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Rotational synchronization of pinned spiral waves
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Coupled rotors can spontaneously synchronize, giving rise to a plethora of intriguing dynamics. We present
here a pair of spiral waves as two synchronizing rotors, coupled by diffusion. The spirals are pinned to
unexcitable obstacles, which enables us to modify their frequencies and restrain their drift. In experiments with
the Belousov-Zhabotinsky reaction, we show that two counterrotating spiral rotors, pinned to circular hetero-
geneities, can synchronize in frequency and phase. The nature of the phase synchronization varies depending
on the difference in their characteristic frequencies. We observe in-phase and out-of-phase synchronization, lag
synchronization, and phase resetting across the experiments. The time required for the two spirals to synchronize
is found to depend upon the relative size of their pinning obstacles and the distance separating them. This
distance can also modify the phase lag of the two rotors upon synchronization. Our experimental observations
are reproduced and explained further on the basis of numerical simulations of an excitable reaction-diffusion
model.
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I. INTRODUCTION

The footprints of synchronization are often found in na-
ture, like in the flashing of fireflies and chirping of crickets.
They are also encountered across other diverse systems such
as pendulums, clocks, lasers, and applauding audiences [1].
From population dynamics [2] to the firing of neuronal cells
[3], the rhythmic nature of oscillators dictates the dynamical
behavior of the system. Spontaneous synchronization is also
encountered in spatially distributed oscillators in biological
systems, such as the rhythmic electrochemical waves in the
heart [4] or the glycolytic oscillations in suspensions of yeast
cells [5]. Examples of chemical systems exhibiting synchrony
are the mercury beating heart [6] and rhythmic oscillations of
catalytic particles of the Belousov-Zhabotinsky (BZ) reaction
[7]. The behavior of these coupled chemical and biological
oscillators found a mathematical description in the seminal
work of Kuramoto [8]. His model was later extended to the
study of various nonidentical coupled oscillators, irrespective
of the origin of the system, like Josephson junctions [9],
which are superconducting rotator arrays. Ensemble of rotors,
coupled electrically, mechanically, optomechanically, chem-
ically or biologically, have been widely investigated [1,10–
13]. These theoretical as well as experimental studies have
revealed a wide range of rotational behavior, such as in-phase
and antiphase locking [9,14], amplitude death [15], lag syn-
chronization [13], cluster formation [12], and chimera states
[16].

In this work we explore spiral waves in reaction-diffusion
processes as potential candidates for the study of rotational
synchronization. Spiral rotors of wave activity have been
observed across various biological systems, such as car-
diac tissues, retinal cells, aggregation of the social amoeba
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Dictyostelium discoideum [17], retinal [18] and uterine tissue
[19], and brain cells [20]. In heart tissue, their presence can
cause the disruption of coherent cardiac activity, leading to
arrhythmia and life-threatening fibrillations in the atria and
ventricles of the heart [21]. Spiral waves are also found in
chemical systems, such as the oxidation of CO on Pt surfaces
[22] and the BZ reaction [23].

Free spirals in two-dimensional spatially extended systems
can trace intricate trajectories [24]. When two rigidly rotating
spiral waves are initiated close to each other, they can either
attract and annihilate, or repel and form bound states, depend-
ing on the distance separating them, their initial phases, and
chirality of rotation [25,26]. Often, symmetry-breaking dy-
namics is also witnessed in such interactions. Earlier work has
shown that a faster spiral wave can cause the drift of a slower
one [27,28]. In order to study rotational synchronization of
spirals, it is helpful to arrest the translational motion of the
spiral cores. Spiral waves are known to anchor to inexcitable
heterogeneities, in a process called pinning [29]. In cardiac
tissues, a rotor can attach itself to a discontinuity like scar
tissue, resulting in stationary rotating activity [30]. Several
studies on the pinning of spiral rotors to different geometries
of obstacles have been carried out [31–33]. Pinning modifies
the frequency of the rotor by elongating its rotation period
[34]. However, the innate nature of the spiral as a rotor re-
mains unperturbed during the process. We propose to look
at the interaction of two rigidly rotating spirals, anchored to
circular disks. By varying the size of the disk, we are able to
control the frequency of our rotors, enabling us to study both
frequency and phase synchronization of the spiral waves. A
recent numerical study explored the asymmetric interaction
of arrays of pinned spiral oscillators rotating with the same
frequency [35].

Here we explore the synchronization of two counterro-
tating pinned spiral waves, both experimentally and numer-
ically. We carry out experiments in the BZ reaction, using
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unexcitable circular heterogeneities of varying sizes as pin-
ning anchors. We begin by exploring the interaction of two
identical oscillators, where we find complete synchronization
in frequency and phase. Changing the size of one hetero-
geneity, we are able to initiate two rotors with different
characteristic frequencies. We then vary the distance between
the two spirals and explore the changing nature of synchro-
nization between the rotors. Numerical simulations, based on
a generic reaction-diffusion model, are also carried out. These
studies corroborate our experimental results while providing
additional insights into the subtle dynamics of rotational mo-
tion of these reentrant excitation waves.

II. EXPERIMENTAL METHODS

Our BZ system consists of a solution of 0.16M sulfu-
ric acid, 0.04M sodium bromate, 0.04M malonic acid, and
0.001M ferroin embedded in a 0.8 wt./vol % agar gel matrix.
The solutions are prepared in Millipore water. All experiments
are carried out in Petri dishes of 6 cm diameter, at room
temperature (23 ± 1 ◦C). The thickness of the reaction gel is
maintained at around 2 mm. A plane wave is initiated in the
center of the circular dish, far from the system boundaries, by
inserting the tip of a silver wire into the reaction mixture for
a few seconds. When the circular wave reaches the desired
dimension, we cleave it with the help of a thin glass slide.
The free ends of the wave now curl in to form a pair of
counterrotating spiral waves. Subsequently, a chemically inert
rubber cylinder, with a height equal to the thickness of the
reaction layer, is placed near each tip of the spiral. The system
is illuminated from below with a diffused, cold white light
source and is observed by a charge-coupled device camera
(mvBlueFOX 220a) mounted over it. A blue dichroic filter
is used on the camera for better imaging. The images are
recorded on a personal computer every 2 s and are later ana-
lyzed by using interactive, in-house MATLAB codes. The spiral
tip position is recognized as the point of highest curvature
touching the unexcitable disk (shown in Fig. 1).

III. EXPERIMENTAL RESULTS

Figure 1(a) shows a snapshot of a typical experiment,
where the two tips of the spiral are anchored to two different-
sized rubber disks of diameters d1 and d2. A magnified version
of the area around the heterogeneities is shown in Fig. 1(b).
The tips of the two spirals are located at (x1, y1) and (x2, y2),
respectively, both measured in relation to the individual cen-
ters of the ith disk, with (xci, yci ) considered as the origin. The
distance between the centers of the circular beads is called l .
The phase angles of each spiral tip with respect to the line
joining the centers are denoted by θ1 and θ2, respectively. The
motion of the pinned spiral rotor can be monitored by noting
the position of the spiral tip (xi, yi ) at any given time. The
phase angle can be calculated as

θi = tan−1
(yi

xi

)
.

Several experiments are carried out by changing the size
of the cylinders and the distance separating them. We choose
typical disk sizes of 1.8, 2.7, and 3.6 mm. It is known that a

FIG. 1. Experiments to study synchronization of two pinned spi-
ral rotors. (a) Snapshot of a typical experiment with two differently
sized disks. The area of the snapshot is 30.7 × 30.7 mm2. (b) Mag-
nified central area of (a), showing the pinned rotors and defining
the parameters of the experiment (position, angle, and distance)
described in the text. (c)–(f) Synchronization of two spiral rotors
pinned to identical circular disks of diameters d1 = d2 = 1.8 mm and
separated by a distance of l = 4.68 mm. The time evolutions of the
(c) x and (d) y positional coordinates of rotors 1 (black circles) and 2
(red triangles) are shown. (e) Phase portrait of the x positions of the
two rotors, with a black dashed line of slope −1. (f) Plot of y1 versus
y2 (thick blue line with circles) showing in-phase synchronization.
The corresponding x plot has been added in the background (in
magenta) to show the emergence of mirror synchrony. The black and
red dashed lines in (f) have slopes of −1 and +1, respectively.

spiral anchored to an unexcitable heterogeneity moves slower
than a free spiral [34]. When pinned to a cylindrical disk, the
spiral core is determined by the circular perimeter of the disk,
around which it rotates. Hence, larger the disk, slower should
be the frequency of rotation. The time period of a free spiral
(obtained with the current chemical recipe) is 10.1 min, its
core diameter is 1.09 mm, and its wavelength is 9.94 mm
[24]. The time periods for the pinned spiral rotors have been
calculated for systems where the two spiral tips are pinned
to identical obstacles (circular disks with the same diameter).
For d1 = d2 = 1.8, 2.7, and 3.6 mm, the time periods are
approximately T = 12.0, 18.0, and 24.0 min, respectively.
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FIG. 2. Synchronization of two rotors having different initial
frequencies. Here d1 = 1.8 mm, d2 = 2.7 mm, and l = 12.15 mm.
Data from (a)–(c) the initial stage of the experiment and (d)–(f) the
postsynchronization stage are depicted. (a) and (d) Time evolution of
the y positions of the two rotors. (b) and (e) Plots of phase angles θ1

and θ2 versus time. (c) and (f) Phase portraits of the y coordinates.
Black curves with circles are for the smaller rotor (rotor 1) and red
curves with triangles are for the larger rotor (rotor 2) in (a)–(d).
This coloring scheme is maintained throughout the paper for the time
evolution of position (yi) and angle (θi) coordinates.

An experiment using two identical disks is shown in
Figs. 1(c)–1(f). Here both disks have diameters of 1.8 mm.
The plots of xi and yi versus time are shown in Figs. 1(c) and
1(d), respectively. The two counterrotating spirals are placed
side by side. Hence, if the initial phases of the two spirals are
the same (i.e., θ1 = θ2 at t = 0), then the y coordinates of the
tips will increase and decrease simultaneously, while the two
x coordinates will have an opposing trend. The same is also
observed in the phase plots shown in Figs. 1(e) and 1(f). This
is an example of complete synchronization (in frequency and
phase) between two counterrotating spirals. The y positions
will be in-phase synchronized and the x positions out-of-phase
synchronized. This is also called mirror synchronization [36]
or mixed synchronization [15]. Since we maintain similar
initial conditions in all our experiments and simulations, we
compare only the y positions in all subsequent figures.

Figure 2 shows an example of synchronization between
two spiral rotors, initially having different frequencies. The
two spiral tips are pinned to disks of diameters d1 = 1.8 mm
and d2 = 2.7 mm, with l = 12.15 mm. For the sake of conve-
nience, henceforth we refer to the smaller obstacle as d1 and
the larger as d2. Initially, the spiral pinned to the smaller disk
[black curve in Fig. 2(a)] rotates faster than the other rotor
(T1 ∼ 12 min and T2 ∼ 18 min). A plot of the phase angle
with time is depicted in Fig. 2(b). It shows the incoherence
in the rotational phase during the initial stages of oscillations.
After several periods, it is observed that the two spirals rotate
with the same frequency (T ∼ 12 min). This is evident from
the time plot of the y coordinate [Fig. 2(d)]. However, here the
two rotors do not synchronize completely in-phase, but they
have a slight lag. This is unlike the case of identical oscillators.
A movie of this experiment (movie 2) can be found in the
Supplemental Material [37]. The excitation wave emitted by
a spiral rotor annihilates on touching another wave from a
different spiral or target source. When both oscillators have an
equal frequency, the wave arms emitted by them meet midway
between the two rotors (at l/2) when they are initiated with
almost the same phase. In the case of an initial mismatch of
spiral frequencies, the waves emanated from the faster rotor
(obstacle 1) gains over the slower one (obstacle 2). As it
slowly invades the space of the second rotor, it accelerates
it. Finally, when the waves from the smaller obstacle touches
the larger obstacle, it generates a faster second rotor. So the
frequency of rotor 2 is modified to match that of rotor 1. In this
experiment, the time required for synchronization is around
58 min.

The phase diagram (y1 versus y2) of the two oscillators
in the early part of the experiment fills the whole region
[Fig. 2(c)]. This is expected due to the lack of frequency
synchronization of the two rotors. In the later part of the
experiment, we get a closed curve known as a Lissajous figure,
which is a signature of frequency synchronization. However,
the curve has a flat area around y1 = −1.3 mm [Fig. 2(f)].
A close look at the position plot [Fig. 2(d)] will reveal a
jump of oscillator 2 from y2 > 1.3 to values of y2 < −1.3
within two data points, recorded 1 min apart. This happens
due to a phase resetting that occurs when the paths of the two
oscillators cross. This interesting phenomenon is explained in
more detail in Fig. 3. A close inspection of Fig. 2(b) shows a
decreasing trend in the maximum value of θ2 (red triangles).
Upon synchronization, it can be observed that the phase angle
of the larger rotor oscillates between 0.6π and 1.7π . This is
also a manifestation of the phase resetting of the slower rotor
by the faster one.

Figure 3 shows the wave-resetting dynamics around two
rotors that differ more drastically in size (d1 = 1.8 mm and
d2 = 3.6 mm). Four snapshots have been chosen at intervals
of 3.2 min each, after synchronization has been reached. Once
their frequencies have synchronized, the time required for the
wave to complete one rotation around the larger obstacle has
to match the time required to circulate around the smaller disk.
As soon as the wave arm of the faster rotor touches the other
heterogeneity, the phase angle of the latter is reset.

Here it is important to note the chirality of the two rotors.
The larger rotor around d2 rotates in a counterclockwise fash-
ion and has negative chirality, while the smaller rotor around
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FIG. 3. Experiment depicting phase resetting during synchro-
nization. The two rotors are pinned to unexcitable disks of diameters
d1 = 1.8 mm and d2 = 3.6 mm and placed at a distance of l =
4.86 mm from each other. (a)–(d) Wave dynamics during phase
resetting of the slower rotor (right) by the faster one. Snapshots were
taken at (a) 114.8, (b) 118, (c) 121.2, and (d) 124.4 min, after the
introduction of the pinning obstacles. The area of each snapshot is
23 × 17 mm2. (e) Plots of the y position as a function of time, at a
later stage of the experiment. (f) Phase plots of xi (magenta triangles)
and yi (blue circles), showing mixed synchronization.

d1 rotates in a clockwise manner and can be said to have
positive chirality [Fig. 3(a)]. As the spiral tips, now having the
same speed, rotate around their individual pinning sites, the
spiral around d2 does not make a full round before the expand-
ing wave from the first rotor touches the larger heterogeneity.
The heterogeneity splits the wave, initiating a pair of spirals
having opposite chirality on the second (larger) obstacle, both
moving in opposite directions [Fig. 3(b)]. (Refer to movie 3
in the Supplemental Material for a more vivid display of the
wave dynamics [37].) The newly formed positive spiral moves
towards the original negative spiral on the obstacle, finally
colliding with it and annihilating each other [Fig. 3(c)]. Its
negative counterpart remains on the obstacle and continues its
rotation until it comes across a newly formed positive spiral
from the next colliding wave. So, for a very short time, there
are actually three spiral tips on the larger obstacle [Fig. 3(b)].

The y-coordinate plot for the two spiral rotors, during the
later stages of the experiment, after synchronization has been
reached, are shown in Fig. 3(e). The value of y2 plunges from
its maximum to its minimum. These two positions correspond
to the spiral tip at the top and bottom of disk 2, at times close
to those in Figs. 3(b) and 3(c), respectively. Due to this sudden

FIG. 4. Varying nature of synchronization with increasing inter-
pin distance. Experiments with d1 = 1.8 mm and d2 = 2.7 mm are
shown for (a) and (b) l = 4.4 mm, (c) and (d) l = 8.15 mm, and (e)
and (f) l = 10.7 mm. (a), (c), and (e) Plots of the position coordinates
with time, after synchronization has been reached. (b), (d), and (f)
Relative positions of y1 versus y2, corresponding to the same time
frame depicted in (a), (c), and (e), respectively.

resetting of the phase of rotor 2 and its larger size, the two
oscillators seemingly synchronize in an out-of-phase manner
[Fig. 3(e)]. The phase portraits of x and y also support this
idea [Fig. 3(f)]. The x and y plots still have opposing slopes,
pointing towards mixed synchronization. However, they can
no longer be said to be mirror synchronized, as the two rotors
are no longer identical, and this is reflected in the difference
of the x- and y-phase portraits, unlike what was seen in Fig. 1.
Here the x plot is in-phase locked, while the y plot is out-of-
phase locked [Fig. 3(f)]. This can be considered as an example
of the interchange of rotational synchronization.

In order to explore the effect that the distance between
the two rotors has on the synchronization behavior, we vary
the l value between a set of two oscillators. Figure 4 shows
a series of experiments with d1 = 1.8 mm and d2 = 2.7 mm
and l values of 4.4, 8.15, and 10.7 mm. In every case, we ob-
serve frequency synchronization, after several rotations. The
nature of phase synchronization is however slightly different
in the three cases. They can phase lock in an almost-complete
synchrony [Figs. 4(e) and 4(f)] or have a constant phase lag
[Figs. 4(a)–4(d)]. While in the case of l = 4.4 mm [Figs. 4(a)

034201-4



ROTATIONAL SYNCHRONIZATION OF PINNED SPIRAL … PHYSICAL REVIEW E 106, 034201 (2022)

and 4(b)] we find that the phase resetting occurs at the be-
ginning of the positive y1 slope, near its minimum value, for
l = 8.15 mm [Figs. 4(c) and 4(d)] it occurs at the end of
the y1 slope, near its maximum. Contrarily, for l = 10.7 mm
[Figs. 4(e) and 4(f)] and for l = 12.15 mm [Figs. 2(d)–2(f)],
phase jumps take place at the beginning and end of the de-
cay of y1, respectively. The increasing values of the interdisk
distance l should be noted here.

IV. NUMERICAL MODEL

We choose the generic Barkley model for carrying out
our numerical experiments. This model is widely used for
the study of spiral and scroll waves in reaction-diffusion pro-
cesses [38,39]. The two-variable model is given as

∂u

∂t
= 1

ε

[
u(1 − u)

(
u − v + b

a

)]
+ Du∇2u,

∂v

∂t
= u − v + Dv∇2v,

where the activator u and inhibitor v are related to the con-
centrations of bromous acid and the oxidized form of ferroin,
respectively; Du = Dv = 1.0 are the diffusion coefficients of
u and v, respectively; and a = 0.84, b = 0.07, and ε = 0.02
are chosen as the system parameters. The space is discretized
into 300 × 300 grid points and the system of equations is
numerically integrated by using the fourth-order Runge Kutta
method and a nine-point Laplace stencil. Zero-flux boundary
conditions are applied across all four walls of the system.
With a time interval of �t = 0.012 (arbitrary time units) and
step size �x = 0.35 (arbitrary space units), this system can
sustain rigidly rotating spiral waves having a core diameter of
1.8 space units, a wavelength of 18.2 space units, and a time
period of 5.3 time units [25].

The numerical experiments are set up just like the BZ ex-
periments. A plane wave is initiated between two unexcitable
circular regions with diameters d1 and d2, placed at a distance
l from each other. These act as pinning heterogeneities for
the spiral waves. Throughout our simulations, we fix u and
v within these circles at zero. A zero-flux boundary around
these circular entities will not change the results of our sim-
ulations, except that the core size will be smaller in the latter
case, leading to slightly reduced time periods. Initially, the
variables u and v are taken to be zero across the entire space,
except for a narrow region between the obstacles, where thin
strips of altered values of the u and v variables are taken in
a fashion so as to give directionality to the initial waveform
[25]. With time, a pair of counterrotating spirals are eventually
formed. The values of d1, d2, and l are varied to explore the
dynamics of interacting pinned spiral rotors. We have taken
obstacle diameters of 2.45, 3.85, 4.55, 5.25, and 5.95 space
units, each having individual time periods of 4.9, 6.0, 6.6, 7.4,
and 7.9 time units, respectively (for d1 = d2). The spiral tip
is identified as the intersection of the isoconcentration lines
u = 0.5 and v = a/2 − b = 0.35. Its coordinates with respect
to the center of the spiral core are again labeled (xi, yi ).

FIG. 5. In-phase synchronization of two spiral rotors for d1 =
5.25, d2 = 5.95, and l = 40.95. Simulation results are for (a)–(c) the
initial and (d)–(f) postsynchronization stage of the study. (a) and
(d) Variation of the vertical position yi. (b) and (e) Phase angle
variations with time. Black dashed lines are for rotor 1 and red solid
lines are for rotor 2. (c) and (f) Phase plots of the two rotors. The y
plots are blue curves with triangles, while the x plots are magenta
curves with circles. A similar coloring scheme has been used in
Fig. 6.

V. NUMERICAL RESULTS AND DISCUSSION

Figure 5 shows the synchronization of spiral rotors pinned
to two disks of diameters d1 = 5.25 and d2 = 5.95 space units
(s.u.), placed l = 40.95 space units apart. Initially, the two
rotors oscillate with their individual time period, viz., 7.4
and 7.9 time units (t.u.), respectively. This is observable in
Fig. 5(a), which also shows that the two oscillators are out
of synchrony. After several rotations (over 40), the oscillators
are seen to have synchronized perfectly in frequency. The time
variation of the y coordinates of the spiral tips [Fig. 5(d)] bears
testimony to the same. The time periods of both rotors are now
7.4 time units, the same as the characteristic frequency of the
smaller obstacle (diameter 5.25). We observe similar trends
across all combinations of pinning heterogeneities. The faster
rotor always takes over the slower one and at the final stage
the frequencies of the two rotors are the same. Observations
along the same lines have been made in earlier studies of spiral
waves [28,40]. Having established this, we now move on to
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FIG. 6. Simulation result demonstrating phase jump and lag syn-
chronization for disk diameters of d1 = 2.45 and d2 = 4.55 and the
distance between the center of the disks l = 110.95: (a)–(c) initial
results and (d)–(g) later results. Shown are (a) and (d) the dynamics
of positional coordinates, (b) and (e) the phase angles, and (c) and (f)
phase portraits demonstrating the emergence of lag synchronization.
(g) Close-up of (d), showing the presence of multiple spiral tips on
the second rotor (red solid curve) during phase resetting. The position
is marked with a star.

explore the phase dynamics of the frequency-synchronized
rotors.

The phase angles θ1 and θ2 plotted in Fig. 5(b) show that
initially the rotors are not phase synchronized. The space-
filling plot of y1 versus y2 [Fig. 5(c)] also confirms the
asynchronous behavior of the two rotors in the early stages of
the experiment. The exact overlap of θ1 and θ2 at later times
in Fig. 5(e) confirms the in-phase locking synchronization of
the two rotors. The phase portrait for y1 versus y2 (x1 versus
x2) in Fig. 5(f) is a thin ellipse along the right (left) diago-
nal, which establishes that the two counterrotating spirals are
synchronized in phase.

This kind of exact phase locking was not observed
for our experiments having rotors of different initial fre-
quencies. Additional simulations confirmed that such strong
synchronization would only be possible for pinning sizes of
comparable dimensions. Otherwise, the mismatch in the size
leads to the phase resetting phenomenon, which will not allow
the y-positional coordinates to match exactly throughout one
oscillation. More experiments have to be carried out for the
BZ system with pinning disk sizes that vary about 10% in
diameter in order to be able to observe complete phase syn-
chrony.

In Fig. 6 we show the synchronization of two rotors pinned
around heterogeneities of extensively different diameters, viz.,

FIG. 7. Nature of synchronization as a function of interrotor dis-
tance l . (a) The ratio of the two diameters d12 (=d1/d2) is plotted
as a function of l . The green shaded area with diamonds depicts the
phase-resetting dynamics and the red shaded area with squares shows
lag synchronization. Blue triangles are points of antisynchronization
(π -phase difference) and black circles denote points of complete
synchronization (zero-phase difference). (b) Trend of in-phase and
antiphase synchronization for a few d12 values. The blue solid line
with triangles depicts the first occurrence of antiphase locking and
magenta dashed line with triangles denotes the second occurrence of
antisynchronization, as l is increased. Black circles denote any in-
phase synchronized state between these two lines. The red hexagons
stand for the wavelength of the faster spiral (λ1).

d1 = 2.45 and d2 = 4.55 space units. The initial data show the
unsynchronized nature of the two oscillators [Figs. 6(a)–6(c)].
After frequency synchronization, the two rotors are seen to
display a unique dynamics in both position and angle. Here
the phase jump of the larger rotor (red solid lines) is evident
in the plots of position as well as phase angle [Figs. 6(d) and
6(e)]. The plot of y1 versus y2 shows a wide elliptic profile
which is typical of two oscillators having equal frequencies
and a constant phase shift [Fig. 6(f)]. Hence we might call it a
case of lag synchrony.

In Fig. 3 the experimental snapshots have shown the pres-
ence of three spiral tips on the larger obstacle, for a very short
time (compared to time period). The signature of the new
singularities are observable in the plot of the y coordinate of
the tip (y2), as well as the corresponding phase angle (θ2) plot
[Figs. 6(d) and 6(e)]. A small portion of Fig. 6(d) is expanded
at Fig. 6(g) for better visibility. At the instant of the overlap of
the two tip positions [marked with a blue star around 225 time
units in Fig. 6(g)], there is more than one spiral tip identified
by our program. Subsequently, the phase position and angle
are reset as a result of this intricate dynamics. The phase
portraits at later times [Fig. 6(f)] have the flattened ellipse
structure seen in Figs. 2 and 4.

A phase diagram for studying the nature of synchronization
has been constructed. Figure 7 depicts the changing dynamics
of the interacting rotors as a function of the ratio of obstacle
diameter (d12) and the space separating them, l . When the
two obstacles are of widely differing dimensions (d12 < 0.65),
we observe phase-resetting dynamics [Fig. 7(a)]. As the ratio
increases, we move to a region of lag synchronization. Within
this region we come across some points of antiphase syn-
chronization and fewer points of complete in-phase locking.
A deeper analysis of these seemingly arbitrary points reveals
that the first antiphase synchronization for a given ratio occurs
at the value of l � λ1 − ds, where λ1 is the wavelength of
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FIG. 8. Variation of synchronization time tS with increasing in-
terrotor distances l , for three sets of obstacle sizes. d1 = 2.45 space
units across all simulations. The d2 values are 3.15 (olive circles),
3.85 (red triangles), and 4.55 (blue squares) across the three graphs.

the spiral wave arm near the smaller obstacle and ds is the
core diameter of a free spiral [Fig. 7(b)]. This is an inter-
esting observation when seen in the context of interacting
spiral waves. It has been established in a recent study on
the interaction of free spirals that two spiral cores having the
same frequency cannot modify the trajectory of one another
when placed beyond a critical distance dc, where dc = λ − ds

[25] (here λ is the characteristic wavelength of the spiral).
This critical distance is close to the l value showing the first
antiphase synchronization of nonidentical rotors in Fig. 7(b).
The second antiphase synchronization occurs after a larger
distance. At ratios greater than 0.88, complete synchroniza-
tion occurs at some specific values of l , which lie between the
two antiphase synchronized states. At d12 = 1.0, or obstacles
of equal diameter, in-phase synchronization is observed for all
values of l . While in the numerical simulations we are able to
initiate waves with the exact same phase of rotation, this is
not always the case in experiments. There the initial phases of
the two spirals may be the same or different. In simulations
with rotors of the same initial frequency (attached to identical
circular disks) having different initial phases, we found that
the spirals synchronize in phase as long as they are within one
wavelength of each other. Beyond that distance (l > λ1), the
two rotors are locked with the initial phase lag. This can be
explained on the basis of the fact that when the frequencies
of both waves are equal, the wave arms touch each other
somewhere between the heterogeneities, and if this distance
is more than the critical distance dc, one spiral will not be able
to modify the phase of the other [25].

We also measured the time required for synchronization
(tS) for varying obstacle sizes and spacings. Figure 8 shows
the variation of tS as a function of the distance between the
two rotors, l , for three sets of d2 values. We have kept d1

constant at 2.45 space units. We see that for a given d2 value, tS
increases linearly with l . The velocity of the waves emanated
by rotor1 remains the same for all the experiments. As the
distance between the two rotors increases, the time required

for the waves to cover this path and reach the slower rotor
increases, which is reflected in the positive slopes of the lines.
However, with the increase in the value of d2, the time of
synchronization decreases. This happens because, as we in-
crease the size of the heterogeneity (d2), the rotor becomes
slower. The number of waves it emits in some given time
also decreases. Hence, the wave arm of the faster rotor has
to overcome fewer collisions with the oncoming waves. This
enables it to reach the second rotor within a shorter time
duration, thus leading to smaller tS values. For a given l , tS is
smallest for the largest d2 value, except when l < λ, when all
values of tS are almost comparable. Within one wavelength,
the wave arm of the faster rotor does not have to encounter
any oncoming waves from its larger neighbor, before reaching
it. (Refer to movie 4 in [37] for an example of such wave
activity.) The slope of the graph for the smallest obstacle 2
size (d2) is the highest, meaning that the farther apart the two
beads are placed, the longer it will take for the waves from
obstacle 1 to reach obstacle 2 and also it has to encounter
more oncoming waves. So these two factors contribute to an
increase in the slope of the line.

Similar trends are observable for our experimental results.
In general, the time of synchronization increases with in-
creasing distance between a set of rotors. We carried out
several experiments with exactly the same circular disks of
diameters d1 = 1.8 mm and d2 = 2.7 mm (some of which are
depicted in Figs. 2 and 3). The trend of synchronization time
with distance was linear. A plot of tS versus l for this set of
heterogeneities can be found in the Supplemental Material
(Fig. S1 [37]). Some points are found to deviate a little from
the straight line, which may be because of several factors such
as temperature fluctuation or air bubbles leading to slight local
heterogeneities.

VI. CONCLUSION

We have established that a system of pinned spiral waves
can be considered to be a promising candidate for the study
of rotational synchronization. It will be an addition to the
already existing library of rotors such as Josephson junctions,
mechanical rotors, and camphor boats used for such studies.
We have shown with our experiments and simulations that
spiral rotors pinned to unexcitable heterogeneities can indeed
act as coupled oscillators that synchronize in frequency and
phase. By pinning the spirals to disks of different dimen-
sions, we were able to generate and sustain spirals of different
characteristic frequencies while also ensuring that they do not
translate in space. With that ensured, we carried out detailed
observations of rotor position and phase angle to show how
two initially unsynchronized rotors with different frequencies
and sometimes phase can synchronize. Depending on several
factors, such as a difference in obstacle size and the distance
separating them, we observed in-phase locking, out-of-phase
locking, lag synchronization, and phase resetting. The results
of our numerical simulations have corroborated the different
kinds of phenomena observed in our experiments while illus-
trating the nuances of phase resetting in the larger obstacle.
Also, a linear trend in the synchronization times with inter-
rotor distance has been established. This may be explored
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in future investigations to obtain an estimate of the coupling
strength of these pinned rotors.

The chirality of the two spiral rotors play an important
role in their interaction. It will be interesting to study exper-
imentally the interaction of corotating pinned spiral waves.
Future investigations could be carried out with lattices of
spiral rotors. As established for free spirals [25], the nature
of the interaction of pinned spirals may also change with an
increased number of coupled rotors, which may give rise to a
plethora of richer synchronization dynamics.

In the cardiac system, the pinning of free spiral waves is
known to modify polymorphic ventricular tachycardia into a
monomorphic one [4]. If there is more than one such pinned
excitation wave, their interaction may change the nature of
the graph obtained from an electrocardiogram (ECG), which

is commonly used to monitor cardiac activity in patients.
Studies of wave propagation dynamics in the cardiac system
suggest that the activity of a high-frequency rotor can give
rise to the fastest dominant frequency domain [41]. Hence
a better understanding of wave interaction and synchroniza-
tion will be of vital importance in a correct diagnosis of
heart conditions based on clinical procedures, such as the use
of ECG.
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