
across 50 random networks and natural frequency realizations
(drawn from the standard normal distribution) except for the
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FIG. 2. Grass-roots optimization. Illustrations of (a) a random network with two communities, (b) the IEEE RTS 96 power grid, and (c) a
random geometric network. (d)–(f) The degree of synchronization r and (g)–(i) synchronization error 1 − r as a function of coupling strength
K for the three respective network types with either randomly allocated frequencies (green triangles), globally optimized frequencies (blue
circles), or grass-roots-optimized frequencies (red crosses).

power grid, where the same network is used. Note the com-
parably strong synchronization properties for both the global
and grass-roots-optimized cases, and that sometimes grass-
roots-optimized systems even exhibit stronger synchrony than
the globally optimized systems due to the optimization algo-
rithms’ stochasticity. To differentiate the two cases we plot
the synchronization error 1 − r versus K in a log-log scale
in Figs. 2(g) to 2(i), revealing that grass-roots optimization is
effective across a wide range of network structures.

B. Application to islanding of power grids

Here we highlight an advantage of grass-roots-optimized
networks versus globally optimized networks: they yield net-
works whose synchronzation properties are more robust to
when subsystems are islanded or dismantled from one an-
other. For instance, modern power grids feature microgrids:
smaller subsystems that island (i.e., separate) themselves from
the larger grid [20]. We predict such a feature to be advanta-
geous in biological processes, which is a main motivator for
our work.

As an example, we consider the RTS 96 power grid be-
fore and after the islanding of three subsystems [illustrated
in Fig. 3(c)]. In Fig. 3(a) we plot the time series of the
three local order parameters using global (solid blue) and
grass-root (dashed red) optimization with K = 1 and nor-
mally distributed frequencies. Edges between subsystems are
removed at time t = 0. Before islanding (t < 0) both cases
display strong synchronization properties. After islanding
(t � 0) the globally optimized system displays significantly
weaker synchronization properties and a desynchronization
event (indicated by oscillations). On the other hand, the grass-
roots optimized system maintains its strong synchronization
properties. This is further demonstrated in Fig. 3(b), where

we plot the density of local, i.e., subsystem-specific, SAFs for
globally (solid blue), and grass-roots (dashed red) optimized
systems obtained from 104 realizations. We indicate the re-
spective means J (ω(s), L(s) ) = 0.1427 and 0.0629 of the local
SAFs with vertical lines.

C. Application to cardiac pacemakers

Next we demonstrate that grass-roots optimization may be
effectively used to optimize oscillator systems that do not fit
the specific form of Eq. (1). We study a model of cardiac
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FIG. 3. Robustness to islanding and target attacks. (a) Example
of local (subsystem) order parameters for the RTS 96 power grid
before and after islanding at t = 0 for global (solid blue) and grass-
roots (dashed red) optimization. (b) Density of local (subsystem)
SAFs after islanding for global (solid blue) and grass-roots (dashed
red) optimization. (c) Illustration of the islanded subsystems.
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FIG. 4. Grass-roots optimization of cardiac pacemakers. For a
geometric network of N = 100 cardiac pacemakers with two sub-
systems, the time series of non-dimensional voltage for (a) random,
(b) globally optimized, and (c) grass-roots-optimized allocations.

pacemaker cells [16] whose states (vi, hi ) for i = 1, . . . , N
correspond to non-dimensional voltage and a gating variables
that summarize ionic concentrations and evolve via

v̇i = τ−1
i f (vi, hi ) + Kv

∑
j=1

Ai j (v j − vi ), (11)

ḣi = τ−1
i g(vi, hi ) + Kh

∑
j=1

Ai j (h j − hi ), (12)

where f (v, h) = h(v + 0.2)2(1 − v)/0.3 − v/6 and g(v, h)
= 1/150 + (8.333 × 10−4)[1 − sgn(v − 0.13)]{0.5[1 −
sgn(v − 0.13)] − h}. The timescales τi represent local
heterogeneity, scaling the period of each isolated cell,
resulting in an effective natural frequency proportional to τ−1

i .
We consider a geometric network of N = 100 pacemakers
with two subsystems, take τ−1

i to be uniformly distributed in
[0.4,1.6], and use Kv = 0.0072 and Kh = 0.0035 (to indicate
a stronger coupling via the voltage diffusion compared to
ionic diffusion). We then implemented random, globally
optimized, and grass-roots-optimized allocations, plotting
the resulting time series of voltage in Figs. 4(a) to 4(c),
respectively. Individual time series vi(t ) are plotted lightly,
while the mean is plotted with a dark stroke. Despite the stiff,
nonlinear dynamics, both grass-roots and global optimization
work remarkably well, yielding a strong, robust series of
mean action potentials, while the random allocation does not.

IV. DISCUSSION

While recent progress has been made in optimizing col-
lective behavior in complex systems, the resulting techniques
and methodologies rely largely on global network information
[10,11,22–24]. Given direct evidence of paracrine signaling,
i.e., local communication, in biological systems, and the
likelihood that global information is unavailable, the collec-
tive, self-organizing processes by which naturally occurring
systems self-optimize remain an open critical question. Grass-
roots optimization is a multiscale mechanism for coordinating
and optimizing the local synchronization properties of a net-
work’s subsystems that provides a plausible mechanism for
self-optimization in biological and other systems, such as
cardiac pacemakers [3] and genetic oscillators [18]. It can also
support the design of decentralized, parallelizable and scal-
able algorithms to engineer man-made systems that are robust
to network dismantling. Notably, these very same features

may have provided an evolutionary advantage for biological
systems that crucially depend on synchronization.
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APPENDIX A: LOCAL APPROXIMATION OF THE SAF
FOR NETWORKS WITH THREE SUBSYSTEMS

To provide insight into systems with more than two sub-
systems, we present here the case of three subsystems and
derive a local approximation to the SAF analogous to the one
which we presented in the main text. In this case the network
adjacency matrix can be written in block form as

A =

⎡
⎢⎣

A(1) B(12) B(13)

B(12)T A(2) B(23)

B(13)T B(23)T A(3)

⎤
⎥⎦, (A1)

where A(1), A(2), and A(3) are the adjacency matrices for
the three subsystems and B(12), B(13), and B(23) captures the
connections between the respective subsystems. We denote
the sizes of the three subsystems by N1, N2, and N3 so that
A(1) ∈ RN1×N1 , A(2) ∈ RN2×N2 , A(3) ∈ RN3×N3 , B(12) ∈ RN1×N2 ,
B(13) ∈ RN1×N3 , and B(23) ∈ RN2×N3 . We are interested then in
the perturbed combinatorial Laplacian, given by

L(ε) = L0 + ε�L, (A2)

where

L0 =

⎡
⎢⎣

L(1) 0 0

0 L(2) 0

0 0 L(3)

⎤
⎥⎦, (A3)

�L = (‖L0‖/‖LB‖)LB, and

LB =

⎡
⎢⎣

DB(12)+B(13) −B(12) −B(13)

−B(12)T DB(12)T +B(23) −B(23)

−B(13)T −B(23)T DB(13)T +B(23)T

⎤
⎥⎦. (A4)

Once again, the choice ε = ‖LB‖/‖L0‖ 	 1 recovers the orig-
inal Laplacian matrix.

As in the two-subsystem case, it is useful to first discuss the
spectral properties of L0. Since it is a block-diagonal matrix,
its eigenvalues are given by the union of the eigenvalues of the
respective blocks,

{λ j}N
j=1 = {μ j}N1

j=1

⋃
{ν j}N2

j=1

⋃
{η j}N3

j=1, (A5)

where {μ j}N1
j=1 denotes the eigenvalues of L(1), {ν j}N2

j=1 denotes

the eigenvalues of L(2), and {η j}N3
j=1 denotes the eigenvalues of
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L(3). The associated eigenvectors are given by

{v j}N
j=1 =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

u j

0

0

⎤
⎥⎦

⎫⎪⎬
⎪⎭

N1

j=1

⋃ ⎧⎪⎨
⎪⎩

⎡
⎢⎣

0

x j

0

⎤
⎥⎦

⎫⎪⎬
⎪⎭

N2

j=1

⋃ ⎧⎪⎨
⎪⎩

⎡
⎢⎣

0

0

y j

⎤
⎥⎦

⎫⎪⎬
⎪⎭

N3

j=1

,

(A6)

where {u j}N1
j=1, {x j}N2

j=1, and {y j}N3
j=1 are the associated eigen-

vectors for L(1), L(2), and L(3), respectively. The most critical
observation to make is that each diagonal block of L0 has
a trivial eigenvalue, namely, μ1, ν1, η1 = 0, so the nullspace
of L0 is three-dimensional since it has a triple eigenvalue
degeneracy at λ1,2,3 = 0. It is then convenient to rewrite the
basis vectors for this trivial eigenspace using the following
eigenvectors:

v1 = 1√
N

⎡
⎢⎣

1

1

1

⎤
⎥⎦, v2 =

√
N1N2

N1 + N2

⎡
⎢⎣

1/N1

−1/N2

0

⎤
⎥⎦,

v3 =
√

N2N3

N2 + N3

⎡
⎢⎣

0

1/N2

−1/N3

⎤
⎥⎦, (A7)

where, similar to the two subsystem case, v1 is the constant-
valued eigenvector that is associated with the synchronization
manifold and whose eigenvalue λ1 = 0 remains constant as ε

increases [i.e., v1(ε) = v1 regardless of ε]. On the other hand,
v2 and v3 will play important roles in the perturbation analysis
since λ2(ε) and λ3(ε) must take positive values for any ε > 0.

We note that the vector
√

N1N3/(N1 + N3)[
1/N1

0
−1T /N3

] may also

be used in place of either v2 or v3, but as it is just a linear
combination of the two vectors already chosen, it yields the
same results given below.

Given the initial spectral properties of L0, we consider
the following perturbative expansions. Specifically, for the
eigenvalues of L(ε) we have

λ j (ε) = εδλ
(1)
j + ε2δλ

(2)
j + O(ε3), (A8)

for j = 2, 3 and

λ j (ε) = λ j + εδλ
(1)
j + ε2δλ

(2)
j + O(ε3), (A9)

for j = 4, . . . , N . We again assume that the eigenvectors of
L(ε) are continuously differentiable to approximate

v j (ε) = v j + εδv j(1) + ε2δv j(2) + O(ε3). (A10)

for j = 2, . . . , N .
Our primary interest is the SAF of the perturbed network,

and as we did in the two subsystem case with the term associ-
ated with j = 2, here we will treat the terms associated with
j = 2 and 3 separately:

J[ω, L(ε)] = 1

N

( 〈ω, v2(ε)〉
λ2(ε)

)2

+ 1

N

( 〈ω, v3(ε)〉
λ3(ε)

)2

+ 1

N

N∑
j=4

( 〈ω, v j (ε)〉
λ j (ε)

)2

. (A11)

We now consider the contribution of these different terms.
Beginning with the terms associated with j = 2 and 3, insert
Eqs. (A8) and (A10) into the relevant terms in Eq. (A11),
expand, and collect similar terms to obtain

1

N

( 〈ω, v j (ε)〉
λ j (ε)

)2

= N−1ε−2

(
〈ω, v j〉2(
δλ

(1)
j

)2

)
+ N−1ε−1

(
2〈ω, v j〉〈ω, δv j(1)

〉
(
δλ

(1)
j

)2 − 2δλ
(2)
j 〈ω, v j〉2(
δλ

(1)
j

)3

)

+ N−1

(〈
ω, δv j(1)

〉2 + 2〈ω, v j〉〈ω, δv j(2)
〉

(
δλ

(1)
j

)2 − 4δλ
(2)
j 〈ω, v j〉〈ω, δv j(1)〉(

δλ
(1)
j

)3 +
(
3
(
δλ

(2)
j

)2 − 2δλ
(1)
j δλ

(3)
j

)〈ω, v j〉2(
δλ

(1)
j

)4

)

+ O(N−1ε). (A12)

On the other hand, for j = 4, . . . , N , we insert Eqs. (A9) and (A10) into the relevant terms in Eq. (A11), expand, and collect
similar terms to obtain

1

N

( 〈ω, v j (ε)〉
λ j (ε)

)2

= N−1

( 〈ω, v j〉2

(λ j )2

)
+ N−1ε

(
2〈ω, v j〉〈ω, δv j(1)

〉
(λ j )2

− 2δλ
(1)
j 〈ω, v j〉2

(λ j )3

)

+ N−1ε2

(〈
ω, δv j(1)

〉2 + 2〈ω, v j〉〈ω, δv j(2)
〉

(λ j )2
− 4δλ

(1)
j 〈ω, v j〉〈ω, δv j(1)

〉
(λ j )3

+
(
3
(
δλ

(1)
j

)2 − 2λ jδλ
(2)
j

)〈ω, v j〉2

(λ j )4

)
+ O(N−1ε3). (A13)
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Inserting Eqs. (A12) and (A13) into Eq. (A11), we then obtain

J (ω, L(ε)) = N−1ε−2

(
〈ω, v2〉2(
δλ

(1)
2

)2 + 〈ω, v3〉2(
δλ

(1)
3

)2

)

+ N−1ε−1

(
2〈ω, v2〉〈ω, δv2(1)

〉
(
δλ

(1)
2

)2 − 2δλ
(2)
2 〈ω, v2〉2(
δλ

(1)
2

)3 + 2〈ω, v3〉〈ω, δv3(1)
〉

(
δλ

(1)
3

)2 − 2δλ
(2)
3 〈ω, v3〉2(
δλ

(1)
3

)3

)

+ N−1

(〈
ω, δv2(1)

〉2 + 2〈ω, v2〉〈ω, δv2(2)〉(
δλ

(1)
2

)2 − 4δλ
(2)
2 〈ω, v2〉〈ω, δv2(1)

〉
(
δλ

(1)
2

)3 +
(
3
(
δλ

(2)
2

)2 − 2δλ
(1)
2 δλ

(3)
2

)〈ω, v2〉2(
δλ

(1)
2

)4

+
〈
ω, δv3(1)

〉2 + 2〈ω, v3〉〈ω, δv3(2)
〉

(
δλ

(1)
3

)2 − 4δλ
(2)
3 〈ω, v3〉〈ω, δv3(1)

〉
(
δλ

(1)
3

)3 +
(
3
(
δλ

(2)
3

)2 − 2δλ
(1)
3 δλ

(3)
3

)〈ω, v3〉2(
δλ

(1)
3

)4

)

+ η1J (ω1, L1) + η2J (ω2, L2) + η3J (ω2, L3) + ε

[
N−1

N∑
j=4

(
2〈ω, v j〉〈ω, δv j(1)

〉
(λ j )2

− 2δλ
(1)
j 〈ω, v j〉2

(λ j )3

)]

+ O(N−1ε, ε2), (A14)

where we used that, for the three subsystem case, we have

1

N

N∑
j=4

〈ω, v j〉2

λ2
j

= η1J (ω1, L1) + η2J (ω2, L2) + η3J (ω3, L3).

(A15)

Lastly, to complete the analysis we consider not only the
contributions of 〈ω, v2〉, but also 〈ω, v3〉. In particular, we
note that

〈ω, v2〉 =
√

η1η2

η12
(〈ω1〉 − 〈ω2〉), (A16)

and

〈ω, v3〉 =
√

η2η3

η23
(〈ω2〉 − 〈ω3〉), (A17)

where ηi j = (Ni + Nj )/N . Thus, if we may engineer the
network such that 〈ω1〉 = 〈ω2〉 = 〈ω3〉, then all terms in
Eq. (A14) with 〈ω, v2〉 or 〈ω, v3〉 vanish, yielding

J[ω, L(ε)] = η1J (ω1, L1) + η2J (ω2, L2) + η3J (ω2, L3) + N−1

(〈
ω, δv2(1)

〉2
(
δλ

(1)
2

)2 +
〈
ω, δv3(1)

〉2
(
δλ

(1)
3

)2

)

+ ε

[
N−1

N∑
j=4

(
2〈ω, v j〉〈ω, δv j(1)

〉
(λ j )2

− 2δλ
(1)
j 〈ω, v j〉2

(λ j )3

)]
+ O(N−1ε, ε2), (A18)

where the leading-order behavior of the perturbed SAF is
simply given by a weighted average of the subsystem-specific
SAFs and the weights come from their relative sizes, which is
our desired result and the analogous version of Eq. (7) in the
main text.

APPENDIX B: LOCAL APPROXIMATION OF THE SAF
FOR NETWORKS WITH AN ARBITRARY NUMBER

OF SUBSYSTEMS

Before concluding, we emphasize that the three-subsystem
case above informs the generalization of the local approxima-
tion to an arbitrary number of subsystems. In particular, for
the C subsystems, the unperturbed Laplacian L0 will contain
C diagonal blocks, each with a trivial eigenvalue. Thus, a basis
for the trivial eigenspace must be chosen so that, in addition to
v1 ∝ 1, there are C − 1 eigenvectors whose eigenvalues will

becomes positive for positive ε. This can be done by choosing,
for instance,

v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1/N1

−1/N2

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1/N2

−1/N3

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, . . . ,

v j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...

1/Nj−1

−1/Nj

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, . . . , vC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

1/NC−1

−1/NC

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (B1)
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Then, after expansion, setting 〈ω1〉 = · · · = 〈ωC〉 causes the
two lowest-order contributions to J[ω, L(ε)] originating from
the terms associated with j = 2, . . . ,C to vanish, yielding, to

leading order,

J[ω, L(ε)] ≈ η1J
(
ω1, L(1)

) + · · · + ηCJ
(
ωC, L(C)

)
. (B2)
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