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How do near-bankruptcy events in the past affect the dynamics of stock-market prices in the future?
Specifically, what are the long-time properties of a time-local exponential growth of stock-market prices under
the influence of stochastically occurring economic crashes? Here, we derive the ensemble- and time-averaged
properties of the respective “economic” or geometric Brownian motion (GBM) with a nonzero drift exposed to a
Poissonian constant-rate price-restarting process of “resetting.” We examine—based both on thorough analytical
calculations and on findings from systematic stochastic computer simulations—the general situation of reset
GBM with a nonzero [positive] drift and for all special cases emerging for varying parameters of drift, volatility,
and reset rate in the model. We derive and summarize all short- and long-time dependencies for the mean-squared
displacement (MSD), the variance, and the mean time-averaged MSD (TAMSD) of the process of Poisson-reset
GBM under the conditions of both rare and frequent resetting. We consider three main regions of model
parameters and categorize the crossovers between different functional behaviors of the statistical quantifiers of
this process. The analytical relations are fully supported by the results of computer simulations. In particular, we
obtain that Poisson-reset GBM is a nonergodic stochastic process, with generally MSD(�) �= TAMSD(�) and
Variance(�) �= TAMSD(�) at short lag times � and for long trajectory lengths T . We investigate the behavior
of the ergodicity-breaking parameter in each of the three regions of parameters and examine its dependence on
the rate of reset at �/T � 1. Applications of these theoretical results to the analysis of prices of reset-containing
options are pertinent.
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I. INTRODUCTION

The introduction of this elaborate study is structured as
follows. We start with a motivation for applying multiplicative
exponentially growing processes in the presence of resetting
for pricing of certain jump-containing options in Sec. I A.
We continue by presenting an overview of (both the standard
recent and some relevant older) stochastic-resetting-devoted
studies for both arithmetic and multiplicative processes as
well as by overviewing some reset-containing physical phe-
nomena in Sec. I B. In Sec. I C we discuss shortly the aspect
of ergodicity in the standard sense of the equivalence of
the ensemble and time averages, our main tools in the fol-
lowing analysis. Finally, in Sec. I D we present the detailed
sectioned plan of the whole paper. This study extends and
generalizes the results of our recent brief communication [1]
to reset geometric Brownian motion (GBM) with a nonzero
drift.

A. Path-dependent and reset options

In contrast to standard path-independent options, the prices
of some “exotic” options innately depend on their actual path
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being, thus, inherently non-Markovian. The prices of such
lookback-, barrier-, double-barrier-, reset-, and range-type op-
tions [2–26] are sensitive, e.g., to “extreme values” of the
underlying asset and can depend on minimal and maximal
prices in the past (for lookback- and barrier-type options), on
being in certain ranges at certain preset time instances (for
discrete-type path-dependent options), on the entire history of
a time series (for continuous-type options), as well as on other
path-dependent characteristics (such as, e.g., certain moving
averages or preset thresholds).

The two most popular path-dependent options are the
lookback- and barrier-type options. The owner of a lookback
option, e.g., has the right to buy a given asset at a minimum
price it assumes over a certain preset period of time. For a
barrier-type option, the payoff at expiration varies depend-
ing on whether or not the asset price has crossed a certain
preset “barrier level” during its life-time [16]. For so-called
“continuously deactivating” double-barrier options, the option
“vanishes” once the underlying asset price crosses a preset
upper or lower barrier [15]. For a knock-out European call
option, e.g., the option behaves as a standard vanilla Euro-
pean call unless a preset upper barrier is crossed: the option
“knocks-out” after that and the contract is zero. For such
options, the derivative prices can be adjusted or partially
“reset” either on specific dates, regularly, or upon exceed-
ing certain threshold levels. Numerous modifications exist in
definitions (including options on options, etc.), data-sampling
frequencies, and execution strategies of exotic path-dependent
options.

2470-0045/2022/106(3)/034137(36) 034137-1 ©2022 American Physical Society

https://orcid.org/0000-0002-8384-1395
https://orcid.org/0000-0002-0516-9900
https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0002-4688-9162
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.034137&domain=pdf&date_stamp=2022-09-29
https://doi.org/10.1103/PhysRevE.106.034137


VINOD, CHERSTVY, METZLER, AND SOKOLOV PHYSICAL REVIEW E 106, 034137 (2022)

The principles of price formation and new nontrivial fea-
tures of such options necessitate “correction” of the available
option-pricing mathematical models [2,27–34], with their pre-
dictions being based on the omnipresent multiplicative-noise
GBM [30]. A mixture of continuous and jump processes
were historically proposed [34–36] in some jump-diffusion
models to compute the prices of certain path-dependent op-
tions, “sowing a seed” for the “modern” stochastic-resetting
approaches. These models were developed for normal and
later for double-exponential [17,19] distributions of price
jumps [37,38]. For the latter, the market’s reaction to high-
impact good or bad news—arriving as a Poissonian process
and representing various types of uncertainties in the mar-
ket behavior—yields a random response of the asset price
[prescribed by the jump-size distribution] and also enables
the analytical solution for lookback- and barrier-type options
[17].

B. Examples of processes with resetting dynamics

These quick option-price adjustments for reset options
are reminiscent of general approaches of resetting employed
for various stochastic processes, including the multiplicative
ones [39–43]. The subject of stochastic resetting has re-
cently experienced a tsunami of new—both theoretical and
experimental—developments (see, i.a., Refs. [1,43–104] for
classical formulations and Refs. [57,105–110] for much-
less studied stochastically reset quantum systems). Not to
be repetitive here, we refer the reader to Ref. [71] where
a number of physical and mathematical phenomena involv-
ing abrupt jumps addressable with resetting approaches were
overviewed, with explicit literature sources. The excellent re-
cent overview on stochastic resetting (including applications)
was also presented in Ref. [57]. Rests, in addition to resets,
were also considered in the literature [111].

From the “hard-reset” perspective, we can add here,
e.g., revolutions and coup/Putsch-like changes of govern-
ing regimes exemplifying possible “resetting events” in
political-societal sciences. From a “soft-reset” perspective, the
so-called Kondratieff’s “K-waves” [112,113] characterizing
long global business-activity cycles—with a period of ≈50
years, possibly with a rich substructure of higher harmon-
ics [114]—can be mentioned. These waves reflect the level
of technological innovations and of the (macro-)economic
growth correlated therewith with the economic crises [115]
and depression phases clustering at the downswing of the
patterns of K-waves.

For selecting an optimal portfolio [116–118] containing
multiple differently performing options or risky stocks, the
tasks of performance optimization—aimed at achieving cer-
tain profit levels and goals—would involve selling and buying
individual positions [119], acting as reset events for the whole
set of such co-evolving GBM-like processes in a given port-
folio.

As to reset-GBM processes specifically, (i) the accumula-
tion of the mean wealth of a person in a society or an ensemble
of “renewable” (retiring and dying [120]) individuals, (ii) the
dynamics of stock-market prices of an “overheated” company
collapsing at a “bubble”-point, (iii) the growth dynamics of
a bacterial colony—exponentially proliferating provided the

abundance of necessary resources [121,122]—being shock-
treated by antibiotics [123] can be mentioned as examples,
as well as (iv) an uncontrolled growth of malignant tumors
treated by anticancer drugs [124], and (v) of lipid-membrane-
enveloped corona-like viruses after being treated by high-%
alcohol mixtures [125].1

We stress that the concept of “stochastic resetting” used in
the statistical-physics literature [42] has similarities to some
random-process approaches which are considerably older
than one decade. Time series of random Poisson-distributed
“events occurring haphazardly in space or time” were, e.g.,
considered already by Cox [128].2 Intimately related to the
problem of Poissonian stochastic-resetting setups, as em-
phasized in Ref. [130], and to reset GBM specifically, the
established theories of catastrophe- or annihilation-like events
[130–147]—much less-noticed by the community of con-
temporary “reset physicists”—were considered in the models
of population extinction, with a Poissonian “killing” pro-
cess being often implemented (with later resurrection of the
population). The catastrophic disasters or “resets” distributed
according to the paradigmatic Poissonian law were considered
in a large corpus of mathematical papers, where, i.a., the
explicit probability laws of the form (23) presented below
were derived (see, e.g., Eq. (3) in Ref. [141], Eq. (2.2) in
Ref. [144], and Eq. (6) in Ref. [130]). The time of popu-
lation extinction for birth-death processes with catastrophes
were found [66,135,136,141]. For example, the scenarios with
random sudden population reductions with the magnitudes
scaling with the process value itself [132,133,140], with the
rate of catastrophes being proportional to the existing pop-
ulation [135,137,138], and for arbitrary distributions of the
catastrophe magnitudes [135] were examined.

Specifically, the phenomenon of population extinction
within a deterministic model of exponential growth caused
by demographic variability, environmental stochasticity [148],
and random catastrophes were developed [140]. The risks of
population extinction in dependence on the population-growth
rate as well as on the magnitude and frequency of catas-
trophic events were examined. As in many “contemporary”
stochastic-resetting studies, a Poissonian process was often

1Additional, broader-scope examples of processes involving a
snowball-like, exponential growth and sudden termination are (i) the
accumulation of the number of abstract submissions for participating
in a conference as the deadline is approaching (acting as a reset
point), (ii) increasing vibrations and audible frequency of the Euler’s
disk prior to its stoppage [126], and (iii) the accumulation of the in-
duced electric charges in droplets—created by the Rayleigh-Plateau
instability—in the Kelvin’s water-dropping hydroelectric generator
[127]. For the latter, the charge growth is exponential-like due to
a self-amplifying feedback loop, with sparking events acting as
[quasiperiodic] resets.

2The concept of a nonlocal—as compared to a blind and local types
of search—and various approaches to optimization or extremization
of multiparametric mathematical problems based on certain “learn-
ing algorithms” were developed in the Soviet mathematical literature
by Gel’fand et al. already in the 1960s [129]. These latter approaches
employ adaptively and jump-wise chosen starting positions for the
facilitation of and time-reduction in gradient-based search problems.
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used to govern the occurrence of catastrophes in these models,
with a constant fraction of population being destroyed by each
disaster [140].

Clear parallels exist between the models of exponential
growth in the population dynamics and the GBM-based mod-
els of price growth in financial economics. For instance, the
average time until extinction of a population because of catas-
trophic events is equivalent to the average survival time of a
company prior to a bankruptcy event [149], occurring, i.a.,
because of financial crashes.

C. Ensemble- and time-based-averaging: Concept of ergodicity

For a time series of an arbitrary continuous stochastic
process, S(t ), for a large ensemble of statistically indistin-
guishable trajectories the second moment is expressed through
the probability-density function (PDF) P(S, t ) as the statistical
average

〈S2(t )〉 =
∫

S2P(S, t )dS, (1)

characterizing the mean-squared displacement (MSD). As a
complementary time-averaging-based definition, the single-
trajectory-based quantifier of the time-averaged MSD
(TAMSD, a random variable by itself) is commonly computed
as [150–153]

δ2(�) = 1

T − �

∫ T −�

0
[S(t + �) − S(t )]2dt . (2)

The TAMSD is, thus, defined as the average over the squared
increments of a process along a trajectory. Here, � is the lag
time and T is the total length of the trajectory. Hereafter, the
angular brackets denote averaging over realizations of noise
[driving the process S(t )], whereas the overline over a quantity
indicates time-averaging in the sense (2). Further averaging
over N statistically equivalent and independent TAMSD real-
izations of a process yields the mean TAMSD [151,152],

〈δ2(�)〉 = 1

N

N∑
i=1

δ2
i (�). (3)

We call below a diffusion process ergodic—we refer the
reader here to the original historical/classical studies on er-
godicity [154–159] and to some recent developments, reviews
and viewpoints [151,152,160–163]—if (for the vanishing first
moment and zero initial position) the MSD and the mean
TAMSD are equivalent in the limit of short lag times and long
trajectories, �/T � 1, namely,

MSD(�) ≈ TAMSD(�). (4)

D. Plan of the paper

The rest of the paper is organized in the following manner.
We start via presenting the known results for nonreset GBM
in Sec. II. Then we move to the results for the PDF in Sec. III,
the MSD and variance in Sec. IV, and the mean TAMSD
in Sec. IV D for a random walk of Poisson-reset GBM. The
findings of stochastic simulations (with the numerical algo-
rithm described in Sec. V) are favorably consistent with the
theoretical expectations, as we demonstrate for three different

domains/regions of the model parameters. The latter are the
drift magnitude μ, the strength of randomness σ 2, and the
reset rate r. The functional regimes and the asymptotic be-
haviors of the statistical quantifiers are thoroughly described
in Sec. VI, namely, in Secs. VI A, VI B, VI C, and VI D for the
first moment, second moment, variance, and TAMSD, corre-
spondingly. The auxiliary Tables I, II, III, and IV presenting
the main asymptotic behaviors can be found in Sec. VI E.
A comparative analysis of the main results of Ref. [1] for
a simpler process of drift-free reset GBM and a number of
new results of the current study are summarized in Table V.
The nonergodicity is discussed in Secs. VII A and VII B. The
discussion and conclusions are presented in Sec. VII. The de-
tails of the TAMSD derivations—following and generalizing
our short study [1] using the framework of Ref. [45]—are
presented in Appendix A and supplementary Figs. 11–22 are
collected in Appendix B.

II. RESULTS FOR GBM

The multiplicative-noise stochastic differential equa-
tion for standard or nonreset GBM, denoted as X (t ) below,
is given by

dX (t ) = μX (t )dt + σX (t )dW (t ), (5)

where μ and σ are the constant parameters of drift and volatil-
ity.3 The increments of the Wiener process, dW (t ), represent
random realizations of white Gaussian zero-mean noise. We
consider Eq. (5) in the Itô representation [182] that gives rise
to exponentially growing GBM of the form (after using Itô’s
lemma) [1,183,184]

X (t ) = X0e(μ−σ 2/2)t+σW (t ). (6)

Here, the initial value of the process defines the prefactor of
the entire price variation, X0 = X (0) > 0.

The log-normal PDF of price fluctuations associated with
GBM has the form

P(X, t ) = exp{−(2σ 2t )−1[log(X/X0) − (μ − σ 2/2)t]2}√
2πσ 2tX 2

.

(7)
This expression gives for the first and second moments as well
as for the variance of GBM the corresponding results

〈X (t )〉 = X0eμt , (8)

〈X 2(t )〉 = X 2
0 e(2μ+σ 2 )t , (9)

3Numerous generalizations of Eq. (5) with, e.g., fluctuating and
variable volatilities exist in the financial-mathematics literature, in-
cluding those using the concept of “stochastic volatility” [143,164–
174] laying (yet again) the foundation of the “diffusing-diffusivity”
approach “reincarnated” recently in the physics literature for the
modified Langevin equation [175–178]. Note that similar mathemat-
ical “superstatistical” concepts of population-distribution parameters
were also formerly utilized for modeling heterogeneous disper-
sion of animals to rationalize movement-ecology data (see, i.a.,
Refs. [179–181]). Note that certain models of optimal portfolios with
a known diffusivity—but with unknown random drift coefficients—
also exist [118].
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and

〈(X (t ) − 〈X (t )〉)2〉 = X 2
0 e2μt (eσ 2t − 1). (10)

For the multiplicative price dynamics governed by Eq. (5)
the value of the process both at the initial time moment as well
as after each resetting event should be positive.4 As a result of
S0 �= 0, the second moment of the process is not exactly equal
to the MSD defined as 〈[S(t ) − S0]2〉. As the first moments
of both pure and reset GBM are also nonzero [and positively
defined], we are also interested in the second central moment
or the variance. For a standard exponentially growing GBM
its leading-order long-time growth is the same for the second
moment, MSD, and variance: it is defined by the exponential
function with the largest growth rate, see below.

The mean TAMSD of GBM for the situation μ �= 0—the
general case considered below—is given by

〈δ2(�)〉 = X 2
0

(
1 − 2eμ� + e(σ 2+2μ)�

)
(T − �)(σ 2 + 2μ)

[e(σ 2+2μ)(T −�) − 1]

(11)
and behaves at short lag times and for long trajectories as
[1,183–185]

〈δ2(�)〉 ≈ 〈X 2(T )〉 × �/T ≈ 〈(X (T ) − 〈X (T )〉)2〉 × �/T .

(12)
The mean TAMSD for GBM [1,183,185] and scaled GBM
[184] were obtained recently.

The concepts of time-averaging and nonergodicity for the
resetting dynamics were first applied by us to reset frac-
tional Brownian motion (FBM) and heterogeneous-diffusion
processes in Ref. [71]. The reader is also referred to our
recent data-driven studies where the concepts of TAMSD and
nonergodicity were first applied to the financial time series
and GBM [183,185] and to drift-free GBM in the presence
of Poisson resetting [1]. These studies formed the foundation
for the current analysis. Some models of anomalous diffusion
with drift [186] were recently considered in the literature
[187–190], but—to the best of our knowledge—never in terms
of both the MSD and the TAMSD for an exponentially grow-
ing process with drift and resetting, as we examine below for
reset GBM with μ > 0.

III. PDF OF RESET GBM

A. Derivation of the reset PDF

Our main focus here is to consider the process of GBM
in the presence of constant-rate, Poissonian resetting, de-
noted as S(t ) below. For this simple and ubiquitously
employed protocol of stochastic resetting, the waiting-time
distribution between the consecutive resetting events is

4Only under this condition the so-called economic Brownian mo-
tion or GBM will enter the cycle of multiplying the already existing
money. Starting with a zero initial capital cannot brings any profits.
Note, however, that although negative prices per se sound irrational,
these scenarios are not utterly impossible (as, e.g., the WTI crude-oil
negative-price run in April 2020 triggered by the first lockdown
during the current covid-19 pandemic).

exponential,

ψ (t ) = re−rt . (13)

For the Poissonian resetting strategy, the average time be-
tween the recurrent events of resetting is the reciprocal rate
of reset,

〈treset〉 =
∫ ∞

0
t ′ψ (t ′)dt ′ = 1/r. (14)

Under these conditions, an instantaneous price-reduction
event or reset to a price value S0 takes place with a con-
stant rate r at each time-step, reminding thus a Sisyphus-type
[82,191] random walk. We consider below the simplest sce-
nario of a memoryless reset to a single position,

Sreset = S0 = X0. (15)

This price level is set relatively small: such GBM interrup-
tions are then associable with economic crashes [25,115,192]
occurring at the time instances of resets.5

The first-principle derivation of the well-known [42,57]
Eq. (20) is presented below mainly for pedagogical purposes,
completing the presentation and also defining the scope for
some later derivations. A stochastic process with constant-rate
resetting at each step goes back to S0 with the probability r�t
or proceeds forward unchanged (according to its predefined
rules) with the probability (1 − r�t ), namely,

S(tn+1) =
{

S0, preset = r�t,

S(tn) + �S(tn), pnonreset = 1 − r�t .
(16)

Let P0(S, t ) be the PDF of the nonreset parent process with
a starting point S0 at time t = 0. To derive the PDF of the reset
process at time t , we look at different classes of trajectories for
which the resetting events occur at different times. First, the
trajectories for which no reset event occurred within the time
interval [0, t] give the PDF contribution

F (s, t ) = lim
n→∞ P0(s, t )(1 − rt/n)n = P0(s, t )e−rt . (17)

Here, n is the number of steps of the walk. Next, we consider
the trajectories where the last reset event occurs at (T − τ )
and no later; no reset events occur in the remaining time τ .

5Note that numerous modifications of this simplistic setup for, e.g.,
(i) distributed reset positions P(Sreset ) (like in the jump-diffusion
models [17]), (ii) a discrete set of different Sreset,i values with respec-
tive occurrence probabilities [39], (iii) a time-variable reset position
S0(t ), (iv) noninstantaneous or “soft” return events [62,88,94,101]
according to a certain law (constant velocity, constant acceleration,
etc.), (v) various types of reset strategies (including those with
nonconstant and time-varying reset rates), (vi) relocation of the
walker to certain path-history-dependent positions (such as, e.g., in
the preferential-relocation models [193], (vii) returns to the so-far
achieved maximum position [194], or (viii) the construction of cer-
tain “elephant”-like [195–197] random walks) are possible. Models
of resetting to multiple distributed prices p(S0) can be important for
modeling of real reset options and also for some models of wealth-
and tax-reallocation-dynamics in a collective of individuals, known
also to be describable by a modified GBM [102,198–200].
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Their contribution to the PDF is

F (s, τ ) = P0(s, τ ) lim
�τ→0

r�τ (1 − r�τ )
τ

�τ . (18)

To obtain the entire PDF, we account for all such trajectories
with different times of the last reset, τ ∈ [0, t], so that∫ t

0
F (s, τ )dτ =

∫ t

0
P0(s, τ ) lim

�τ→0
r�τ (1 − r�τ )

τ
�τ dτ

=
∫ t

0
P0(s, τ )re−rτ dτ. (19)

Adding (17) and (19) yields the PDF of the reset process in
the well-known form [1,42,57,60,71]

P(s, t ) = P0(s, t )e−rt +
∫ t

0
P0(s, τ )re−rτ dτ. (20)

The “mapping” of the nonreset PDF to the reset PDF
(20) can be used to find expectation values: for an arbitrary
function of a reset random variable f (s) (with no explicit time
dependence) the mean can be written as

〈 f (S; t )〉 =
∫

f (s)P(s, t )ds. (21)

Substituting here the PDF expression (20) yields

〈 f (S; t )〉 = e−rt
∫

f (s)P0(s, t )ds

+
∫

ds
∫ t

0
f (s)P0(s, τ )re−rτ dτ. (22)

Exchanging the order of integration in the second term—
for reasonably well-behaving fucntions—and realizing that∫

f (s)P0(s, t )ds is the expectation value with respect to the
nonreset variable X (t )—we obtain

〈 f (S; t )〉 = e−rt 〈 f (X ; t )〉 +
∫ t

0
〈 f (X ; τ )〉re−rτ dτ. (23)

B. Long-time PDF: The NESS

The general expression for the PDF of reset GBM is ob-
tained below. We are interested in obtaining the PDFs under
certain special conditions (called below the first, the second,
and the third regime of behavior of important quantifiers), and,
in particular, in the long-time limit of a frequently reset GBM
where the so-called nonequilibrium stationary state (NESS)
can realize. In the NESS—where the PDF is stationary, but
the probability current is still nonzero [57]—the PDF is ob-
tainable via the mapping (20), where the PDF P0 of nonreset
GBM is given by Eq. (7), namely,

P(S) = lim
t→∞

∫ t

0
P0(S, τ )re−rτ dτ. (24)

This integral can be computed analytically for {σ, r} > 0 to
yield the power-law steady-state PDF,

P∓(S) = r(S/S0)∓
√

(μ−σ 2/2)2+2rσ 2/σ 2−3/2+μ/σ 2

S0

√
(μ − σ 2/2)2 + 2rσ 2

, (25)

where the negative and positive signs correspond to the case
S > S0 and S < S0, respectively. The transition between these

two different PDF forms gives rise to a sharp cusp at S = S0.
Note that Eq. (25) corrects erroneous expressions for the PDFs
of reset GBM given by Eq. (B3) of Ref. [73] and Eq. (7) of
Ref. [74].

The values of the first moment, the second moment, and
the variance obtained with the NESS-related PDF (25) are the
plateaus given by Eqs. (100), (116), and (140) below, as ex-
pected. The condition for the existence of a nondivergent pth
moment of the PDF (25)—see also Refs. [73,201]—defines
the frequency of necessary resetting events as

r > p(μ − σ 2/2) + p2σ 2/2. (26)

Consistent with our physical intuition, the higher the order p
of the moment is, the larger the rate of resetting r should be
to ensure a stagnating NESS-related plateau for the pth mo-
ment. The strong- or frequent-resetting region of parameters
is realized for sufficiently large r magnitudes, such that all
(relevant) moments saturate to a stationary value. The critical
reset rates following from Eq. (26) for p = 1 and p = 2 define
the boundaries of the respective parameter regions as

r = μ (27)

and

r = 2μ + σ 2. (28)

For the first region, at μ = r, a normalized PDF can be
obtained from the general expression (25), but already the
first moment—and, naturally, all higher moments—do not
converge, as Eqs. (86) and (102) indicate. This fact—again,
consistent with the condition (26)—indicates that the NESS—
typically characterized by the plateaus of all (relevant)
moments and time-independent, steady-state PDF—does not
exist in this region of model parameters. The NESS is not
expected when the moments do not converge at long times.

For σ 2 + 2μ = r—the condition of the second region of
model parameters—the PDF (25) simplifies to

P(S) = 2r

S0(r + 2σ 2)

{
(S/S0)r/σ 2−1, S < S0,

(S/S0)−3, S > S0,
(29)

that produces a plateau for the first moment with the height
(90) but gives a divergent second moment and variance, con-
sistent with expression (26), indicating a partial NESS in this
region as far as the first two moments are considered.

For the third—or the general—region of model parameters
the reset rate should exceed r > 2μ + σ 2 in order for the first
and second moments to converge. Such plateau-like behavior
of these moments then ensures the existence of the NESS
in this case. For the situations when the moments of higher
order (such as skewness and kurtosis) matter, the reset rate
should exceed the thresholds given by the p = 3 and p = 4
solutions of Eq. (26), respectively. The NESS is then realized
up to the 4th order in the moment-containing observables in
displacement, characterizing the stochastic dynamics.

In the absence of drift, from Eq. (25) we recover the PDF
result of Ref. [1],

P(S) = 2r(S/S0)∓
√

σ 2+8r/(2σ )−3/2

S0σ
√

σ 2 + 8r
, (30)
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that produces the expressions (34), (38), and (64) for the first
moment, the second moment, and the variance in the NESS
for a drift-free reset GBM.

To shorten the paper, we skip here the theory-versus-
simulations comparison for the PDFs of reset GBM (for the
general and each of the special cases or region of parameters).
We refer the interested reader to the quantitative PDF analysis
performed for the case of drift-free reset GBM in Ref. [1].

IV. MOMENTS, VARIANCE, AND TAMSD OF RESET GBM

A. First moment

The first moment of reset GBM is found from Eq. (23) as

〈S(t )〉 = e−rt 〈X (t )〉 +
∫ t

0
dτ re−rτ 〈X (τ )〉, (31)

where 〈X (t )〉 is the first moment of GBM (8), that gives

〈S(t )〉 = S0

(
e−rt eμt +

∫ t

0
dτ re−rτ eμτ

)
. (32)

Two region of parameters in expression (32) are possible,
namely, μ = r and μ �= r. Performing the integration in both
cases yields the general expression for the first moment

〈S(t )〉 = S0

⎧⎪⎪⎨⎪⎪⎩
1 + rt, μ = r,

2r+(σ 2−r)e− (σ2+r)t
2

σ 2+r , σ 2 + 2μ = r,
μe(μ−r)t −r

μ−r , σ 2 + 2μ �= r, μ �= r.

(33)

Substituting μ = 0 in the last, general expression of Eq. (33)
yields

〈S(t )〉 = S0. (34)

As expected, at r = 0 from Eq. (33) the first moment of
nonreset GBM (8) is obtained.

B. Second moment

Similarly, the calculation of the second moment—using the
second moment of nonreset GBM (9) and Eq. (23)—yields

〈S2(t )〉 = S2
0e−rt e(σ 2+2μ)t + S2

0

∫ t

0
dτ re−rτ e(σ 2+2μ)τ . (35)

Here, again, two possible—but different—region of model
parameters arise, namely, σ 2 + 2μ = r and σ 2 + 2μ �= r.
Calculating the elementary integral in Eq. (35) we get

〈S2(t )〉 = S2
0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(σ 2+2r)e(σ2+r)t −r

σ 2+r , μ = r,

1 + rt, σ 2 + 2μ = r,

(σ 2+2μ)e(σ2+2μ−r)t −r
σ 2+2μ−r , σ 2 + 2μ �= r, μ �= r.

(36)

Generally, when σ 2 + 2μ �= r, substituting in the last line of
this expression μ = 0 gives the special case of Ref. [1],

〈S2(t )〉 = S2
0
σ 2e(σ 2−r)t − r

σ 2 − r
. (37)

In the limit of frequent resetting r 
 σ 2 and at long times
expression (37) yields the plateau value

〈S2(t )〉 = S2
0r/(r − σ 2). (38)

At r = 0, when the resetting process is switched off, as
expected, from the first expression of Eq. (36) we recover
Eq. (9) for nonreset drift-free GBM. For the first moment
(33) and the second moment (36) we added for completeness
the expressions for σ 2 + 2μ = r and μ = r, used later as
separate branches of the asymptotes for the variance and mean
TAMSD.

C. Variance

To compute the variance of reset GBM, generally given by

〈(S(t ) − 〈S(t )〉)2〉 = 〈S2(t )〉 − 〈S(t )〉2, (39)

we use the first and second moments from Eqs. (33) and (36).
Interestingly, three mutually exclusive regions of parameters
arise from combining the previous parameter regimes [for the
case of positive drift, μ > 0]. The first one is μ = r (which
implies σ 2 + 2μ is not equal to r), the second one is σ 2 +
2μ = r (which implies μ is not equal to r), and the third one
is σ 2 + 2μ �= r and μ �= r. The variance of reset GBM in each
of these three regions of model parameters is

〈(S(t ) − 〈S(t )〉)2〉

= S2
0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(σ 2+2r)e(σ2+r)t −r

σ 2+r − [1 + rt]2, μ = r,

1 + rt − [
μe(μ−r)t −r

μ−r

]2
, σ 2 + 2μ = r,

(σ 2+2μ)e(σ2+2μ−r)t −r
σ 2+2μ−r − [

μe(μ−r)t −r
μ−r

]2
, σ 2+2μ �= r, μ �= r.

(40)

For the case σ 2 + 2μ �= r and μ �= r, substituting μ = 0, we
get a simple expression [1],

〈(S(t ) − 〈S(t )〉)2〉 = S2
0

σ 2

σ 2 − r
(e(σ 2−r)t − 1). (41)

As expected, setting here r = 0 produces the standard result
for nonreset GBM, Eq. (10).

D. TAMSD

The splitting procedure of the TAMSD of reset GBM is
given by Eq. (A25), with the general analytical results for
〈δ2(�)〉μ and 〈δ2(�)〉σ 2+2μ given by expressions (A23) and
(A24), respectively.

1. Regime 1: Region of parameters μ = r

When μ = r, combining the second expression of
〈δ2(�)〉μ and the first of 〈δ2(�)〉σ 2+2μ from Eqs. (A23) and
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(A24), respectively, that after setting μ − r = 0 yields

〈δ2(�)〉 = S2
0

{
(σ 2 + 2r)

(
e(σ 2+r)� − 1

)(
e(σ 2+r)(T −�) − 1

)
(σ 2 + r)2(T − �)

− 2r�

[
1 + r

(T − �)

2

]}
. (42)

If we set μ = r = 0, then expression (42) simplifies into the mean TAMSD of nonreset drift-free GBM, namely,

〈δ2(�)〉 = S2
0

(
eσ 2� − 1

)(
eσ 2(T −�) − 1

)
σ 2(T − �)

, (43)

in agreement with Eq. (11) evaluated at μ = 0.

2. Regime 2: Region of parameters σ2 + 2μ = r

When σ 2 + 2μ = r, we use the first expression of 〈δ2(�)〉μ and the second of 〈δ2(�)〉σ 2+2μ from Eqs. (A23) and (A24),
respectively, while setting σ 2 + 2μ − r = 0 gives rise to the mean TAMSD of reset GBM in the form

〈δ2(�)〉 = S2
0

{
(2 + rT )(1 − e(μ−r)�) + e(μ−r)�r� − 2(e(μ−r)� − 1)

r[μ(e(μ−r)(T −�) − 1) − r(μ − r)(T − �)]

(μ − r)3(T − �)

}
, (44)

that for μ = 0 simplifies to

〈δ2(�)〉 = S2
0r[T − (T − �)e−r�]. (45)

3. Regime 3: Region of parameters μ �= r & σ2 + 2μ �= r

In the most general scenario σ 2 + 2μ �= r and μ �= r and, consequently, we utilize the first expression of 〈δ2(�)〉μ and the
first expression of 〈δ2(�)〉σ 2+2μ from Eqs. (A23) and (A24), correspondingly, to obtain the general expression for the mean
TAMSD of reset GBM as

〈δ2(�)〉 = S2
0

{
(σ 2 + 2μ)

(
1 + e(σ 2+2μ−r)� − 2e(μ−r)�

)(
e(σ 2+2μ−r)(T −�) − 1

)
(σ 2 + 2μ − r)2(T − �)

+ 2r[e(μ−r)� − 1]

σ 2 + 2μ − r
− 2(e(μ−r)� − 1)

r[μ(e(μ−r)(T −�) − 1) − r(μ − r)(T − �)]

(μ − r)3(T − �)

}
. (46)

If we set μ = 0, this turns into [1]

〈δ2(�)〉 = S2
0

{
1

T − �

σ 2

(σ 2 − r)2

[(
1 + e(σ 2−r)� − 2e−r�

)(
e(σ 2−r)(T −�) − 1

)] − 2(1 − e−r�)

(
1 + r

σ 2 − r

)}
, (47)

that, in turn, after switching off the resetting process via setting r = 0 yields the TAMSD result for nonreset driftless GBM.

4. Joining different TAMSD regimes

To get the full expression for the mean TAMSD for reset GBM, we combine all the regimes from Eqs. (42), (44), and (46) to
get the main analytical result of the current study in a rather sophisticated form, namely,

〈δ2(�)〉 = S2
0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(σ 2+2r)[e(σ2+r)�−1][e(σ2+r)(T −�)−1]
(σ 2+r)2(T −�) − 2r�

[
1 + r (T −�)

2

]
, μ = r,

(2 + rT )(1 − e(μ−r)�) + e(μ−r)�r�

−2[e(μ−r)� − 1] r[μ(e(μ−r)(T −�)−1)−r(μ−r)(T −�)]
(μ−r)3(T −�) ,

σ 2 + 2μ = r,

(σ 2+2μ)[1+e(σ2+2μ−r)�−2e(μ−r)�][e(σ2+2μ−r)(T −�)−1]
(σ 2+2μ−r)2(T −�) + 2r(e(μ−r)�−1)

σ 2+2μ−r

−2[e(μ−r)� − 1] r[μ(e(μ−r)(T −�)−1)−r(μ−r)(T −�)]
(μ−r)3(T −�) ,

μ �= r, σ 2 + 2μ �= r.

(48)

The particular expressions for 〈S(t )〉, 〈S2(t )〉, 〈(S(t ) −
〈S(t )〉)

2〉, and 〈δ2(�)〉 in each of the region of parameters
μ = r and σ 2 + 2μ = r follow—upon performing the Tay-
lor expansions in terms of the small parameters δr = μ − r
and δr = σ 2 + 2μ − r (to the necessary order)—from the

general expressions for the first moment (33), the second
moment (36), the variance (40), and the mean TAMSD (48) of
Poisson-reset GBM obtained for the general case μ �= r and
σ 2 + 2μ �= r. The drift-free μ = 0 results for the moments
[(33) and (37)], variance (41), and mean TAMSD (47) of
Poisson-reset GBM were presented in our short study [1].
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FIG. 1. Simulated Sysiphus-type random walk [82,191] trajec-
tories of reset GBM for the case of rare (r = 0.005, green curve)
and frequent (r = 0.5, red curve) resetting, computed for σ = 10−2

and the initial-and-reset price S0 = 1. The green-colored path [with
larger reset jumps] is a process with potentially larger speculative
“winning margins,” as compared to the red trajectory [with much
smaller rises and drops of the price, both shown symbolically with $
sign]. A low-saturation Morandi-like color palette is used in this and
later plots. The figure is reproduced from Ref. [1], subject to APS
2022 copyright.

V. SIMULATION SCHEME

From Eq. (5), the time-evolution of reset GBM is driven
by the increments dW (t ) modeled using the unit-variance and
zero-mean normal distribution,

dW (t ) ∼ N (0, 1) × dt . (49)

Within the Euler-Murayama simulation scheme, a stochastic
differential equation of the form

dX (t ) = f (X (t ))dt + g(X (t ))dW (t ), (50)

subject to the initial condition X (0) = X (t = 0), can be nu-
merically solved on an interval [0, T ] via splitting it into N̄
time steps

0 = t0 < t1 < t2 < · · · < tN̄ = T (51)

or ti = t0 + i × �t , with the time-step given by

�t = T/N̄ . (52)

Applying this discrete scheme to Eq. (50), with the increments
of the Wiener process

�Wn = W (tn+1) − W (tn), (53)

the recurrently used relation to generate GBM—consistent
with the prepoint Itô interpretation [182] used in the analytical
considerations above—becomes [1,183,184]

Xn+1 = Xn + μXn�t + σXn�Wn. (54)

For reset GBM with a constant-rate resetting, at each step
the random walk goes back to a fixed starting point with the
probability r�t , or alternatively it proceeds in accord with
Eq. (54) with the probability (1 − r�t ). Thus, the discretized

scheme to simulate Poissonian-reset GBM (see Fig. 1) is

S(tn+1)=
{

S0, preset = r�t,

Sn + μSn�t + σSn�Wn, pnonreset = 1−r�t .
(55)

VI. ASYMPTOTIC BEHAVIORS OF
THE MAIN OBSERVABLES

We present the results of the asymptotic expansions for
the first moment, the second moment, the variance, and the
mean TAMSD in Tables I, II, III, and IV, correspondingly.
We outline below separately the regimes of behaviors in each
of the three regions of the model parameters μ, σ 2, and r from
the above Secs. IV D 1, IV D 2, and IV D 3.

We are interested in the behavior of all quantifiers of
Poisson-reset GBM from the derived analytical expressions
at short and long (lag) times. The short-time limit is realized
when the diffusion time is much shorter than the shortest
timescale in the problem. The limit of long times is real-
ized when the diffusion time is much longer than the longest
timescale. The total length of the trajectory is, often, even
longer than this longest timescale, at least in the limit of
frequent resetting. In this case each trajectory contains a large
number of resetting events.

The existence of three main model parameters—the
nonzero drift μ (responsible for a deterministic growth of the
drift-containing GBM process), the volatility-related param-
eter σ 2 (describing the fluctuations-related growth), and the
rate of Poissonian resetting r (defining the average frequency
of resetting events)—defines a number of possible scenarios
or regimes for GBM-based diffusion in the presence of drift
and resetting. In our short study [1] of the simplest case
μ = 0 the limits of rare and frequent resetting were defined as
r � σ 2 and r 
 σ 2, respectively. The existence of a nonzero
drift complicates the terminology for the drift-containing sit-
uation considered here: the rate of resetting should not only
be compared to the diffusivity parameter σ 2 but also to the
drift μ. This gives rise to different timescales in the evolution
of the ensemble- and time-averaged statistical quantifiers of
reset GBM determined by certain combinations of these three
main model parameters, as we describe below.

A. First moment

In the main text the results for the third regime of model
parameters for all relevant statistical quantifiers are presented,
while Appendix B contains the auxiliary figures with the
results of both computational and analytical analyses for
the parameters regions 1 and 2. For each region of model
parameters the comparison of analytical (as well as asymp-
totic predictions) with the results of computer simulation
demonstrates good, quantitative agreement. The results of
simulations and their comparison with the theoretical predic-
tions for the first moment of drift-containing reset GBM are
presented for regime 1, regime 2, and regime 3 of the model
parameters in Figs. 11, 12, (Appendix B) and 2, correspond-
ingly.
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1. Regime 1

We start with the limit of long observation times, see
Fig. 11(a). In the first region of model parameters, when μ =
r, the first expression in Eq. (33) is the asymptote by itself,
with no limits to be considered, so that 〈S(t )〉 = S0[1 + rt],
as indicated in Eqs. (85) and (86) of Table I.

The condition σ 2 + 2μ = r provides a special subset of
μ �= r expression in Eq. (33) with an additional constraint on
the allowed values of μ and r. The respective regime of the
first-moment variation is of interest here because it emerges in
the analysis of the variance and the mean TAMSD later. The
timescale-variable then becomes (μ − r)T = −(σ 2 + r)T/2.
As both the volatility and rate of reset are positively defined,
this imposes a constraint on the drift, namely, μ < r.

The behaviors of the first moment of reset GBM in a
wide range of times and at short times are demonstrated in
supplementary Figs. 11(a) and 11(b), respectively. Note that μ

and σ 2 were chosen here relatively small to reach satisfactory
averaging statistics for the chosen number of trajectories in the
set and their length. Larger drift and volatility parameters will
surely enhance the exponential-like GBM growth and require
[for a fixed trace length T ] a larger ensemble of the trajectories
to be generated in silico.

2. Regime 2

The results of simulations for the first moment in the sec-
ond region of parameters are presented in Figs. 12(a) and
12(b), respectively, for the general as well as the short-time
variation.

In the second region of model parameters we formally
choose the second line in expression (33). We find that at short
times, when (σ 2 + r)t � 1, the asymptotes are always linear
in time, with the prefactors epitomizing the three essential
characteristic rates in the problem, namely, μ, r/2, and σ 2/2.

At short times we find the the linear asymptote for the
first moment of reset GBM, with these three parameters de-
termining the prefactors in Eqs. (89), (91), and (93). We stress

here that the negative sign in Eq. (93) stems from effectively
negative drift μ ≈ −σ 2/2 < 0 in the subsubcase r � σ 2 of
the subcase (r − μ)T 
 1 of the second region of parame-
ters. We do not address this subsubcase in the plots, limiting
ourselves to the situation μ > 0 to simplify the description.

In the limit of long times, at (σ 2 + r)t 
 1, interestingly,
under the conditions of frequent resetting with r 
 σ 2, 〈S(t )〉
tends to 2S0 (twice the intuitively expected value). This value
for the subsubcase r 
 σ 2 stems from the fact that (μ − r) ≈
−r/2 < 0 so that in the general expression (33) the nonexpo-
nential factors give rise to the long-time limit

〈S(t )〉 ≈ 2S0. (56)

Note that the fluctuations of the computed plateau heights
of the first moment in this regime (as a function of
time) stem from a finite number of trajectories used for
ensemble-averaging. Under the conditions of weak or rare
resetting—that means here r � σ 2—we find that the long-
time limit of 〈S(t )〉 becomes quite small, cf. Eqs. (90), (92),
and (94). This trend is again opposite to expectations [once
we realize that the two cases are the subsets of the −(μ −
r)T 
 1 case in Table I]. The vanishing first moment in the
subsubcase (94) is a consequence of effectively negative drift
at these conditions, so that in the general expression (33) the
exponential function can be neglected at long times and the
constant factor gives 〈S(t )〉 ∝ 2r/σ 2 → 0 at r � σ 2.

For the condition |μ − r|T � 1 we detect two identical
asymptotes for the short- and long-time behavior of the first
moment, see Eqs. (87) and (88) in Table I.

3. Regime 3

Now we consider the third region of parameters: when μ �=
r and the third expression of the general Eq. (33) is to be taken.
The general and short-time evolution of the first moment for
this regime is presented in Figs. 2(a) and 2(b), respectively.
The timescale variable that determines the behavior of 〈S(t )〉

FIG. 2. The same as in Fig. 11, but for the third region of parameters (see Table I and the legend for the actual values of parameters).
The colors and the styles of the data symbols for the specific values of drift, volatility, and reset rate stay the same in all the plots illustrating
the behaviors of the moments, the variance, the TAMSD, the mean TAMSD, as well as the EB parameter for each region of parameters.
(a) The colored curves are according to Eq. (33), while the dashed asymptotes are Eqs. (96), (98), and (100). Log-linear scale is chosen here
to emphasize the exponential long-time growth of the fastest-growing curve (with the notation “exp” denoting this fact in the legend). (b) The
same as in Fig. 2(a) shown for the same parameters at short times. The asymptotes from Eqs (95), (97), and (99) are shown as the dashed lines.
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FIG. 3. The same as in Fig. 13 but the third region of parameters in Table II. The parameters are the same as in Fig. 2. (a) The colored
curves are according to Eq. (36), while the dashed asymptotes are plotted according to Eqs. (112), (114), and (116). (b) The same as in Fig. 3(a),
but shown as a zoom-in at short times, with the dashed asymptotes following Eqs. (111), (113), and (115).

in this regime is (μ − r)T . Comparing the rate of resetting
and the drift we can define the regimes of frequent and rare
resetting in this regime as μ � r and μ 
 r, correspondingly.
The asymptotes of analytical expression (33) for 〈S(t )〉 at
short and long times are listed in Table I as Eqs. (95), (97),
(99) and (96), (98), (100), respectively.

The first moment of reset GBM given by Eq. (33) grows
(naturally) slower in time as that of the nonreset process in
the limit of long times, cf. Eqs. (96) and (8). It is also not
surprising that for rare resetting, at r � μ, the existing drift
dominates resetting so that the behavior of the first moment
resembles that of nonreset or pure GBM, but with a slower
exponential growth. In a subregion of parameters, when for
the entire time domain |μ − r|T � 1, the first moment of
reset GBM exhibits a linear-in-time growth, both at short
and at long times. At long times, under the conditions of
frequent resetting we get S(t ) → S0, as intuitively expected;
see Eq. (100).

B. Second moment

The asymptotic behaviors of the second moment of reset
GBM are presented in Table II. These asymptotes for the
first, second, and third regions of the above-mentioned model
parameters in the limit of short and long times are favorably
compared to the results of simulations in Figs. 13(b), 14(b),
3(b) and 13(a), 14(a), 3(a), correspondingly.

1. Regime 1

In the first region of parameters, at μ = r and for σ 2 +
2μ �= r, we find that in the limit |σ 2 + 2μ − r|T � 1 the
second moment develops linearly both at short and long times,
according to Eqs. (107) and (108), respectively. In the op-
posite limit of (σ 2 + 2μ − r)T 
 1 the general short- and
long-time expressions are given by Eqs. (101) and (102).
The former one presents again a growth which is linear in
time, whereas the latter exhibits an exponential growth slowed
down by resetting. This one can judge via comparing (102)
with the second moment of nonreset GBM (9). The behavior
at μ = r can further be separated into the regimes characteriz-

ing the frequent- and rare-resetting protocols (established via
comparing r to σ 2).

Namely, for frequent resetting (r 
 σ 2) the second mo-
ment of reset GBM features a linear behavior at short times
and an exponential asymptotic growth at long times, both
containing only the reset rate r as the essential parameter, cf.
Eqs. (103) and (104). In the opposite limit of rare resetting,
the diffusivity parameter σ 2 controls the linear short-time
evolution of 〈S2(t )〉 and the exponential long-time behavior
of the second moment, as specified by Eqs. (105) and (106),
see also Fig. 13. Naturally, only σ 2 is the essential parameter
in this rare-resetting limit in the first region.

2. Regime 2

In the second region of model parameters, at σ 2 + 2μ =
r, the short- and long-time asymptotic laws of the second
moment of reset GBM are identical to one another being linear
in time, see Eqs. (109) and (110), as follows from Eq. (36). In
this limit, the exponential growth stemming from the depen-
dence on the parameter (σ 2 + 2μ) and the exponential decay
of the second moment originating from the reset rate r cancel
each other that yields an unexpectedly simple linear growth of
〈S2(t )〉 of reset GBM in this situation, see also Fig. 14.

3. Regime 3

In the third region of model parameters, when μ �= r and
σ 2 + 2μ �= r, we describe the behaviors in this regime in the
three different limiting situations. Their physical meaning is
as follows. At short times all three subcases give the same
linear asymptote for the second moment, see Eqs. (115),
(113), and (111). In the limit of long time, however, depending
on each specific condition chosen, we predict three different
functional dependencies.

Namely, in the first subcase of the third regime, for the
region of parameters when the resetting rate can be neglected,
the long-time exponential growth of the second moment of
reset GBM is similar to that of pure GBM (9), cf. Eq. (112).

For the second subcase of the third regime, the simplifi-
cations of Eq. (36) yields a linear dependence of the second
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TABLE I. Asymptotes of the first moment of Poisson-reset GBM in the presence of nonzero drift. Each regime and subregime/subcase
of functional behaviors is realized for a respective region and subregion of the model parameters, as indicated here and in the following
Tables. The underlined and double-underlined results in regime 3 of this Table turn into the results of Ref. [1] in the limits of weak/rare

and strong/frequent resetting, respectively.

〈S(t )〉/S0 Short time Long time

Regime 1
μ = r 1 + rt (85) 1 + rt (86)

Regime 2 |μ − r|T � 1 1 + μt (87) 1 + μt (88)

σ 2 + 2μ = r 1 + μt (89) 2r/(σ 2 + r) (90)

−(μ − r)T 
 1

{
r 
 σ 2

r � σ 2
1 + rt/2 (91) 2 (92)

1 − σ 2t/2 (93) 2r/σ 2 ≈ 0 (94)

Regime 3 +(μ − r)T 
 1 1 + μt (95) μe(μ−r)t/(μ − r) ≈ eμt (96)

μ �= r |μ − r|T � 1 1 + μt (97) 1 + μt (98)

σ 2 + 2μ �= r −(μ − r)T 
 1 1 + μt (99) r/(r − μ) ≈ 1 (100)

moment of time, Eq. (114), both at short and long times, like
in the second regime [see Eqs. (109) and (110)].

Lastly, for the third subcase of the third regime (frequent
resetting), the process is interrupted so often that at long times
we get for the second moment simply the square of the reset
position, S2

0 , see Eq. (116), see also Fig. 3.

C. Variance

As the variance involves the first and the second moments,
see Eq. (39), the number of possible regions of parameters
remains the same, but the number of different combinations
of the subregions of parameters increases, see Table III. It is
remarkable, however, that in the limit of short times all these
different regions and subregions of model parameters give rise

to the same asymptotic growth of the variance, namely,

〈(S(t ) − 〈S(t )〉)2〉 ≈ S2
0σ

2t . (57)

We mention here also that, effectively, the short-time asymp-
totic behaviors of the first and second moments are also the
same, as detailed in Tables I and II. In the limit of long
times, however, the different regimes yield functionally di-
verse asymptotic forms of the variance, as described for each
of the regimes and subcases below.

These asymptotic behaviors for the first, second, and third
regimes in the respective regions of parameters, both at short
and long times, are in good, quantitative agreement with
the results of computer simulations. Both theoretical and

simulational results for 〈(S(t ) − 〈S(t )〉)
2〉 are presented in

TABLE II. Asymptotes of the second moment of reset GBM. The underlined and double-underlined results in regime 3 in Tables II,

III, and IV turn at μ = 0 into the findings of Ref. [1] for a simpler drift-less reset GBM, see also Table V.

〈S2(t )〉/S2
0 Short time Long time

1 + (σ 2 + 2r)t (101) (σ 2+2r)e(σ2+r)t

σ 2+r
(102)

Regime 1 +(σ 2 + r)T 
 1

μ = r

{
r 
 σ 2

r � σ 2
1 + 2rt (103) 2ert (104)

1 + σ 2t (105) eσ 2t (106)

|σ 2 + r|T � 1 1 + (σ 2 + 2r)t (107) 1 + (σ 2 + 2r)t (108)

Regime 2
σ 2 + 2μ = r 1 + rt (109) 1 + rt (110)

Regime 3 +(σ 2 + 2μ − r)T 
 1 1 + (σ 2 + 2μ)t (111) (σ 2+2μ)e(σ2+2μ−r)t

σ 2+2μ−r
(112)

μ �= r |σ 2 + 2μ − r|T � 1 1 + (σ 2 + 2μ)t (113) 1 + (σ 2 + 2μ)t (114)

σ 2 + 2μ �= r −(σ 2 + 2μ − r)T 
 1 1 + (σ 2 + 2μ)t (115) r
r−σ 2−2μ

≈ 1 (116)
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FIG. 4. The same as in Fig. 15 but the third region of parameters in Table III. The parameters are the same as in Fig. 2. (a) The colored
curves represent Eq. (40), while the dashed asymptotes are according to Eqs. (130), (132), (134), (136), (138), and (140). All three different
functional forms of the long-time asymptotes—the exponential growth, the linear increase, and the saturation to the NESS-like plateau—are
indicated in the legend. (b) The same as in Fig. 4(a), with the behavior at short times being illustrated. The dashed lines follow Eqs. (129),
(131), (133), (135), (137), and (139).

Figs. 15(a), 16(a), 4(a) and 15(b), 16(b), 4(b), correspond-
ingly. Log-log scale in all these figures properly represents
the power-law growth of the variance at short times in all the
regimes (and also at long times in some of them).

1. Regime 1

For the first region of parameters, at μ = r, as given by the
first line in Eq. (40), for the subcase (σ 2 + r)T 
 1 (that is
the characteristic parameter) the exponential growth at long
time is detected, Eq. (118), namely

〈(S(t ) − 〈S(t )〉)2〉 ≈ S2
0

(σ 2 + 2r)e(σ 2+r)t

σ 2 + r
. (58)

This result in the case of rare resetting, r � σ 2, yields that

〈(S(t ) − 〈S(t )〉)
2〉 ≈ S2

0 × eσ 2t [see Eq. (122)], as for nonreset
GBM, as intuitively expected. For the situation of frequent
resetting, when r 
 σ 2, the asymptotic behavior of the vari-

ance is determined solely by the reset rate, namely, 〈(S(t ) −
〈S(t )〉)

2〉 ≈ S2
0 × 2ert ; see Eq. (120).

Similar to the long-time asymptotics of the second moment
given by expression (104), we obtain in this region of pa-
rameters the exponential growth of variance of reset GBM at
long times. The reason for such a growth for both 〈S2(t )〉 and

〈(S(t ) − 〈S(t )〉)
2〉 for the case of frequent resetting r 
 σ 2—

where for a drift-free scenario one expects and observes the
respective NESS plateaus [1]—is the argument of the expo-
nential function in the general drift-containing case, see the
third lines in expressions (36) and (40), correspondingly.

Namely, in the case of GBM with a nonzero drift consid-
ered here, at μ = r the leading dependencies for the second
moment and of the variance given by ∝ e(2μ−r)t turn into
∝ ert , as described. The NESS plateau is only detected when
both conditions

r 
 σ 2 and r 
 μ (59)

are satisfied. These plateaus are described by expressions
(116) and (140) for the second moment and variance, re-
spectively (see the third subcase in Sec. VI B 3 and the sixth
subcase in Sec. VI C 3).

In the second subregion of model parameters, at |σ 2 +
r|T � 1, both exponential functions in the general solution
for the variance (40) can be expanded (due to the smallness of
their arguments at all times). Therefore, the long-time result in
this subcase is the same as the short-time one, see Eq. (124),

〈(S(t ) − 〈S(t )〉)2〉 ≈ S2
0σ

2t, (60)

see also the results of Fig. 15.

2. Regime 2

In the second region of model parameters, when σ 2 +
2μ = r, (μ − r)T is the behavior-determining parameter, as
follows from the second line in Eq. (40). In this regime,
we observe at long times the linear-in-time evolution of the
variance of reset GBM. Namely, the behavior (57) listed in
Eq. (126) for the first subcase |μ − r|T � 1 is obtained.

For the second subregion of this parameter region, at
−(μ − r)T 
 1, the growth law of the variance

〈(S(t ) − 〈S(t )〉)2〉 ∼ S2
0 × rt (61)

follows from expression (126) at rt 
 1 and for r 
 σ 2. The
results for this regime are shown in Fig. 16.

3. Regime 3

In the third regime of parameters, when μ �= r and σ 2 +
2μ �= r, the general expression (40) should be used. For all the
subregimes of this regime we obtain the linear-in-time growth
given by Eq. (57), whereas at long times the exponential
growth of the variance at rare resetting, the linear-in-time
growth at intermediate resetting, as well as a plateau-like
stagnating behavior of the variance at frequent resetting are
detected. We describe these behaviors one by one below and
illustrate them in Fig. 4.
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For the first subcase of the third regime, at (μ − r)T 
 1
and (σ 2 + 2μ − r)T 
 1, the exponential growth of GBM
is only weakly perturbed by resetting, with the long-time
asymptotic form given by Eq. (130). In this situation both
exponential functions from the third line of expression (40)
contribute to the behavior, but in the limit of long times only
one of them with the largest argument will survive because

σ 2 + 2μ − r > μ − r. (62)

In the second subcase, when |μ − r|T � 1 and +(σ 2 +
2μ − r)T 
 1, the second exponential function in the third
line of Eq. (40) can be neglected and, yet again, only a slightly
resetting-perturbed growth of the variance at long times is
predicted; see Eq. (132).

In the third subcase, when |μ − r|T � 1 and |(σ 2 + 2μ −
r)|T � 1, we can expand both exponential functions in the
general expression for the variance (40) in terms of their small
arguments and obtain that the long-time behavior is identical
to the short-time evolution (57), as given by Eq. (134).

In the fourth subcase, when (σ 2 + 2μ − r)T 
 1, the sec-
ond exponential function in Eq. (40) can be neglected at
long-enough times and the first exponential function dom-
inates the growth of the variance in this subregime; see
Eq. (136).

In the fifth subcase, when −(μ − r)T 
 1 and |σ 2 +
2μ − r|T � 1, the first exponential function in the general
expression (40) can be expanded for small arguments (in the
entire interval of times), while the contribution of the second
exponential function can be neglected. Then, provided the re-
setting process is intense enough, so that the condition r 
 μ

holds, we arrive at a simple linear long-time asymptote in this
subregime given by Eq. (138).

Finally, in the sixth subcase, for which the subregion of pa-
rameters is −(μ − r)T 
 1 and −(σ 2 + 2μ − r)T 
 1, the

resetting is frequent enough so that both exponential functions
[related to the GBM growth] in Eq. (40) can be neglected and
a plateau-like NESS-related behavior given by Eq. (140) is
established, namely,

〈(S(t ) − 〈S(t )〉)2〉 ≈ S2
0

r(σ 2r + μ2)

(r − σ 2 − 2μ)(μ − r)2
. (63)

In the limit of frequent resetting, such that r 
 μ, we arrive
from this expression at a simple result for drift-free reset GBM
presented in Ref. [1], with the NESS-plateau given by

〈(S(t ) − 〈S(t )〉)2〉 ≈ S2
0σ

2/(r − σ 2). (64)

When the rate of resetting not only exceeds the drift r 
 μ,
but also r 
 σ 2, the long-time limits for the first and second
moments are—due to extremely frequent resets to S0 value—
given by 〈S(t )〉 → S0 (100) and 〈S2(t )〉 → S2

0 (116). For the
variance, given by the respective difference (39), a small value

〈(S(t ) − 〈S(t )〉)2〉 ≈ S2
0σ

2/r � S2
0 (65)

is obtained in this frequent-resetting limit from expression
(140). Physically, frequent resetting (59) at long times rarely
leads to random walks leaving the starting point far enough
and, thus, the fluctuations of the particles’ position from the
mean—being quantified by the variance—tend to vanish ac-
cordingly; see Eqs. (65) and (140). All these characteristic
behaviors are illustrated in Fig. 4.

D. TAMSD

With the help of the results for the two components
〈δ2(�)〉μ and 〈δ2(�)〉σ 2+2μ of the mean TAMSD in the limits
of short and long lag times, in Table IV we present all possible
asymptotes obtained from the final TAMSD result (48), that
embodies the main result of the current study.

TABLE III. Asymptotes of the variance of reset GBM.

〈(S(t ) − 〈S(t )〉)2〉/S2
0 Short time Long time

Regime 1
σ 2t (117) (σ 2+2r)e(σ2+r)t

σ 2+r
(118)

μ = r +(σ 2 + r)T 
 1
{r 
 σ 2

r � σ 2

σ 2t (119) 2ert (120)

σ 2t (121) eσ 2t (122)

|σ 2 + r|T � 1 σ 2t (123) σ 2t (124)

Regime 2 |μ − r|T � 1 σ 2t (125) σ 2t (126)

σ 2 + 2μ = r −(μ − r)T 
 1 σ 2t (127) rt + 1 − 4r2

(σ 2+r)2 (128)

Regime 3

+(μ − r)T 
 1 +(σ 2 + 2μ − r)T 
 1

μ �= r

σ 2t (129) (σ 2+2μ)e(σ2+2μ−r)t

σ 2+2μ−r
(130)

σ 2 + 2μ �= r
|μ − r|T � 1

σ 2t (131) (σ 2+2μ)e(σ2+2μ−r)t

σ 2+2μ−r
(132)

{+(σ 2 + 2μ − r)T 
 1

|σ 2 + 2μ − r|T � 1 σ 2t (133) σ 2t (134)

−(μ − r)T 
 1

σ 2t (135) (σ 2+2μ)e(σ2+2μ−r)t

σ 2+2μ−r
(136)

⎧⎪⎨⎪⎩
+(σ 2 + 2μ − r)T 
 1

|σ 2 + 2μ − r|T � 1

−(σ 2 + 2μ − r)T 
 1

σ 2t (137) (σ 2 + 2μ)t (138)

σ 2t (139) r(σ 2r+μ2 )
(r−σ 2−2μ)(μ−r)2 (140)
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We now describe all the regimes, subregimes, and explicit
asymptotic behaviors realized for the mean TAMSD of the
process of drift-containing reset GBM, as listed in Table IV.
The description is done in the same order as for the same
regions of parameters for the variance in Sec. VI C. The results
for the mean TAMSD are presented in Figs. 17(a), 18(a),
5(a) and 17(b), 18(b), 5(b) for the domains of long and short
lag times, correspondingly. Our starting expressions are the
general result (48) as well as the particular expressions (42)
and (44) for the first and second regime, correspondingly.
Similar to the second moment and variance, the results for
the mean TAMSD of reset GBM for the regime 1, regime 2,
and regime 3 of typical behaviors are expressed in terms of
their dependencies on {σ 2, r}, {σ 2, r}, and {σ 2, μ, r}, corre-
spondingly, with the model parameters being situated in the
respective regions.

1. Regime 1

In the first regime, see Table IV summarising the TAMSD
asymptotics, in the first subregion of the model parameters
realized at (σ 2 + r)T 
 1 in the limit of short lag times (σ 2 +
r)� � 1 one of the exponential functions in expression (42)
defines the magnitude of the TAMSD, namely,

〈δ2(�)〉 ≈ S2
0

(σ 2 + 2r)

(σ 2 + r)
× e(σ 2+r)T ×

(
�

T

)1

. (66)

This exponential function acts as a prefactor for the linear de-
pendence of the mean TAMSD of reset GBM on the lag time,
〈δ2(�)〉 ∝ �, as given by Eq. (141). This prefactor simplifies
in the limit of strong/frequent (143) and weak/rare (145) re-
setting, whereas the latter coincides (not surprisingly) with
the scaling relation (12) known for nonreset GBM [1,183–
185]. The scaling relations (143) and (145) stemming from
the general expression (141) correspond to the first subregion
(σ 2 + r)T 
 1, while the asymptote (147) is obtained under
the second condition |σ 2 + r|T � 1. These two subcases are
considered for the first region of model parameters.

For the long-time behavior in this subregion of parameters
we find that at the very last point of the TAMSD trajec-
tory, at � = T , for the first subcase of the first regime, at
(σ 2 + r)T 
 1, the scaling relations (144) and (146) originat-
ing from the general expression (142) are found to be valid.
The general relation (142) in this subregion of parameters
illustrates the exponential increase of the end-point TAMSD
magnitude as a function of the lag time for (σ 2 + r)T 
 1,

〈δ2(�)〉 ≈ S2
0

(σ 2 + 2r)e(σ 2+r)�

σ 2 + r
. (67)

As we clarified in Sec. VI C 1 for the observed exponen-
tial growth of the second moment and variance at long
times, for the mean TAMSD in this regime the argument of
the exponential function in Eq. (142) [see the third line in
Eq. (48)] is the reason for the exponential growth at r 
 σ 2.
The NESS plateau of the TAMSD is only detected when
both conditions—r 
 σ 2 and r 
 μ—are being satisfied, see
Eq. (164) as well as the sixth subcase in Sec. VI D 3.

In the second subregion of model parameters, at |σ 2 +
r|T � 1, the same exponential function can be expanded
into the power series in the entire region of lag times

so that another linear-in-lag-time asymptotic expression for
the TAMSD at short lag times (σ 2 + r)� � 1 is obtained,
namely, Eq. (147). We, again, obtain a linear-in-lag-time
TAMSD dependence at short lag times, but with a functionally
different prefactor, i.e.,

〈δ2(�)〉 ≈ S2
0 (σ 2 − r2T )�1. (68)

For rare resetting (when σ 2 
 r2T ) this expression, as ex-
pected, yields the result for the short-lag-time growth of the
mean TAMSD of nonreset GBM, namely, 〈δ2(�)〉 ≈ S2

0σ
2�,

that coincides with the result following from Eq. (43) at short
lag times and for σ 2T � 1 (a condition for the model param-
eters similar to the one of the current subregion).

In the second subregion of parameters, at |σ 2 + r|T � 1,
in the limit of long lag time the expression (148) is obtained.
It describes the linear growth of the TAMSD with � for the
parameter subregion |σ 2 + r|T � 1, namely,

〈δ2(�)〉 ≈ S2
0σ

2�. (69)

As one could have anticipated, at |σ 2 + r|T � 1 the number
of resetting events for the entire trajectory is small and their
effects are not salient: the long-lag-time growth of the mean
TAMSD is (in the leading-order approximation) unperturbed
by resetting. We, thus, detect two fundamentally different
functional forms of the mean-TAMSD growth in the two
subcases of the first regime: the exponential growth (67) in the
first subcase and the linear growth (69) in the second subcase
of regime 1, see also Fig. 17.

2. Regime 2

In the second region of parameters in Table IV we start
with the simplified TAMSD expression (44). At short lag
times in the first subregion of parameters, at |μ − r|T � 1,
the respective exponential functions involved in the TAMSD
(44) can be expanded into the Taylor series such that a simple
TAMSD asymptotic behavior (149) is obtained at short lag
times for |μ − r|� � 1, namely,

〈δ2(�)〉 ≈ S2
0σ

2�. (70)

The asymptotic growth observed at long lag times in this
subcase yields the very same linear dependence of the mean
TAMSD on lag time, Eq. (150), i.e.,

〈δ2(�)〉 ≈ S2
0σ

2�. (71)

In the second subregion of parameters, at −(μ − r)T 
 1,
at short lag times the exponential functions in expression
(44) of the type e(μ−r)T can be neglected, while the expo-
nential function e(μ−r)� should be Taylor-series expanded. As
a result, a linear-in-lag-time growth of the mean TAMSD is
obtained, Eq. (151), that under the assumption of relatively
frequent resetting—such that at r 
 σ 2 and for rT 
 1—
yields a simple asymptotic expression 〈δ2(�)〉 ∼ S2

0r2T × �.
For the long-lag-time behavior in the second subcase of

regime 2 we find expression (152) describing a constant-
factor-offset linear growth of the mean TAMSD, with the
leading dependence at rT 
 1 being 〈δ2(�)〉 ∼ S2

0r�. We
emphasize, however, that—for the values of the model param-
eters chosen in our simulations—additional next-order terms
of the expansion presented in the short- and long-lag-time
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TAMSD expressions (151) and (152) need to be taken into
account to achieve a good, quantitative fit to the data extracted
from the computer simulations, see Fig. 18.

3. Regime 3

In the third region of model parameters, the general expres-
sion (46) is utilized. For the first subregion of parameters, at
+(μ − r)T 
 1 and +(σ 2 + 2μ − r)T 
 1, in the limit of
short lag times—at (σ 2 + 2μ − r)� � 1 and (μ − r)� � 1
(and for condition � � T being additionally satisfied)—the
exponential functions in expression (46) with short-lag-time
arguments can be expanded, while the exponential functions
containing the trace length as the argument serve as prefactors
in the resulting mean-TAMSD asymptote showing a linear
growth with the lag time, as given by Eq. (153), i.e.,

〈δ2(�)〉 ≈ S2
0

(σ 2 + 2μ)(σ 2 + r)e(σ 2+2μ−r)T

(σ 2 + 2μ − r)2

(
�

T

)1

. (72)

We emphasize here that in the case of positive drift (consid-
ered here) only one exponential function “survives” in the
leading asymptotic order for long trajectories and short lag
times in expression (72) (because σ 2 + 2μ − r > μ − r).

In the limit of long lag times of this subregion of parame-
ters we observe the exponential growth of the mean TAMSD
with the lag time, Eq. (154), namely,

〈δ2(�)〉 ≈ S2
0

(σ 2 + 2μ)e(σ 2+2μ−r)�

σ 2 + 2μ − r
. (73)

In the second subcase of the third regime, at |μ − r|T � 1
and (σ 2 + 2μ − r)T 
 1, the exponential function e(μ−r)t

can be expanded in the entire interval of times, while the
exponential function e(σ 2+2μ−r)T dominates the magnitude of
the TAMSD. In this subregime, we again obtain a TAMSD
asymptote growing linear with the lag time and featuring a
characteristic exponential dependence on the total trajectory
length as a prefactor, see Eq. (155). From this expression—
identical to that of the first subcase given by Eq. (72)—in
the limit of weak drift and rare resetting—i.e., at σ 2 
 μ and
σ 2 
 r—one naturally arrives at the short-time TAMSD for
nonreset drift-free GBM, namely

〈δ2(�)〉 ≈ S2
0eσ 2T × (�/T ). (74)

At long lag times in this subcase we, again, find the
exponential growth of the mean TAMSD, with the actual
expression being identical to that obtained in the first subcase
of the third regime; see Eqs. (73) and (156).

In the third subcase of the third regime, at |μ − r|T � 1
and |σ 2 + 2μ − r|T � 1, all exponential functions of the
general expression for the mean TAMSD of reset GBM,
Eq. (46), can be expanded at small values of their arguments in
the limit of short lag times �, i.e., at |μ − r|� � 1 and |σ 2 +
2μ − r|� � 1. As a result, after algebraic simplification, a
very simple expression for short-lag-time TAMSD growth is
found, with the TAMSD magnitude being independent on the
trajectory length T , namely,

〈δ2(�)〉 ≈ S2
0σ

2�, (75)

as given by Eq. (157). We can thus conclude that the dynamics
in this subregion of parameters is ergodic if considered in the

sense of the equivalence of the behaviors of the variance (57)
and the mean TAMSD (75) at short (lag) times. The detailed
description of (non)ergodicity is presented in Sec. VII A; the
consideration of the ergodicity-breaking parameter of reset
GBM is outlined additionally in Sec. VII B.

At long lag times, the very same asymptotic behavior of the
TAMSD (75) is found in this subregion of model parameters;
see Eq. (157).

In the fourth subcase of the third regime, at −(μ − r)T 

1 and (σ 2 + 2μ − r)T 
 1, for the short-time behavior of
the mean TAMSD of reset GBM the exponential function
e(μ−r)T can be neglected, while another exponential function
e(σ 2+2μ−r)T [yet again] dominates the TAMSD magnitude
and provides the characteristic prefactor in the linear asymp-
totic growth of 〈δ2(�)〉 in this subcase, with the asymptotic
TAMSD expression being identical to that obtained in the first
and second subcases of the third regime; see Eqs. (72) and
(159), respectively.

At long lag times the characteristic TAMSD behavior in
this subregion of parameters is, likewise, identical to those
found in the first and second subcases, see Eqs. (73) and (160).

In the fifth subcase of this third regime of the TAMSD scal-
ing behavior, in the subregions of parameters −(μ − r)T 

1 and (σ 2 + 2μ − r)T � 1, after expanding all exponential
functions in Eq. (46) [except e(μ−r)T that can be neglected]
in the allowed regimes of their arguments and after algebraic
simplification of the terms, we arrive from Eq. (46) at a pecu-
liar TAMSD asymptote (161), given (in the leading order) by

〈δ2(�)〉 ≈ S2
0

(
σ 2 + 2μr

μ − r

)
�. (76)

This, yet again, gives a linear dependence of the TAMSD
on the lag time, with the prefactor depending on all relevant
model parameters in the set {σ 2, μ, r} and on the length of the
trajectory T .

At long lag times the TAMSD behavior in this subcase
obeys the asymptotic law

〈δ2(�)〉 ≈ S2
0

[
(σ 2 + 2μ)� + 2μ

μ − r

]
. (77)

In this expression, typically, the first term is larger than the
second one for small drift values and, therefore (yet again),
a linear growth of the mean TAMSD with the lag time is
realized in this subregion of model parameters.

Lastly, for the sixth subcase of regime 3 of the TAMSD
behaviors, at −(μ − r)T 
 1 and −(σ 2 + 2μ − r)T 
 1,
after neglecting the respective exponential functions e(μ−r)T

and e(σ 2+2μ−r)T (vanishing asymptotically in this subregion of
parameters), we obtain the asymptotic expression for the mean
TAMSD of reset GBM given by Eq. (163),

〈δ2(�)〉 ≈ S2
0

2r(μ2 + σ 2r)

(σ 2 + 2μ − r)(μ − r)
�. (78)

In the limit of frequent resetting, at r 
 {σ 2, μ}, it turns into
〈δ2(�)〉 ≈ 2S2

0σ
2�, already obtained for the frequently reset

drift-free GBM process in our short communication [1].
At long lag times and in the limit of frequent resetting,

when r� 
 1 but still in the domain � � T , the TAMSD
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FIG. 5. The same as in Fig. 17 but the third region of parameters in Table IV. The parameters are the same as in Fig. 2. (a) The colored
curves are according to Eq. (42), while the dashed asymptotes are plotted according to Eqs. (154), (156), (158), (160), (162), and (164). (b) The
same as in Fig. 5(a) but presented at short times. The dashed linear are from Eqs. (153), (155), (157), (159), (161), and (163).

in this subcase reaches a plateau with the height given by
expression (164), namely,

〈δ2(�)〉 ≈ S2
0

2r(μ2 + rσ 2)

(r − σ 2 − 2μ)(r − μ)2
. (79)

This value is twice the plateau height of the variance in this
NESS regime, as given by Eqs. (63) and (140), so that

TAMSD(�) = 2 × Variance(�). (80)

In the drift-free case, μ = 0, clearly, the same relation (80)
between the TAMSD and variance holds in the NESS, as
follows from the TAMSD result

〈δ2(�)〉 ≈ S2
0

2σ 2

r − σ 2
(81)

and the result (64) for the variance (both obtained in Ref. [1]).
We thus conclude that for the process of reset GBM featuring
a nonzero first moment (33) the variance plays the same role
as the MSD does for potential- and interval-confined pro-
cesses with vanishing first moments. For the latter, the relation
TAMSD = 2 × MSD holds in the plateau regime for the MSD
and TAMSD, or in the quasistationary regime [202,203].

At the very last point of the trajectory, at � = T , the mean-
TAMSD magnitude of reset GBM attains in this subcase of
regime 3 the value

〈δ2(T )〉 ≈ S2
0

rσ 2 + μσ 2 + 2μ2

(r − σ 2 − 2μ)(r − μ)
, (82)

that is generally not the same as the variance at this point [still
given by Eq. (64)]. The ratio of the two end-point quantities is

〈δ2(T )〉
〈(S(T ) − 〈S(T )〉)2〉 ≈ r − μ

r

rσ 2 + μσ 2 + 2μ2

σ 2r + μ2
. (83)

We stress here that in the drift-free reset-GBM scenario, in
contrast, the TAMSD following from Eq. (82) has the same
value as the variance (64) at the last point, so that one gets

TAMSD(T ) = Variance(T ). (84)

This relation is, again, analogous to the TAMSD(T ) =
MSD(T ) equivalence found for confined stochastic pro-
cesses with normal and anomalous dynamics, see, e.g.,
Refs. [202,203].

The graphical illustration of the mean-TAMSD evolution
in this subregion of parameters, with a particular emphasis
on the long-lag-time NESS regime, is shown in Figs. 6 and
7. As intuitively expected, at the highest rate of resetting the
TAMSD plateau is most conspicuous and, as a result, the
TAMSD-to-Variance ratio reaches strikingly the anticipated
level of TAMSD/Variance=2 for this NESS regime. As Figs. 6
and 7 illustrate, the mean TAMSD at the last point drops in
magnitude, see the colored dashed asymptotes on these plots.

For a drift-free frequently reset GBM the plateau ex-
pression (79) turns into twice the plateau of the variance
for the same situation, as given by Eq. (64) and obtained
by us in Ref. [1]. Note also that for such frequently reset

FIG. 6. Plateau magnitudes of the mean TAMSD in the frequent-
resetting NESS-related regime (with the explicit parameters in this
region indicated in the plot), as obtained from the results of computer
simulations for the third regime. The theoretically expected relations
(79) and (82) are indicated as the black and colored dotted asymp-
totes, correspondingly.
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FIG. 7. Mean TAMSD, rescaled by the value of the variance
computed at the last point of the trajectory, plotted for the third
regime and for the parameters in the third region where the NESS
is realized. Symbols are the results of computer simulations. The
explicit values of relevant model parameters are given in the legend.
The plateau level of TAMSD/Variance=2 given by Eq. (80) is the
black line, while the theoretical expectations (83) are the colored
dotted lines shown at large � values.

GBM at the very last point � = T the magnitude of the
mean TAMSD (82) equals that of the variance (64). Such
a behavior is reminiscent of the MSD-to-TAMSD relations
unveiled, e.g., for FBM confined by parabolic potentials
[202], for interval-bounded heterogeneous diffusion processes
[203] as well as for the same two nonmultiplicative stochas-
tic processes under Poissonian resetting considered by us in
Refs. [71,98].

E. Summary of all regimes and asymptotic behaviors

Here, we present the detailed tables summarizing the
asymptotic behaviors of the statistical quantifiers computed
for all the regimes of behaviors in the respective regions of
the model parameters, as considered above. The results for the
first moment, the second moment, and variance, and the mean
TAMSD are shown in Tables I, II, III, IV, correspondingly.
The main findings of the current study are compared to the
results of Ref. [1] for a simpler process of drift-free reset
GBM in Table V.

VII. DISCUSSION AND CONCLUSIONS

A. Nonergodicity based on the MSD, variance, and TAMSD

We assess the nonergodicity of reset GBM based on the
quantitative comparison of the short-time asymptotic laws of
the second moment (and of the variance) to the short-lag-
time behaviors of the mean TAMSD, see the corresponding
columns of Tables II, III, and IV, respectively. We find that
generally at short times the mean TAMSD differs from the
second moment in all the regimes and from the variance in
most of the regimes and, thus, the phenomenon of weak er-
godicity breaking is observed for the process of Poisson-reset
GBM. For drift-containing random walks, like the current
ones, the variance—rather than the second moment—should
be compared to the TAMSD to assess the ergodicity. The
reason is that the first moment of both nonreset and reset GBM
is, generally, nonzero.

We note that at short lag times the mean TAMSD always
grows linearly in lag time. Comparing with the short-time
behaviors of the second moment and variance we observe

TABLE IV. Asymptotes of the mean TAMSD for reset GBM.

〈δ2(�)〉/S2
0 Short lag times Long lag times

(σ 2+2r)e(σ2+r)T

(σ 2+r)T
� (141) (σ 2+2r)e(σ2+r)�

σ 2+r
(142)

Regime 1
+(σ 2 + r)T 
 1μ = r

2erT �/T (143) 2er� (144){r 
 σ 2

r � σ 2 eσ 2T �/T (145) eσ 2� (146)

|σ 2 + r|T � 1 (σ 2 − r2T )� (147) σ 2� (148)

Regime 2 |μ − r|T � 1 σ 2� (149) σ 2� (150)

σ 2 + 2μ = r −(μ − r)T 
 1 ( r(r+σ 2 )T
2 +σ 2+2r − 4r2

σ 2+r
)� (151) 2 + rT − 4r

σ 2 + r
(152)

Regime 3
μ �= r +(μ − r)T 
 1 +(σ 2+2μ−r)T 
 1 (σ 2+2μ)(σ 2+r)e(σ2+2μ−r)T

(σ 2+2μ−r)2T
� (153) (σ 2+2μ)e(σ2+2μ−r)�

σ 2+2μ−r
(154)

σ 2 + 2μ �= r
|μ − r|T � 1

(σ 2+2μ)(σ 2+r)e(σ2+2μ−r)T

(σ 2+2μ−r)2T
� (155) (σ 2+2μ)e(σ2+2μ−r)�

σ 2+2μ−r
(156)

{+(σ 2+2μ−r)T 
 1

|σ 2 + 2μ − r|T � 1 σ 2� (157) σ 2� (158)

−(μ − r)T 
 1

(σ 2+2μ)(σ 2+r)e(σ2+2μ−r)T

(σ 2+2μ−r)2T
� (159) (σ 2+2μ)e(σ2+2μ−r)�

σ 2+2μ−r
(160)

⎧⎪⎪⎨⎪⎪⎩
+(σ 2+2μ−r)T 
 1

|σ 2+2μ−r|T � 1

−(σ 2+2μ−r)T 
 1

(σ 2 + 2μr
μ−r + (σ 2+2μ)(σ 2+r)T

2 )� (161) (σ 2 + 2μ)� + 2μ

μ−r (162)

2r(μ2+σ 2r)
(σ 2+2μ−r)(μ−r)

� (163) 2r(μ2+rσ 2 )
(r−σ 2−2μ)(r−μ)2 (164)
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TABLE V. Main differences of the long-time results for reset GBM obtained in Ref. [1] with zero drift (middle column, designated by
the wavy-underlined

�������������
results [to be compared to the respective double-underlined results in the right column]) and in the current study for

a nonzero drift (right column), both for the conditions of frequent resetting. The expressions are presented for the first two moments, the
variance, and the TAMSD (all normalized to the initial value of the process, as shown). The relative standard deviation—or the coefficient
of variation—squared gives the EB parameter for the distribution of different TAMSD realizations, shown in the last row of the table. For
drift-free reset GBM treated in Ref. [1] in the limit of frequent resetting and for long trajectories the first two moments, the variance, and the
mean TAMSD all assume constant values and the NESS is thus realized. For drift-containing GBM, under similar conditions imposed onto
the model parameters, in regime 3 all these statistical quantifiers also have constant values at long time, modified as compared to those derived
in Ref. [1] due to nonzero drift, see the current and all the previous Tables. The situation changes drastically in regimes 1 and 2. Namely, in
regime 2 only the first moment is constant, whereas the second moment, the variance, and the mean TAMSD feature terms growing linearly
with time or with the trace length. Finally, in regime 1 already the first moment contains a linearly-in-time growing term, whereas the second
moment, the variance, and the mean TAMSD are all growing rapidly—namely, exponentially—with the diffusion time or with the lag time.
Thus, in the limit of long times no NESS is realized in regime 1 of reset GBM with a nonzero drift.

Statistical quantifiers Reset GBM with μ = 0 Reset GBM with μ > 0

First moment, 〈S(t )〉/S0 1, Regime 3:
r

r−μ , Eq. (100),

at r 
 σ 2, rT 
 1 at r 
 2μ + σ 2, (r − μ)T 
 1
Regime 2: 2, Eq. (92),

at (r − μ)T 
 1, r 
 σ 2

Regime 1: 1 + rt , Eq. (86), at all t

Second moment, 〈S2(t )〉/S2
0

r
r−σ2
���

, Eq. (7) of Ref. [1], Regime 3:
r

r−σ2−2μ , Eq. (116),

at r 
 σ 2, (r − σ 2)T 
 1 at (r − μ)T 
 1, (r − σ 2 − 2μ)T 
 1
Regime 2: 1 + rt , Eq. (110), at all t

Regime 1: 2ert , Eq. (104),
at (σ 2 + r)T 
 1, r 
 σ 2

Variance, 〈(S(t ) − 〈S(t )〉)
2〉/S2

0

σ2

r−σ2
���

, Eq. (10) of Ref. [1], Regime 3:
r(σ2r+μ2 )

(r−σ2−2μ)(μ−r)2 , Eq. (140),

at r 
 σ 2, (r − σ 2)T 
 1 at (r − μ)T 
 1, (r − σ 2 − 2μ)T 
 1

Regime 2: rt + 1 − 4r2

(σ 2+r)2 , Eq. (128),
at (r − μ)T 
 1

Regime 1: 2ert , Eq. (120),
at (σ 2 + r)T 
 1, r 
 σ 2

TAMSD, 〈δ2(�)〉/S2
0

2σ2

r−σ2
���

, Eq. (15) of Ref. [1], Regime 3:
2r(μ2+rσ2 )

(r−σ2−2μ)(r−μ)2 , Eq. (164),

at r 
 σ 2, rT 
 1 at (r − μ)T 
 1, (r − σ 2 − 2μ)T 
 1
Regime 2: 2 + rT − 4r

σ 2+r
, Eq. (152),

at (r − μ)T 
 1
Regime 1: 2er�, Eq. (144),
at (σ 2 + r)T 
 1, r 
 σ 2

EB parameter, 〈(δ2(�)−〈δ2(�)〉)2〉
〈δ2(�)〉2

∝ 1
rT

��
, Fig. 10 of Ref. [1], Regime 3:

∝ 1
(r−σ2−2μ)T , Fig. 10,

at r 
 σ 2, rT 
 1 at (r − μ)T 
 1, (r − σ 2 − 2μ)T 
 1

Regime 2: grows with (r − μ) and T ,

at (r − μ)T 
 1

Regime 1: grows with (σ 2 + r) and T ,
at r � (σ 2 + r)

their general nonequivalence and, thus, the existence of weak
ergodicity breaking for Poisson-reset GBM. This conclusion
has already been communicated in our short study [1].

In some particular subcases, however, the equivalence of
the TAMSD and the variance at short (lag) times is found.
These are the situations of (a) the second subcase of the first
regime in the limit σ 2 
 r2T , (b) the first subcase of the

second regime (producing ergodic dynamics irrespective of
specific values of model parameters), (c) the third subcase
of the third regime which is also always ergodic, and (d) the
fifth subcase of the third regime in the limit of vanishing drift
μ = 0 and at σ 2T � 1. In these situations of “intermediate
resetting” the process of reset GBM loses the typical expo-
nential growth and becomes effectively ergodic.
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For other subcases/subregimes in other subregions of the
model parameters characterizing the process of reset GBM
we observed so-called ultraweak ergodicity breaking [204]—
when the corresponding mean TAMSD and the variance
possess the same short-time functional dependence and only
differ by a constant multiplicative factor. Note that for a num-
ber of subcases and scenarios this factor is, however, a quickly
(exponentially) varying function of the trajectory length T
leading to large differences in magnitude of these two quan-
tifiers. Note also that for the case of frequent resetting, at
r 
 σ 2 and r 
 μ, for the sixth subcase of the third regime
at short (lag) times the mean TAMSD is simply twice the
variance in the same region of parameters and time domain.

We refer the reader to the short-time columns of Tables II
and IV which demonstrate the (second moment)-to-TAMSD
nonequivalence and to the respective columns of Tables III
and IV for the variance-TAMSD comparison (as well as
for the examination of variance-TAMSD ultraweak ergod-
icity breaking) for all possible subregions of the model
parameters.

Several remarks are in place here. Firstly, we emphasize
that the consideration of the increment-MSD—we introduced
in the recent study [98],

iMSD(t1,�) = 〈(S(t1 + �) − S(t1))2〉, (165)

as an “improvement” of the standard MSD(�) for general
power-law-like anomalous-diffusion processes—leads to the
“restoration of ergodicity” in terms of the iMSD-to-TAMSD
equivalence if the increments are examined for time instances
t1 late enough in the quasistationary NESS regime.

Secondly, we stress that the ensemble-based averages have
been computed above as the standard arithmetic means for
a set of available realizations. Averaging procedures based
on the geometric mean have, however, also been used in
some single-particle tracking experiments [205,206]. We re-
fer the reader, e.g., to the recent studies [207,208] for the
general functional expected-value Kolmogorov-Nagumo pro-
cedure [209,210], discussed also for a class of multiplicative
processes by Kirkwood in Ref. [211] and by Samuelson in
Ref. [212], as well as to the concepts of “optimal” averaging
by Chisini (see Refs. [213,214]). The most physically appro-
priate mathematical definition for the “functional average” for
computing the means and the “generalized” TAMSDs—with
the subsequent assessment of nonergodicity in terms of these
redefined ensemble- and time-based averages—for a general
drift-containing stochastic process is a priori not clear. For
instance, different generalized means might be appropriate
for processes with a power-law, exponential, or logarithmic
growth of the MSD. This issue, being beyond the scope of the
current study, deserves a separate investigation.

Thirdly, another modification for drift-containing nonzero-
mean processes can be proposed. Namely, in addition to
Eq. (2), the “increment-TAMSD” definition δδ2(�) is also
tantalizing [187],

δδ2(�) =
∫ T −�

0 [S(t + �) − S(t ) − 〈S(t + �) − S(t )〉]2dt

T − �
.

(166)

This way, the deviation of the increments from the mean
value of the increments is considered as the integrand of this
increment-TAMSD. A similar “recalibration” of the MSD can
be performed too, see Refs. [98,215], to remove the effects
of drift and of the initial conditions imposed. We mention
here also the recent approach [216] aimed at redefining the
MSD and the TAMSD functionals for stochastic processes
with a space-dependent dynamics [203,217,218], yielding
a homogeneous-in-space and ultimately ergodic dynamics
in terms of the transformed ensemble- and time-averaged
quantities. For simplicity, we restricted ourselves above to
the standard definitions of the MSD and TAMSD given by
Eqs. (1) and (2), respectively.

B. Nonergodicity based on the EB parameter

After the calculations of Ref. [1] were finished, we be-
came aware of an alternative study [73] aimed at assessing
nonergodicity of reset GBM. The fundamental difference of
the analysis [73] from our short study [1] as well as from
the current calculations is the process-universal definition of
nonergodicity we are pursuing in terms of the nonequivalence
of the MSD and the (mean) TAMSD [152]. The degree of
nonergodicity can be quantified via the value and the de-
cay properties of the so-called ergodicity-breaking parameter
[150–152,219],

EB(�) = 〈(δ2(�))2〉/〈δ2(�)〉2 − 1, (167)

as a function of normalized lag time, EB(�/T ).
The EB parameter quantifies the dispersion of individual

TAMSD trajectories near their mean, obtained upon using
different realizations of noise for a time series of a stochastic
process. Individual TAMSD traces are, thus, endogenously
fluctuating quantities [151,152], even for the [most] ergodic
stochastic process of paradigmatic Brownian motion. At short
lag times and for long trajectories, at �/T � 1, the behavior
of EB for a given stochastic process is often compared to that
known for Brownian motion [152,178,220],

EB(�) ≈ 4�/(3T ). (168)

In the limit �/T → 0 the statements based on assessing the
values of EB and its functional dependence on the lag time and
trajectory length are known to be statistically most reliable
[152]; we thus focus on this regime in the description below.
A special consideration will be devoted to calculations of EB
for reset and pure GBM in a future analytical study [221], to
complement the results of computer simulations for the EB
evolution presented below and in Ref. [183].

The results of our computer simulations for drift-free reset
GBM indicate that as an [on average] exponentially growing
process of GBM is being reset progressively more often, the
spread of individual δ2(�) trajectories gets generally reduced.
This effect takes place both at short and long lag times; see
Fig. 9 of Ref. [1] as well as the situation of frequent resetting
in Fig. 8 representing the TAMSD spread for the third region
of model parameters. We show N = 20 individual traces for
each parameter choice for the first, second, and third regime
of functional behaviors of reset GBM in Figs. 8, 19, and 20,
respectively. The results of EB simulations for nonreset GBM
were presented in Ref. [183]. For Poisson-reset drift-free

034137-19



VINOD, CHERSTVY, METZLER, AND SOKOLOV PHYSICAL REVIEW E 106, 034137 (2022)

FIG. 8. The same as in Fig. 19 but for the third regime of model
parameters and of TAMSD variation. The triplets of values of drift,
volatility, and reset rate used in the computations are provided in the
legend. Other parameters are the same as in Fig. 2.

GBM the EB(�) results were presented in Ref. [1], while for
the drift-containing scenario they are shown in Figs. 9, 21, and
22, respectively for regimes 1, 2, and 3 of model parameters.
To illustrate the scale of the obtained EB values, each of
the latter EB plots we supplement with the Brownian-motion
asymptote (168).

For the drift-free reset-GBM scenario, the analysis of
EB(�1) variation at short lag times � = �1 = �t with the
reset rate r also unveils that for the conditions of frequent
resetting, at r 
 σ 2, in the long-time NESS we observed [1]

EB(�1) ≈ 1/(rT ). (169)

Remarkably, a robust nonmonotonic variation of the
EB-plateau values at short lag times for drift-free reset
GBM as a function of r was found, with a peak of EB at
intermediate reset rates, see Fig. 10 in Ref. [1]. Note that other
reset random walks—such as, e.g., nonmultiplicative reset
FBM and heterogeneous diffusion processes under Poissonian

FIG. 9. The same as in Fig. 21 but in the third regime of model
parameters. Multiple triplets of drift, volatility, and reset rates are
listed in the legend. The parameters are the same as in Fig. 2. The
dashed line is the Brownian-motion asymptote (168).

resetting, as we demonstrated recently [71]—also feature this
peculiar nonmonotonic EB(�1, r)-versus-r dependence. We
remind the reader that the NESS features a time-independent
PDF of particle displacements; see Sec. III B.

We describe now the variation of EB(�) and of EB(�1, r)
for the three regions of parameters of reset GBM with a
nonzero drift. We observe that often the EB parameter in the
limit � → 0 has a nearly lag-time-insensitive behavior, with
much higher levels than the EB values at the same [short]
lag times for Brownian motion, as shown in Figs. 9, 21,
and 22. This behavior—valid for all three regions of model
parameters—supports the statement that both pure [183] and
reset [1] GBM are generally nonergodic processes.

Note that for frequently reset GBM, the plateau of EB at
intermediate-to-long lag times can be considerably smaller
than the value (88). We emphasize here also that the shape of
EB(�)-dependence for reset GBM is similar to that detected
in the recent analysis of other reset [71] and potential-confined
[222] random walks.

We describe now the variation of EB parameter with the
lag time for three regimes of model parameters, as presented
in Figs. 21, 22, and 9, respectively.

1. Regime 1

In the first region of model parameters, we find that the
overall values of EB typically increase with σ 2; see Fig. 21.
Also, for a fixed σ 2 value the magnitude of the EB parameter
computed at short lag times increases with growing values of
μ = r; see Fig. 21. This increasing trend persists for large r
values. The drift-free asymptotic law (169) for EB versus r
dependence is however not followed [results not shown (see,
however, Table V)]. The reason for a drastically different
behavior of EB(�1, r) is a “compensation” of resetting by
drift in virtue of μ = r condition in this regime of variation.

2. Regime 2

In the second region of parameters, similar to the first one,
a nonmonotonic dependence of the EB parameter with lag
time is observed for some combinations of the model parame-
ters; see Fig. 22. The EB parameter varies from a plateau-like
behavior at short lag times, to a drop at intermediate �, and,
finally, to a region of increasing EB at long lag times, up to
� → T . Also, similarly to the behavior in the first regime, we
find the overall increase of EB values at short lag times with
σ 2 and an “inverted” dependence of EB(�1, r) on the reset
rate (results not shown, see Table V).

3. Regime 3

For the third regime of EB behavior, the reset rate is not
conditionally coupled to the values of drift and volatility (as
compared to the other two regions of parameters) and r can
be varied independently. Reset rates can reach large values
assuring the existence of the NESS in this regime of model
parameters. Frequent restarts, in turn, make the process of
reset GBM more reproducible in the sense of a reduced spread
of TAMSDs and more ergodic in the sense of smaller values
of the ergodicity-breaking parameter, EB. These dependencies
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are presented, respectively, in Figs. 8 and 9 for the model
parameters in the same third regime (as for all other figures in
the main text). For frequent-reset conditions in this region of
parameters—denoted by the red and cyan pentagonal symbols
in Fig. 9—after an increase of EB at short lag times (at
� � r) a plateau of EB at long lag times is being detected.
These plateau time-domains correspond to the plateaus of
the mean TAMSD for the same parameters in this regime,
compare Fig. 6 versus Fig. 9, but the EB plateaus are realized
at somewhat longer lag times (compare the same pentagonal
symbols for the same parameters in Figs. 6, 7, and 9).

Similarly to the frequent-reset regime of drift-free GBM
[1], the EB parameters at short lag times—as well as the
EB plateaus at intermediate-to-long lag times—exhibit a non-
monotonic dependence on r, with a maximum at intermediate
reset rates. As GBM is a rapidly growing process, at interme-
diate reset rates the impact of large increments of the process
induced at the points of reset appears to be maximized in
terms of the largest resulting EB values. The process of reset
GBM itself departs far enough from the starting price and
the occurring reset jumps perturb the TAMSD values and the
uncertainty of the TAMSD trajectories strongly enough so that
the maximum of the EB parameter emerges at intermediate r
values.

At very large reset rates, on the contrary, the process
is being interrupted too frequently so that such reset GBM
has not yet grown enough in value (starting from the reset
price S0) before the next reset event takes place. As a con-
sequence, typically both the magnitude of the TAMSDs and
their trajectory-to-trajectory fluctuations decrease at larger r,
thus causing the EB value to drop for the conditions of very
frequent resetting. This behavior is only observed in the third
regime in the long-time NESS-related scenario, when the mo-
ments, the variance, the TAMSD, and (to a certain extent) the
EB parameter are bounded.

In the parameter region r 
 {μ, σ 2}, the short-lag-time EB
values decrease with r similarly to expression (169), namely,

EB(�1) ∝ f (σ 2, μ)/r, (170)

where the prefactor f (σ 2, μ) is a function of the strength of
randomness and the drift magnitude; see Fig. 10. The reduc-
tion of EB values computed at short lag times with reset rate
r indicates smaller fluctuations of “price displacements” in
the trajectories of such reset drift-containing GBM, yielding
a more reproducible and more ergodic process in terms of the
EB magnitude. The effective “reset-rate parameter” replacing
r in this third regime is the reset rate renormalized by drift and
randomness parameters, namely,

r̃ = r − 2μ − σ 2, (171)

as used for the abscissa coordinate in Fig. 10. The NESS thus
emerges at long times for large values of r̃.6 We refer the
reader to Table V for the summary of the long-time behaviors

6Here, a remark is in place regarding the time-discreteness effects
occurring in simulations, �t . We have recently examined the im-
plications of such effects on the ergodic properties of pure [178]
and Poisson-reset [71] FBM. We found—both analytically and via
performing stochastic computer simulations—that for the ordinary,

FIG. 10. Variation of the EB parameter at short lag times � =
�1 versus the “effective’ rate of reset computed for the model param-
eters in the third region (see the legend; with r = σ 2 + 2μ defining
the border of this parameter region). Other parameters are the same
as in Fig. 2. The dashed-line asymptote portrays the EB decay law
(168).

of the EB parameter—as well of the moments, variance, and
TAMSD—in all three regions of the model parameters.

We note that for reset FBM a dependence similar to
Eqs. (169) and (170) was detected [71], EB(δt ) ∝ f (H )/(rT ),
with the prefactor f (H ) depending on the Hurst exponent H ;
see Fig. 4 in Ref. [178]. A similar characteristic decay of
the EB values at high reset rates—indicative of progressively
more ergodic dynamics—was also found for the “hybrid”
reset process of FBM and heterogeneous-diffusion process
in Ref. [178]. We stress here, however, that for reset FBM
the trend EB ∝ 1/r stops at extremely high reset rates, when
r × δt ∼ 1. In this limit, the reset events take place almost ev-
ery time step and the assumptions of the Poissonian statistics
can be violated. As a result, the EB parameter of frequently
reset FBM does not actually vanish at r → ∞ but reveals a
more intricate behavior, see Fig. 5 of Ref. [178] for details.
We do not reach such extreme reset rates in the current sim-
ulations of reset drift-containing GBM, see Fig. 10 where (as
in all other plots) the simulation time-step was 0.1.

C. Nonergodicity in economics

Recently, the problems of nonergodicity in economics
(both within the GBM-based models and well beyond it)
[199,223–226], wealth inequality [74,120,227–230], noner-
godicity in psychological and biological science [162,231] as
well as in decision-making models [232] were discussed in
the literature.

Specifically, in the alternative approach to the noner-
godicity of reset GBM proposed in Ref. [73]—we became

free FBM process the value of EB at short lag times reveals a time-
step-dependent plateau, EB(�1 = �t ) ∝ �t/T . The manifestations
of varying �t onto the EB parameter for GBM in the same domain
of short lag times remains to be examined and understood [221].
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aware of after finishing the main calculations of Ref. [1]—
no process-invariant rigorous and universal criteria based on
the MSD-vs-TAMSD equivalence [152] and on certain de-
cay properties of the ergodicity-breaking parameter EB(�, T )
[152,222,233] were implemented. Instead, as proposed for the
analysis of nonergodicity of nonreset GBM [224], a conve-
nient but nonunique characteristic of the logarithmic growth
rate was employed in Ref. [73] (see also recent Ref. [231]
for different “ergodic descriptors”). This quantifier effectively
“removes” the exponential growth-trend of GBM, so that the
time-variation of the natural logarithm of a “finite-sample”
average trajectory is considered [73,198,224], namely,

g(t, N ) = δ

δt
log

[
1

N

N∑
i=1

Si(t )

]
. (172)

The noncommutativity of the ensemble average 〈g(t )〉 =
limN→∞ g(t, N ) computed for an infinite sample of trajecto-
ries and the “time average” of the growth rate in the limit of
infinite time [for a fixed number of traces N]—denoted by the
wide tilde as g̃(N ) = limt→∞ g(t, N ) as in Ref. [1] [to dis-
tinguish from the sliding-window time-averaging procedure
(2)]—was attributed to nonergodicity for both pure [199,224]
and reset [73] GBM.

Note that the best strategy of portfolio growth based on
optimizing the geometric mean and respective returns in long
sequences of investment events and the Kelly criterion, see
Refs. [117,212,234,235], has a long history (going back to
Bernoulli [236–238]). The same concept of maximizing the
geometric-growth-rate is utilized in the population dynamics,
with a subpopulation featuring the best “fitness” (defined this
way) turning dominant in the long term in an ensemble of
subpopulations which are simultaneously growing (exponen-
tially) with various traits; see, e.g., Refs. [148,239,240].

We stress, however, that frequently reset GBM is not grow-
ing exponentially: it is rather a stalling diffusion process, thus
questioning the use of a logarithm of the growth rates, such as
that in Eq. (172). Note also that the same quantifier (172) was
recently used to assess nonergodicity in the wealth-growth
dynamics and the associated reallocating-GBM process [74].
The latter process mimics the redistribution of taxes collected
from a richer fraction in a collective of individuals among
all of them (see, e.g., Ref. [120] for a review on income
distribution and inequality dynamics).

Instead of a growth-rate-based signature of nonergodic-
ity (172), in Ref. [1] and here we followed the universal
approach employed over the last decade—by us and in
the wide stat-phys community—to quantify the degree of
nonergodicity of a plethora of anomalous-diffusion pro-
cesses highly variable in their stochastic “nature” [152].
The list of such (non)ergodicity analyses includes the stud-
ies of continuous-time random walks [150,187,241], Lévy
walks [204,242,243], FBM [220,244,245] (also in the under-
damped case [246,247]), standard [248–252] and ultraslow
[253] scaled Brownian motion, exponential and logarithmic
(under- and overdamped) scaled Brownian motion [233],
heterogeneous diffusion processes [217,218,254,255], scaled
Brownian motion in the presence of heterogeneous diffusion
[256], diffusing-diffusivity process for Brownian [176,177]
and for scaled Brownian [257,258] motion, FBM with the

diffusing-diffusivity process [178], FBM with heterogeneous
diffusion processes [71,259], FBM with scaled Brownian mo-
tion [260] (as well as multiple variants of these processes
in the presence of external potentials, under interval-based
confinement, ageing conditions, etc.).

We emphasize here once again that a descriptor of non-
ergodicity not involving the time-averaging concept and the
TAMSD per se cannot be considered as a rigorous statis-
tical measure of nonergodicity. In a well-established sense,
the long-time equivalence of the time-averaged quantities to
their probabilistic ensemble-based averages is the prerequi-
site of an ergodic behavior [151,152,154,160]. Moreover, the
quantitative analysis of pertinent functional behaviors of the
ergodicity-breaking parameters of reset GBM as a function
of lag time, trace length, and reset rate delivers additional
important insights on the actual degree of ergodicity, enabling
a tractable EB-based comparison of “realizations” of a system
at different values of its parameters. The analytical analysis
of the EB evolution for pure and reset GBM will be the sub-
ject of a separate investigation [221]. The epistemology and
usefulness of the two ergodicity-assessment approaches (with
their totally different underlying concepts) to the problems of
financial mathematics, to the analysis of option-pricing data,
as well as to the general problems of wealth distribution [261]
and of economic growth in a society remain to be understood.

D. Summary of the main results

This study extends the investigation of the time-averaged
and ergodic properties of the process of Poisson-reset GBM,
decisively generalizing the results of the simplest driftless
reset-GBM (μ = 0) we presented recently as a short com-
munication [1]. We here quantified in detail the asymptotic
behaviors of the first and second moments of reset GBM, the
variance, the PDF, and—most importantly and most mathe-
matically involved—the mean TAMSD in all regions of model
parameters. The analytical results obtained in all the regimes
are in excellent agreement with the findings of stochastic
computer simulations. Additionally, the results of in silico
simulations for the behavior of the EB parameter in all the
regimes were examined.

Nonzero drift has dramatically enhanced the number of
possible asymptotic regimes of all the above-mentioned
displacement-related quantifiers, both at short and long times,
as compared to their behaviors for drift-free reset GBM [1].
For reset GBM with a nonzero drift the asymptotic behav-
iors in the regimes of rare (r � {σ 2, μ}) and frequent (r 

{σ 2, μ}) resetting were obtained and systematically examined.
We obtained that the second moment from ensemble-based-
averaging as well as the variance of the process generally
differ from the trajectory-based-averaging quantified by the
TAMSD and, therefore, reset GBM with a drift is one more
example of a stochastic process featuring weak ergodicity
breaking [151,152].

The main differences in the characteristic behaviors of the
main statistical quantifiers of the drift-containing process—as
compared to those of drift-free reset GBM with the parameter
space {σ 2, r} [1]—are summarized in Table V and shortly
overviewed below. The existence of multiple regions in the
space of parameters {σ 2, μ, r} redefines the conditions for the
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existence of the NESS. Namely, while for the drift-free reset
GBM [1] the NESS is observed at r 
 σ 2, for reset GBM
with a nonzero drift the NESS is realized in regime 3 (the third
region of parameters) at r 
 2μ + σ 2 in the limit of a large
number of reset events occurring within a trajectory. The PDF
of particle displacements in the NESS is stationary: a plateau-
like or converging behavior of the first two moments—as well
as of the variance and of the TAMSD—is a prerequisite of
the NESS at long times in this regime of model parameters.
We focus in Table V on the long-time behavior and on the
NESS conditions in the scenarios μ = 0 (Ref. [1]) and μ �= 0
(regime 3 of this study) of the process of reset GBM, while
all scaling behaviors in the limits of short- and long times and
for various conditions on the three main model parameters are
overviewed in Tables I, II, III, and IV.

The conditions for the existence of converging first and
second moments (26) define the two boundaries in the three-
dimensional space of model parameters {σ 2, μ, r} of reset
GBM with a nonzero drift. At these boundaries the first two
moments, the variance, the TAMSD, and the EB parameter
all differ decisively in their characteristic dependencies com-
pared to those in Ref. [1]; see the right and middle column
of Table V, correspondingly. Specifically, while in the third
regime of the current study the functional scaling relations for
all these statistical quantifiers turn in the limit of zero drift, for
frequent-resetting conditions, and for long trajectories (with
many reset events) into those obtained by us previously in the
similarly constructed NESS regime in Ref. [1], the behaviors
in regimes 2 and 1 are entirely different.

Concretely, in regime 2 the first moment attains a con-
stant value, whereas the second moment, the variance, and
the TAMSD grow with time—or trajectory length—linearly;
see Table V. In regime 1 the first moment is already not
a constant but rather a linearly growing function of time,
whereas the second moment, the variance, and the TAMSD
grow exponentially with time (or lag time). We stress here that
the asymptotic behavior for the first moment in regime 1 and
of the second moment in regime 2 are valid for all diffusion
times t and do not require any additional conditions for the
model parameters to be satisfied. There are no subcases in
the above-mentioned subcases and regimes: the “effective”
strength of resetting is r − μ = 0 for the first moment for
regime 1 and it is r − σ 2 − 2μ = 0 for the second moment
for regime 2.

The EB parameter at short lag times in the NESS for
regime 3 considered here and for the results of Ref. [1] de-
creases linearly with the [effective] rate of reset, namely, as
∝ 1/[(r − σ 2 − 2μ)T ] and ∝ 1/(rT ), respectively; see Ta-
ble V. The dependence of EB on r in regions 2 and 1—
with the moments not converging at long time (see above)—is
totally different. Here, the process of reset GBM does not
become increasingly ergodic as r increases: the respective
EB parameter at short lag times does not decrease for more
frequently occurring resetting events.

For the EB parameter, in regime 1 only the limit of weak
resetting in terms of the effective reset rate r − σ 2 − 2μ ex-
ists. The EB values grow in this case [roughly as ∝ rT ] as
σ 2 + 2μ − r ≈ σ 2 + r increases (results not shown). For EB
in regime 2 only the limit of strong resetting in terms of r − μ

exists: the EB values grow as r − μ increases (again roughly

as ∝ rT , results not shown). The EB parameter in regime
3 has both the limits of strong and weak resetting in terms
of the effective reset rate r − σ 2 − 2μ. In the weak-resetting
limit EB at short lag times seems to scale roughly as ∝ rT ,
while for strong resetting we clearly observe the dependence
∝ 1/[(r − σ 2 + 2μ)T ], see Table V.

The latter dependence—being the most essential result of
the current analysis of the EB behavior—turns into the re-
sults of Ref. [1] for drift-free reset GBM. Further analytical
investigations are needed to understand the details of the
intricate behavior of the EB parameter of both nonreset and
reset GBM in the general scenario with a nonzero drift. This
can certainly be the subject of future investigations [221].
The quantitative application of the MSD, TAMSD and EB
results of reset GBM to the analysis of real financial data
(e.g., for time series of some reset- or barrier-option prices)
is of immediate relevance. This is, however, also beyond the
scope of the current study. Here, in particular, the importance
of including a nonzero drift to the process of reset GBM (as
an underlying mathematical model) as well as a possibility
of drawing certain predictions—based, e.g., on the trends of
the approach of reset GBM to the NESS—can be of practical
interest.

E. Perspectives

Reset-GBM-like stochastic processes can describe the
growth dynamics of stock-market prices subject to stochas-
tically(?) occurring bubble-bursting events and economic
crashes [261–264] (with the magnitude of an index drop
reflecting the impact of a crisis), the spreading dynamics of in-
fection in a population subjected to strict lockdown measures
(aimed at eradicating the disease), as well as the telephone
queues featuring a log-normal distribution of required ser-
vice times [265–267], with long waiting times amenable to
mitigation via Poissonian resetting [87]. Several examples of
log-normal distribution [268] in human behavior were ad-
dressed in Ref. [269] (see also Ref. [270] for a historical
perspective). Models of catastrophic events in queuing sys-
tems were also developed [271,272], including the analysis of
steady-state probabilities [271].

Reflecting back on the path-dependent and reset options
mentioned Sec. I A, our current TAMSD-based analysis po-
tentially enables to extract the model parameters μ, σ 2 and
r from the analysis of the time series of real reset-type op-
tions (see Ref. [183] for the respective numerical procedures).
The quantitative comparison of the theoretical predictions
of the current study and the behavior of reset- and barrier-
type options (describable by GBM with a bankruptcy risk
[273]), in particular from the perspective of the TAMSD,
is potentially promising. A quantitative examination of the
threshold-crossing statistics of the time series of barrier- and
reset-type options could provide valuable information regard-
ing the applicability of the Poissonian statistics for a reset
GBM in such situations and also to suggest possible modifica-
tions pertinent to the quantitative description of the statistics
of jumps for these options. Data-driven time-series analyses of
this kind deserve a separate investigation (beyond the scope of
the current theoretical study); this can be of interest also for
option-trading practitioners.
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Note also that the modus operandi of barrier options—
with the two levels limiting the process evolution—involves
large deviations [274,275], extreme-value statistics [276–282]
(also with a nonzero drift [283]), and the max-min distri-
butions [284] to unveil the barrier-crossing characteristics
(for both up- and downwards jumps occurring in the time
series). The ultimate goal would be to envisage/forecast
whether the crossings of a preset price level will occur within
a preset time-span [285]. This goal reaches to the “holy
grail” of financial mathematics—see the recent perspectives
[286–288], also on the “pandemic economics” [289,290]—

often involving multiplicative, hardly predictable stochastic
processes.
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APPENDIX A: DERIVATION OF THE RESET TAMSD

The mean TAMSD of reset GBM is calculated using Eq. (2), which can be expanded into three terms as

〈δ2(�)〉 = 1

T − �

∫ T −�

0
dt〈S2(t + �)〉︸ ︷︷ ︸

I1

+ 1

T − �

∫ T −�

0
dt〈S2(t )〉︸ ︷︷ ︸

I2

−2
1

T − �

∫ T −�

0
dt〈S(t )S(t + �)〉︸ ︷︷ ︸
I3

. (A1)

The mean TAMSD was split into I1, I2, and I3 terms for ease of calculation. This “standard” splitting procedure produces
two standard TAMSD terms and one term with the time-shifted correlator of the process. The latter term (with its integral) is
notoriously—as also the current case—much more complicated to compute analytically.

Using the expression for the second moment (36) at time (t + �) and performing the integration, we get for I1 that

I1 = S2
0

⎧⎨⎩ 1
T −�

(σ 2+2μ)(e(σ2+2μ−r)T −e(σ2+2μ−r)�)
(σ 2+2μ−r)2 − r

σ 2+2μ−r , σ 2 + 2μ �= r,

1 + r
2 (T + �), σ 2 + 2μ = r.

(A2)

The term I2 is similar, with the only difference being at time t , therefore

I2 = S2
0

{
1

T −�

(σ 2+2μ)(e(σ2+2μ−r)(T −�)−1)
(σ 2+2μ−r)2 − r

σ 2+2μ−r , σ 2 + 2μ �= r,

1 + r
2 (T − �), σ 2 + 2μ = r.

(A3)

The calculation of the term I3 in Eq. (A1) is considerably
more involved and the required autocorrelation function is
calculated via classifying possible trajectories of the reset
process based on the occurrence of resetting events at different
times. We, thus, extend the arguments of Ref. [45], applicable
to any resetting process with a finite reset time, including the
process of Poisson-reset GBM. We calculate I3 in the interval
[t, t + �] and the classification of resetting events is based on
the same time domain.

There exist three classes of trajectories (with reset events)
contributing differently to the autocorrelation function. For
the first class, no reset event till time (t + �) has occurred.
These are essentially traces of a nonreset stochastic process,
denoted as X (t ). With the Poisson-distributed times of re-
setting events, the probability of such an event is e−r(t+�)

[the general expression via the reset-waiting-time density is∫ ∞
t+�

ψ (z)dz]. In combination, the contribution of the first
class of trajectories is

e−r(t+�)〈X (t )X (t + �)〉. (A4)

The second class comprises the trajectories for which the
last resetting event occurred before the interval of interest,
i.e., at times z < t . These trajectories behave as a stochas-
tic process with no resetting starting at time z, so that the
autocorrelation is 〈X (t − z)X (t − z + �)〉. The probability

associated with such a trajectory is re−r(t+�−z)dz [generally,
ψ (t + � − z)dz]. The contribution of the second class of
trajectories to the autocorrelation accounts for all such traces
with z < t , namely,∫ t

0
re−r(t+�−z)〈X (t − z)X (t − z + �)〉dz. (A5)

Using the transformation of variables τ = t − z we find

e−r�
∫ t

0
dτ re−rτ 〈X (τ )X (τ + �)〉. (A6)

For the third class of trajectories a resetting event occurs
in the interval of interest, i.e., at a time z > t . For such tra-
jectories S(t ) and S(t + �) are uncorrelated because they are
separated by one or more resetting events. The autocorrelation
function splits into the respective expectation values, with
〈S(t )〉 and S(t + �) being a stochastic process with no reset-
ting starting at z with the expectation value 〈X (t + � − z)〉
[the general expression is ψ (t + � − z)dz]. Using the prob-
ability associated with such trajectories, re−r(t+�−z)dz, the
contribution from all of them amounts to∫ t+�

t
re−r(t+�−z)〈S(t )〉〈X (t + � − z)〉dz. (A7)
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Using the variable transformation τ = t + � − z we get

〈S(t )〉
∫ �

0
dτ re−rτ 〈X (τ )〉. (A8)

The entire autocorrelation function is then found by combin-
ing expressions (A4), (A6), and (A8) in the form

〈S(t )S(t + �)〉 = e−r�

[
e−rt 〈X (t )X (t + �)〉 +

∫ t

0
dτ re−rτ 〈X (τ )X (τ + �)〉

]
︸ ︷︷ ︸

C1

+〈S(t )〉
∫ �

0
dτ re−rτ 〈X (τ )〉︸ ︷︷ ︸

C2

. (A9)

For a general form of the waiting-time distribution of resetting
events, ψ (τ ), we obtain

〈S(t )S(t + �)〉 = 〈X (t )X (t + �)〉
∫ ∞

t+�

ψ (τ )dτ

+
∫ t

0
dτψ (τ )〈X (τ )X (τ + �)〉

+ 〈S(t )〉
∫ �

0
dτψ (τ )〈X (τ )〉. (A10)

To calculate the first two terms in Eq. (A9) we use the
autocorrelation of nonreset GBM. We start with the property
that the increments of the underlying pure Brownian motion,
denoted below by B(t ), are independent. This yields

〈X (t )X (t + �)〉 = S2
0〈eB(t+�)eB(t )〉

= S2
0〈eB(t+�)−B(t )eB(t )+B(t )〉 = S2

0〈eB(t+�)−B(t )〉〈e2B(t )〉.
(A11)

The first term in the last expression contains the exponentia-
tion of the underlying process,

W (�) = B(t + �) − B(t ), (A12)

a Wiener process with the variance σ 2� and mean (μ −
σ 2/2)�. It simplifies to

〈eB(t+�)−B(t )〉 = 〈eW (�)〉 = eμ�. (A13)

The second term in the product of Eq. (A11) is the second
moment of nonreset GBM given by Eq. (9),

〈e2B(t )〉 = 〈X 2(t )〉 = e(σ 2+2μ)t . (A14)

Substituting Eqs. (A13) and (A14) into Eq. (A11) we find

〈X (t )X (t + �)〉 = S2
0eμ�e(σ 2+2μ)t . (A15)

The expressions for C1 in Eq. (A9) can thus be simplified
to

C1 = S2
0eμ�e−r�

[
e(σ 2+2μ−r)t +

∫ t

0
dτ re(σ 2+2μ−r)τ

]
, (A16)

and after the integration—for the respective regions of the
three main model parameters—we get

C1 = S2
0

⎧⎨⎩ e(μ−r)�
(

(σ 2+2μ)e(σ2+2μ−r)t −r
)

σ 2+2μ−r , σ 2 + 2μ �= r,

e(μ−r)�(1 + rt ), σ 2 + 2μ = r.
(A17)

The term C2 in Eq. (A9) can be computed using the first
moments, Eqs. (8) and (33), that after the integration gives

C2 = S2
0

{
r[μe(μ−r)t −r][e(μ−r)�−1]

(μ−r)2 , μ �= r,

[1 + rt]r�, μ = r.
(A18)

Combining expressions (A17) and (A18) yields the full autocorrelation function of Poisson-reset GBM in the form

〈S(t )S(t + �)〉 = S2
0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[1 + rt]r� +

[
(σ 2+2r)e(σ2+r)t −r

]
σ 2+r , μ = r,

r
(μ−r)2 [μe(μ−r)t − r][e(μ−r)� − 1] + e(μ−r)�(1 + rt ), σ 2 + 2μ = r,

r
(μ−r)2 [μe(μ−r)t − r][e(μ−r)� − 1] + e(μ−r)�

[
(σ 2+2μ)e(σ2+2μ−r)t −r

]
σ 2+2μ−r , μ �= r, σ 2 + 2μ �= r.

(A19)

The term I3 in Eq. (A1) is calculated with the help of Eq. (A19) by integration as

I3 = 1

T − �

∫ T −�

0
dtC1︸ ︷︷ ︸

D1

+ 1

T − �

∫ T −�

0
dtC2︸ ︷︷ ︸

D2

, (A20)

where the first and second terms are given by (in their regions of model parameters), respectively,

D1 = S2
0

⎧⎨⎩e(μ−r)�
[ (σ 2+2μ)(e(σ2+2μ−r)(T −�)−1)

(σ 2+2μ−r)2(T −�) − r
σ 2+2μ−r

]
, σ 2 + 2μ �= r,

e(μ−r)�
[
1 + r

2 (T − �)
]
, σ 2 + 2μ = r,

(A21)
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and

D2 = S2
0

{
[e(μ−r)� − 1] r[μ(e(μ−r)(T −�)−1)−r(μ−r)(T −�)]

(μ−r)3(T −�) , μ �= r,

r�
[
1 + r (T −�)

2

]
, μ = r.

(A22)

Now, we assemble these expressions into the final result for the mean TAMSD of drift-containing reset GBM. For expressions
(A2), (A3), (A21), and (A22) we see that I1, I2, and D1 have the same parameter regions as the second moment (36) with a
“branching point” at σ 2 + 2μ = r, whereas D2 has the same parameter regimes as the first moment (33) with a branching point
at μ = r. We, therefore, group the first set of terms into one component of the mean TAMSD, while the other terms form another
component.

The first component of the mean TAMSD solely contains D2 from Eq. (A22) and it is denoted 〈δ2(�)〉μ (after the branching
point at μ = r), namely,

〈δ2(�)〉μ = S2
0

{
(e(μ−r)� − 1) r[μ(e(μ−r)(T −�)−1)−r(μ−r)(T −�)]

(μ−r)3(T −�) , μ �= r,

r�
[
1 + r (T −�)

2

]
, μ = r.

(A23)

After grouping I1, I2, and D1 from expressions (A2), (A3), and (A21), respectively, we get the second component of the mean
TAMSD, 〈δ2(�)〉σ 2+2μ—with the index reflecting the branching point at σ 2 + 2μ = r—as

〈δ2(�)〉σ 2+2μ = S2
0

{
(σ 2+2μ)(1+e(σ2+2μ−r)�−2e(μ−r)� )(e(σ2+2μ−r)(T −�)−1)

(σ 2+2μ−r)2 (T −�) + 2r
σ 2+2μ−r [e(μ−r)� − 1], σ 2 + 2μ �= r,

(2 + rT )(1 − e(μ−r)�) + e(μ−r)�r�, σ 2 + 2μ = r.
(A24)

The total mean TAMSD is then given by

〈δ2(�)〉 = 〈δ2(�)〉σ 2+2μ − 2〈δ2(�)〉μ, (A25)

with the term 〈δ2(�)〉μ stemming from integrating the term
〈S(t )S(t + �)〉 given by Eq. (A19) in expression (A1). As for
the variance in Eq. (40), combining the two components of the
mean TAMSD in two different parameter regions yields three

different regimes for the mean TAMSD, as detailed in Sec. VI
of the main text.

APPENDIX B: SUPPLEMENTARY FIGURES

This Appendix contains auxiliary Figs. 11–22 supporting
the claims in the main text.

FIG. 11. Variation of the first moment of Poisson-reset GBM in the first regime in Table I. The explicit values of the model parameters
in this region used in computer simulations are: S0 = 1, δt = 10−1, T = 103, N = 3 × 104 (see also the legend). (a) The colored curves are
according to the full analytical expression given by Eq. (33), while the dashed asymptotes are Eq. (86). The details are provided in Sec. VI A
and in Table I. In panel (a) of this figure and all later related plots we add in the legend the “exp,” “lin,” and “const” indicators to emphasize
the corresponding exponential, linear, and constant behaviors of the respective quantities at long times. For the values of model parameters
where no such asymptotes are clear we neither show the dotted black asymptotes at long times nor list the “exp,” “lin,” and “const” indicators
in the legends. For the parameter values in the legends, as the numbers used in computations were of base 2, the floating-point numbers were
rounded to four decimal digits (machine precision). (b) The same as in Fig. 11(a), for the same parameters, shown in the short-time region.
The dashed asymptotes are given by Eq. (85).
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FIG. 12. The same as in Fig. 11 but in the second region of parameters in Table I. (a) The colored curves are according to Eq. (33), while
the dashed asymptotes are Eqs. (88), (90), and (92). Parameters are provided in the legend. (b) The same as in Fig. 12(a), for the same values
of the model parameters, shown at short times. The dashed asymptotes shown are Eqs. (87), (89), and (91).

FIG. 13. The second moment of reset GBM, for the first region of parameters in Table II, for the same parameters as in Fig. 11. (a) The
colored curves are according to the exact analytical result given by Eq. (36), while the dashed asymptotes are plotted according to Eqs. (102),
(104), and (108). The details can be found in Sec. VI B and in Table II. (b) The same as in Fig. 13(a) but at short times. The asymptotes shown
as black dashed lines are according to Eqs. (101), (103), and (107).

FIG. 14. The same as in Fig. 13, but for the second regime in Table II. The parameters are the same as in Fig. 12. (a) The colored curves
are according to Eq. (36), while the dashed asymptotes are plotted according to Eq. (110). (b) The same as in Fig. 14(a) but plotted at short
times. The colored curves are according to Eq. (36), while the dashed asymptotes are plotted according to Eq. (109).
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FIG. 15. The variance of reset GBM, for the first region of parameters, for the parameters of Fig. 11. (a) The colored curves are according
to the exact analytical result (40), while the dashed asymptotes are plotted according to Eqs. (118), (120), and (124). The details are provided
in Sec. VI C and in Table III. (b) The same as in Fig. 15(a) but at short times. The dashed asymptotes are Eqs. (117) and (119).

FIG. 16. The same as in Fig. 15, but computed in the second region of parameters as listed in Table III. The model parameters are the
same as used in Fig. 12. (a) The colored curves are according to Eq. (40), while the dashed asymptotes are Eqs. (126) and (128). Log-log
scale emphasizes the linear growth of the variance both at short and long times. (b) The same as in Fig. 16(a) but presented at short times. The
dashed asymptotes are Eqs. (125) and (127).

FIG. 17. The mean TAMSD of reset GBM, for the first region of model parameters. The results are plotted for the parameters of Fig. 11.
(a) The colored curves represent the exact analytical result of Eq. (42) and the black lines are asymptotes from Eqs. (142), (144), and (148).
For details we refer the reader to Sec. VI D and in Table IV. While the short-lag-time behaviors of the mean TAMSD of reset GBM is always
linear, for the respective model parameters used in the computations we indicate in this and later TAMSD panel (a) plots the asymptotics of
〈δ2(�)〉 at long lag times in the legends by “exp,” “lin,” and “const” indicators. (b) The same as in Fig. 17(a) but presented at short lag times,
in the region where the mean-TAMSD behavior is always linear. The dashed lines represent Eqs. (141), (143), and (147).
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FIG. 18. The same as in Fig. 17 but for the second regime in Table IV and plotted for the parameters of Fig. 12. (a) The colored curves are
according to Eq. (42), while the dashed asymptotes are according to Eqs. (150) and (152). (b) The same as in Fig. 18(a) but presented at short
times. The dashed lines are plotted according to Eqs. (149) and (151).

FIG. 19. Spread of TAMSD trajectories in the first regime of
model parameters computed for three distinct sets of values of drift,
volatility, and reset rate. The other parameters are as in Fig. 11.

FIG. 20. The same as in Fig. 19 but for the second region of
parameters. Other parameters are as in Fig. 12.

FIG. 21. Variation of the ergodicity-breaking parameter EB as a
function of lag time �, computed for the first regime of model pa-
rameters. The dashed line is the Brownian-motion asymptote (168).
The parameters are the same as in Fig. 11.

FIG. 22. The same as in Fig. 21 but for the behaviors in the
second regime of model parameters as in Fig. 12. The dashed line
is the Brownian-motion asymptote (168).
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APPENDIX C: ABBREVIATIONS

Geometric Brownian motion, GBM; fractional Brownian
motion, FBM; probability-density function, PDF; mean-

squared displacement, MSD; time-averaged MSD, TAMSD;
nonequilibrium stationary state, NESS.
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