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Effects of lattice dilution on the nonequilibrium phase transition in the stochastic
susceptible-infectious-recovered model
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We investigate how site dilution, as would be introduced by immunization, affects the properties of the
active-to-absorbing nonequilibrium phase transition in the paradigmatic susceptible-infectious-recovered (SIR)
model on regular cubic lattices. According to the Harris criterion, the critical behavior of the SIR model,
which is governed by the universal scaling exponents of the dynamic isotropic percolation (DyIP) universality
class, should remain unaltered after introducing impurities. However, when the SIR reactions are simulated
for immobile agents on two- and three-dimensional lattices subject to quenched disorder, we observe a wide
crossover region characterized by varying effective exponents. Only after a sufficient increase of the lattice sizes
does it become clear that the SIR system must transition from that crossover regime before the effective critical
exponents asymptotically assume the expected DyIP values. We attribute the appearance of this exceedingly long
crossover to a time lag in a complete recovery of small disconnected clusters of susceptible sites, which are apt to
be generated when the system is prepared with Poisson-distributed quenched disorder. Finally, we demonstrate
that this transient region becomes drastically diminished when we significantly increase the value of the recovery
rate or enable diffusive agent mobility through short-range hopping.
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I. INTRODUCTION

The effect of quenched disorder on continuous phase tran-
sitions has been extensively studied in thermal equilibrium.
However, it remains to be understood if and how the character
of a phase transition might change when quenched disorder
is introduced to systems situated far from equilibrium. Sig-
nificant efforts have been invested to study the influence of
impurities on the active-to-absorbing state phase transition
in variants of the contact process whose asymptotic univer-
sal properties are governed by the directed percolation (DP)
universality class [1–10]. It was demonstrated that introduc-
ing quenched disorder to the contact or simple epidemic
process leads to the appearance of Griffiths singularities in-
dicative of regions that are devoid of impurities and that
dominate the long-time density decay in the entire system
[11–15]. Beyond the contact process and its variations, the
effects of quenched disorder have not been thoroughly in-
vestigated in other nonequilibrium systems. In this work, we
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thus investigate the nonequilibrium phase transition, namely
the extinction transition for the associated epidemic, in the
paradigmatic susceptible-infectious-recovered (SIR) compart-
mental model that is implemented and simulated on two- and
three-dimensional cubic lattices with site dilution, e.g., as a
result of an immunization campaign. In the absence of disor-
der, the critical behavior of a general epidemic process with
recovery such as the SIR model should on a regular lattice
typically characterized by the scaling exponents of dynamic
isotropic percolation (DyIP) [16–23].

For phase transitions in thermal equilibrium, the famed
Harris criterion may be invoked to predict possible changes
in critical behavior due to quenched external perturbations.
The Harris criterion dictates that when the corresponding pure
system’s correlation length exponent ν fulfills the inequality
d ν > 2 in d spatial dimensions (i.e., if the specific heat criti-
cal exponent α = 2 − d ν < 0), the effects of disorder vanish
in the thermodynamic limit upon successive coarse graining
[24]. Various generalizations of the Harris criterion have since
been devised [25–28]. However, for quenched disorder that is
uncorrelated in space and does not evolve with time, one can
show that the Harris criterion maintains its original form [28].

According to the Harris criterion, the effects of disorder
should hence disappear in the SIR model in the large sys-
tem size limit in all dimensions d , see Table I below (from
Ref. [22]). However, in our detailed Monte Carlo simulations
for the spatially extended stochastic SIR system we observe
an extended power-law crossover region for which the values
of the scale-dependent effective exponents differ from the
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TABLE I. The asymptotic critical exponents of the dynamic
isotropic percolation (DyIP) universality class in d = 2 and d = 3
dimensions (from Ref. [22], p. 211).

δ θ ν df z

d = 2 0.092 0.586 4/3 91/48 1.1295
d = 3 0.346 0.488 0.875 2.523 1.375

asymptotic DyIP critical exponents. Only in the very long-
time limit do these effective exponents assume the expected
clean DyIP values. The prevalence of this large crossover
regime hence poses the problematic issue that it may not be
recognized (in either simulations or experimental or observa-
tional data) as such if the spreading infection front encounters
the system’s boundaries before the asymptotic long-time limit
with universal scaling has been reached. In the latter scenario,
the effective exponents could be mistaken for and misinter-
preted as the asymptotic critical exponents, albeit apparently
assuming nonuniversal numerical values. We demonstrate this
point here by showing that site-diluted SIR systems find their
asymptotic critical state, which is characterized by DyIP ex-
ponents, only after a sufficient and substantial increase in the
size of the lattice.

We attribute the origin of the large crossover region to a
time lag in the complete recovery of small disconnected clus-
ters of susceptible individuals, which are inevitably generated
when Poisson-distributed quenched disorder is introduced. As
the percolation threshold density is approached and the infec-
tion rate increased to retain the system in a critical state, the
infection propagates quickly. Moreover, when the infection
front reaches the perimeter of a small percolation cluster, most
of the cluster’s population will be in the infectious state. Such
an infectious cluster then becomes extinct due to Poisson
point processes, following a time delay, which is inversely
proportional to the recovery rate. Only once the fraction of
independent simulation runs for which the seeds were placed
inside small disconnected clusters goes extinct, the system
eventually reaches its asymptotic behavior. We show that upon
drastically increasing the value of the recovery rate or upon
enabling nearest-neighbor hopping dynamics (in addition to
the SIR reactions), these long crossovers disappear. This find-
ing supports our hypothesis about the crossover origin in the
static scenario, since increase in recovery rate and the agents’
mobility in the system both reduce the size and the effect of
the time lag.

We end our introductory remarks with a brief overview
of the recent pertinent literature to provide relevant back-
ground: The effects of quenched disorder on a nonequilibrium
phase transition in the DP universality class were investi-
gated by Vojta and Lee by simulating the contact process
on a regular lattice [29]. The authors demonstrated that the
subtle interplay between varying percolation thresholds and
dynamical fluctuations leads to a different universal behav-
ior from the pure system. A modified version of the SIR
model, where self-propelled agents are moving in a contin-
uous space in the presence of quenched disorder, was recently
studied by Forgács et al., who showed that lowering the in-
fection transmissibility enhances the effects of disorder [30].

Other types of disorder and their effects on critical proper-
ties of epidemic models were studied as well: For example,
Wada and Hoyos added correlated temporal disorder to the
susceptible-exposed-infectious (SEI) model, which changed
the universality class from dynamic isotropic percolation to
an exotic infinite-noise universality class associated with the
contact process [31]. The effects of agent diffusion on critical
properties of infection spreading in simple epidemic processes
have also been widely investigated, see, e.g., Refs. [32,33].
For this class of models wherein a diffusive mode is coupled
to a critical DP field, depending on the relative strength of
the diffusivities for healthy and sick individuals, respectively,
four different universality classes could be identified [34]. Fi-
nally, in recent work by Ódor, the effect of quenched disorder
was considered in a lattice SIR model by assigning different
infectious rates to 10% of randomly selected lattice sites [35].

This paper is organized as follows. In the following sec-
tion we introduce the stochastic SIR model and its spatial
extension on a regular lattice. We also outline the details of
our Monte Carlo simulation algorithm. In Sec. III we present
extensive and detailed simulation results for the SIR model
on diluted two-dimensional and three-dimensional lattices
with static agents. Subsequently we discuss the modifications
caused by allowing nearest-neighbor hopping, i.e., diffusive
transport, of the agents. We conclude in Sec. IV with a sum-
mary and discussion of our main results.

II. MODEL DESCRIPTION

The susceptible-infectious-recovered (SIR) compartmental
model is a paradigmatic example for an epidemic process
with recovery. The entire population in this model is divided
into three compartments: susceptible (S), infectious (I), and
recovered (R) and immune. The dynamics of the system can
be represented by irreversible transitions from the S to I and I
to R states. This transfer of individuals from one compartment
to another can be represented by a set of chemical reactions:
The infection reaction S + I → I + I which occurs with rate
r, and the recovery reaction I → R with rate a. Note that these
stochastic processes leave the total population number N =
S + I + R fixed. Within a mean-field rate equation approxi-
mation, wherein a mass-action-type factorization is applied to
the two-body correlations in the infection processes, these re-
actions are described by a set of coupled ordinary differential
equations for the three species:

dS

dt
= −βIS

N
,

dI

dt
= βIS

N
− γ I,

dR

dt
= γ I,

where β and γ are the continuum mean-field infection and
recovery rates and N (t ) = S(t ) + I (t ) + R(t ) = N (0) denotes
the conserved total number of individuals. Initially, we set
R(0) = 0 and I (0) � S(0) ≈ N (0). An important epidemio-
logical parameter that is associated with these rates is the
basic reproduction number R0 = β/γ , which serves as the
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indicator that predicts an epidemic outbreak with (dI/dt )|0 >

0, namely when R0 > 1.
While the above SIR mean-field equations usually yield

fairly accurate predictions for the course of an epidemic for
large and well-connected populations, they cannot adequately
account for the spatiotemporal fluctuations that originate both
from environmental variability and the intrinsic stochasticity
of the reaction processes, which may drive the system to an
absorbing epidemic extinction state at the early stages of the
infection outbreak [23,36,37]. One way to account for these
fluctuations is to write down a mesoscopic Langevin equa-
tion with multiplicative noise for the local density of infected
agents, and proceed with the analysis through. e.g., a perturba-
tive treatment [38] and if needed, renormalization and scaling
analysis [23]. Another generally applicable approach is to
consider the stochastic implementation of the SIR reactions
by simulating the individual processes S + I → I + I and
I → R on an adequate spatial setting, such as a regular lattice;
or more realistically for applications to disease spreading in
human populations, on a network with appropriate topology
and connectivity [35,37,39–42].

In this work, we consider infection spreading on regular
square and cubic lattices, modeled through individual-based
Monte Carlo simulations for the stochastic SIR reactions.
Depending on the values of the infection and recovery rates,
the system will be in either the spreading or contained phases,
which are separated by the nonequilibrium phase transition.
In the spreading or active phase, the SIR dynamics on a
lattice can be viewed as a propagation of the infectious front
emanating from a single infected nucleus into the entire do-
main populated by susceptible individuals. While the recovery
process and ensuing memory effects play a crucial role in the
SIR, especially when one considers its critical behavior, in
the spreading phase the infection front moves outwards from
the seed with a constant velocity and the front dynamics
can be characterized by the Fisher-Kolmogorov-Petrovsky-
Piskunov (FKPP) equation. The FKPP equation describes a
situation when the front invades a linearly unstable state [43],
and has been used to study, e.g., the population dynamics of
a single species that undergoes spontaneous death and birth
processes [44,45]; simple epidemic processes such as the SIS
model [46]; as well as cluster growth processes as occurring
in the Eden model [47]. In the nonspreading or inactive phase,
the infected population quickly approaches extinction, leaving
the major part of the population in the susceptible state, un-
affected by the disease; infection outbreaks remain localized
and contained.

At the critical point and for asymptotically long times, all
three population densities {S(t ), I (t ), R(t )}, the disease sur-
vival probability Ps(t ), i.e., the probability that at some given
time t the system has at least one infectious individual left,
and the mean-square displacement of the spreading disease
from its origin R2(t ) are known to exhibit power-law scaling
behavior [1,16,18–20,23,48–51]:

N − S(t ) ∼ R(t ) ∼ t θR , I (t ) ∼ t θ ,

Ps(t ) ∼ t−δ, R2(t ) ∼ t2/z (1)

with critical scaling exponents δ, θ , θR, and z, where θR =
df/z − δ and z is the associated dynamical critical exponent

that captures critical slowing down via connecting the di-
vergent correlation length ξ ∼ |τ |−ν with the characteristic
relaxation time tc ∼ ξ z ∼ |τ |−zν , where τ denotes the distance
from the critical point. The scaling relation for the exponent θR

that governs the number of susceptible and recovered individ-
uals originates from the following argument: The total mass
of the percolating cluster is related to its linear extension via
the associated fractal dimension df through M ∼ Ldf , while
the cluster’s linear extension increases with time as L ∼ t1/z.
The growth in the number of recovered individuals can then
be obtained by multiplying the size of the percolating cluster
by the probability that the cluster continues to grow after
some time t , i.e., the survival probability Ps, which together
produces R(t ) ∼ t df/z−δ . For the dynamic isotropic percolation
universality class, these exponents assume the universal val-
ues that depend only on the system’s dimensionality d listed
in Table I for two and three dimensions (from Ref. [22]).

We employ Monte Carlo simulations with random se-
quential updates to model the SIR epidemic spreading on
regular two- and three-dimensional cubic lattices with peri-
odic boundary conditions. Starting with a single infectious (I)
seed, which is placed in the lattice center, while the rest of the
population is set in the susceptible (S) state, we proceed with
randomly selecting lattice sites and attempting to perform
the SIR reactions. If a chosen lattice site is occupied by an
infectious agent, we try infecting all its susceptible nearest
neighbors separately by picking a random number in the in-
terval [0,1] and turning a susceptible individual into the I state
if the resulting number is less than the prescribed infection
probability r. After we have tried infecting all susceptible
nearest neighbors, we next attempt the recovery reaction for
the chosen infectious (I) individual by calling the random
number generator again and putting the individual into a re-
covered (R) state if the number that came out is less that
the fixed recovery probability a. For one complete Monte
Carlo step, we repeat this procedure of random lattice site
selection and reaction attempts V = Ld times for the two-
(d = 2) and three-dimensional (d = 3) systems. To simulate
the SIR dynamics on a diluted lattice, we prepare the system
by filling the lattice with agents in a random manner, so
that the overall agent number N corresponds to the chosen
density ρ = N/V < 1. When we thus introduce quenched site
dilution disorder to the system by filling the lattice in a random
manner, we restrict the occupation number of a single lattice
site to 0 (empty) or 1 (filled). Finally, we also consider the
scenario where agents are allowed to hop to the nearest neigh-
boring lattice sites with some probability p, if those sites are
not occupied. This endows the agents with intrinsic diffusive
mobility in addition to the disease spreading dynamics. For
all our simulation results presented here we set the recovery
probability to a fixed value a = 0.1, but vary both the infection
and hopping probabilities r and p.

We point out that there are in principle two distinct finite-
size effects to be considered in any numerical SIR model
simulation that inevitably cause a departure from the critical
power laws (1). First, there are of course cutoffs induced by
the finite lattice extension, which become manifest when the
intrinsic correlation length reaches the system size, ξ ∼ L.
These finite-size effects are effectively suppressed in initial-
seed simulations, and become relevant only when R2(t ) ∼ L2,
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or once t ∼ Lz. At that point the spreading infection front
reaches the system boundaries, resulting in the characteristic
infection curve peaks with maximum Im for I (t ) for the SIR
and related models. Second, generally in the SIR model with
fixed total agent number N , epidemic spreading is naturally
limited by that finite population number and the recovery of
infected individuals to the R state. Since Im ∼ N constitutes a
certain fraction of the totally available population, the critical
growth law with exponent θ must terminate well before t ∼
N1/θ . Yet in our simulations, with restricted site occupations,
we have N ∼ Ld , and hence these two finite-size effects are
no longer independent. Indeed, since z > d/θ according to
a general scaling relation [23], the latter ultimately sets the
limiting constraint for seed simulations.

III. RESULTS

Before we proceed to investigating the effects of quenched
disorder, we first confirm known results and calculate the
values of the clean critical exponents that characterize the
non-equilibrium active-to-absorbing phase transition of the
stochastic SIR model on regular square and cubic lattices with
periodic boundary conditions. To that end, we initialize our
lattices with all sites occupied with single susceptible indi-
viduals S (density ρ = 1), except for a single seed position,
which is set to be in the infectious state I . We then run the
Monte Carlo simulations and measure the temporal evolution
of the total number of individuals in each distinct state S(t ),
I (t ), and R(t ), the survival probability Ps(t ), and the mean-
square displacement R2(t ). We specifically select the survival
probability to locate the critical value of the infection rate rc

(keeping the recovery rate a fixed). Our choice is dictated
by the fact that the Ps(t ) curve continues to decay with a
power law even after the infectious curve hits its maximum
Im. Indeed, the presence of the maximum in the I (t ) curve
substantially limits the sensitivity in these data to determine
the value of the critical infectious rate rc, which is crucial
for proper identification of the asymptotic critical exponents.
Using the survival probability curve, we search for the value
of the infectious rate rc that separates the graphs of Ps for
r > rc, which asymptotically reach some nonzero values from
the curves for r < rc that ultimately always tend to zero. To
calculate the survival probability Ps(t ) from our simulation
data, we simply keep track of the fraction of independent
simulation runs (relative to the total number of submitted
runs) that hit the absorbing state at the prescribed time t .
Figure 1 shows the results of our Monte Carlo simulations
for completely filled two- and three-dimensional lattices. Our
data, yielding δ = 0.09 ± 0.01, θ = 0.6 ± 0.02 for d = 2 and
δ = 0.33 ± 0.02, θ = 0.5 ± 0.03 for d = 3, indicate that the
asymptotic critical exponents take the standard DyIP values
from Table I in both two and three dimensions, in full ac-
cord with previously reported results [16]. According to
the Harris criterion in its original form, both sets of DyIP
exponents for d = 2 and d = 3 satisfy the inequality d ν > 2,
where ν is the critical exponent associated with the correlation
length ξ . Since the criterion is satisfied, one should expect
that introducing quenched spatial disorder will not change
the character of the nonequilibrium phase transition, and the
effective exponents would asymptotically assume their clean

FIG. 1. Time evolution of the infection survival probability Ps(t )
at the critical point (double-logarithmic plot). The infection spread
is being modeled by performing stochastic SIR reaction simulations
on regular square and cubic lattices with periodic boundary condi-
tions. The inset depicts the time evolution of the total number of
infected individuals I (t ) at the critical point. The lattice density is
ρ = 1.0, and the critical values of the infectious and recovery rates
are rc = 0.1028, ac = 0.1 and rc = 0.0345, ac = 0.1 for d = 2 and
d = 3, respectively. The simulation system sizes are 5002 and 503 for
two- and three-dimensional lattices, respectively. Our best estimates
for the exponents are δ = 0.09 ± 0.01, θ = 0.6 ± 0.02 for d = 2 and
δ = 0.33 ± 0.02, θ = 0.5 ± 0.03 for d = 3. The survival probability
curves were obtained from averaging over 3000 independent realiza-
tions; the infection growth curves in the inset were obtained from the
very same simulation runs.

values. To carefully investigate the effects of quenched site
dilution randomness, we start reducing the overall density of
agents starting from ρ = 1.0 until the site percolation thresh-
old ρ∗ is reached. The latter restriction is necessary because
for lattices with quenched site dilution, regardless of the rate
r > rc, the infection can only spread through connected clus-
ters of susceptible individuals. Thus, the critical line rc(ρ) that
we construct by linearly interpolating the critical values of the
infection rates as function of the density ρ must terminate
at ρ∗. As shown in Fig. 2, this critical line separates two
distinct nonequilibrium phases, the active state with disease
spreading and the inactive, absorbing, nonspreading phase.
We observe that at densities close to ρ = 1.0, i.e., up to
ρ = 0.8 in two and ρ = 0.7 in three dimensions, the simu-
lation data look very similar to those depicted in Fig. 1 for
completely filled lattices. Measuring the (effective) critical ex-
ponents at these densities, we found their values to be identical
(within the error bars) with the clean values. However, as the
site percolation threshold density is approached, one initially
discerns a markedly steeper decay of the survival probabilities
for both square and cubic lattices. Right at the percolation
threshold ρ = ρ∗, we see that this steeper power-law region
in the survival probability curve is quickly followed by an
exponential cutoff, which originates from the systems’ finite
sizes. As is apparent in Fig. 3, the steeper power-law decay
region might be mistaken as a signature of a different type of

034132-4



EFFECTS OF LATTICE DILUTION ON THE … PHYSICAL REVIEW E 106, 034132 (2022)

FIG. 2. Nonequilibrium phase diagrams for the stochastic SIR
model with quenched site dilution disorder, simulated on (a) square
(d = 2) and (b) cubic (d = 3) regular lattices. The active, spreading
phase is colored in red (dark gray) and the absorbing, nonspreading
phase in light blue (light gray). The critical line was obtained from a
linear interpolation between the critical values of the infectious rate
rc(ρ ) that were located separately for each density value ρ. The lower
density limit ρ∗ for the active phase at rc = 1 is set by the lattices’ site
percolation thresholds: ρ∗ ≈ 0.5927 and ρ∗ ≈ 0.3116, respectively,
in two and three dimensions.

collective critical behavior; only after the simulation domain
sizes are sufficiently increased does it become manifest that
this apparently nonuniversal power-law region in fact just rep-
resents a transient crossover regime. Both our best estimates
of the asymptotic exponent δ = 0.09 ± 0.005 for d = 2 and
δ = 0.36 ± 0.02 for d = 3 and the time-dependent effective
exponent data δeff (t ) plotted in the insets of Fig. 3 indicate
that the exponents approach their universal DyIP values (from
above) in the asymptotic time limit.

FIG. 3. Time evolution of the infection survival probability Ps(t )
at the critical point, measured at the site percolation threshold density
ρ∗ for different system sizes of (a) square (d = 2) and (b) cubic
(d = 3) lattices. The insets show the corresponding time-dependent
effective exponents δeff (t ) for system sizes (a) L = 1000 and (b) L =
400. The horizontal blue lines indicate the DyIP values of the critical
survival exponent δ. The survival probability curves as well as the
inset data in (a) were obtained from 5000 independent realizations,
while the data for the inset in (b) needed to be averaged over 20 000
independent simulation runs.

We attribute the presence of these exceedingly long
crossover regions observed at low densities ρ, i.e., large site
dilutions, to the increase in the role of the recovery process as
one approaches the percolation threshold density. Away from
the percolation threshold density, variations in the recovery
rate only horizontally shift the population curves and change
the decay rate of the infectious curve, but they do not modify
the critical exponents. However, once we approach the lattice
percolation threshold, we have to increase the infectious rate
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dramatically to compensate for the drop in the overall con-
nectivity of susceptible individuals. Because the infectious
rate then becomes quite high, the incipient infection front
quickly sweeps through the connected cluster of susceptible
individuals. As a result, at early simulation times most of
the individuals that have been left behind the infectious front
will be still in the infectious state. While asymptotically the
time when the cluster becomes completely recovered will
be related to its size, for small clusters that were quickly
traversed by the infection front, the extinction time will be
set by the inverse recovery rate 1/a. Therefore, we expect
that as we increase the value of the recovery rate, while
keeping it still less than the infection rate, the extinction delay
that is introduced by fast propagation of infection should de-
crease and eventually vanish. We demonstrate this in Fig. 4(a)
by comparing the survival probability curves that have been
obtained for the recovery rates a = 0.1 and a = 0.95, respec-
tively. As is apparent in the graphs, for high recovery rates
the crossover disappears entirely and we observe a power-law
decay of the survival probability with the clean exponents.
To further confirm that the nonequilibrium phase transition in
the diluted SIR is governed by the standard DyIP exponents,
we demonstrate in Fig. 4(b) that the total number of infected
and the total number of recovered individuals both follow the
expected clean growth scaling laws.

Lastly, we investigate the more general and realistic sit-
uation when the agents on the lattice are no longer static,
but allowed to hop on any empty nearest-neighbor sites with
a nonzero hopping rate p. Choosing the hopping rate to be
p = 1.0, we repeat the measurements of the same observables
as before, for different density values. As seen in Fig. 5, we
find that the critical infection rate values rc(ρ) are reduced sig-
nificantly compared to the static scenario (p = 0). In contrast
to what we observe in Fig. 2, for p = 1.0 the system will be in
the spreading phase even for densities significantly lower than
the site percolation threshold density ρ∗. Moreover, we notice
in Fig. 5 that the survival probability Ps(t ) does not exhibit
the significant intermediate crossover region that is character-
istic of the static case with immobile agents. In contrast to
quenched disorder for which the impurity positions are held
fixed, the agents’ diffusive spreading dynamics quickly brings
the system to an effectively uniformly diluted state. Therefore,
from a coarse-grained point of view, the dynamics of this
scenario of a site-diluted lattice with enabled nearest-neighbor
hopping should resemble a normal isotropic percolation pro-
cess at sufficiently large system size. The only difference to
a fully filled lattice setup is that the dynamics at the critical
point rc for the case with enabled hopping is drastically slower
due to the much lower critical infection rates. This renders
the transient regimes quite long, obstructing our measure-
ments of the ultimate critical scaling exponents, for which our
best estimates are δ = 0.083 ± 0.005, θ = 0.65 ± 0.1, θR =
1.68 ± 0.05 for d = 2 and δ = 0.35 ± 0.03, θ = 0.45 ± 0.1,
θR = 1.48 ± 0.05 for d = 3 (see Fig. 5).

IV. CONCLUSION

In this work we have investigated the properties of the
nonequilibrium active-to-absorbing state phase transition in
the paradigmatic stochastic susceptible-infectious-recovered

FIG. 4. (a) Time evolution of the infection survival probability
Ps(t ) at the critical point, measured at the site percolation threshold
density ρ∗ for different recovery rates. (b) The time evolution of the
total number of infected I (t ) and recovered individuals R(t ) (inset),
obtained from the same data for a = 0.95 recovery rate. Our best
estimates for the exponents are δ = 0.09 ± 0.005, θ = 0.58 ± 0.01,
θR = 1.64 ± 0.05 for d = 2, and δ = 0.34 ± 0.01, θ = 0.48 ± 0.01,
θR = 1.46 ± 0.05 for d = 3. The system sizes are 10002 and 2003 for
the two- and three-dimensional lattices, respectively, and all curves
were obtained from averaging over 5000 independent realizations.

epidemic model, where the SIR reactions are implemented
on regular two- and three-dimensional square or cubic lat-
tices with quenched site dilution disorder. In the context
of epidemic spreading (here with recovery), the effective
elimination of susceptible sites could be caused by immuniza-
tions. Even though the DyIP exponents that characterize the
disorder-free transition satisfy the Harris criterion, we observe
that for agent densities close to the percolation threshold the
effective exponents seem to deviate from their clean values.

Only after adequately increasing its size can the system
experience a crossover to the asymptotic scaling behavior, and
the effective exponents assume their universal DyIP values af-
ter sufficiently long simulation times. We have shown that the

034132-6



EFFECTS OF LATTICE DILUTION ON THE … PHYSICAL REVIEW E 106, 034132 (2022)

FIG. 5. (a) Time evolution of the infection survival probability
Ps(t ) at the critical point for the SIR model on diluted lattices with
enabled nearest-neighbor hopping, i.e., diffusive agent spreading.
(b) The time evolution of the total number of infected I (t ) and
recovered individuals R(t ) (inset), obtained from the same data with
enabled nearest-neighbor hopping. The densities were chosen at the
percolation thresholds ρ∗ in both two and three dimensions, see
Fig. 2. The critical values of the hopping, infectious, and recovery
rates are pc = 1.0, rc = 0.104, ac = 0.1 and pc = 1.0, rc = 0.093,
ac = 0.1 for d = 2 and d = 3, respectively. Our best estimates for the
exponents are δ = 0.083 ± 0.005, θ = 0.65 ± 0.1, θR = 1.68 ± 0.1
for d = 2 and δ = 0.35 ± 0.03, θ = 0.45 ± 0.1, θR = 1.48 ± 0.1 for
d = 3. The system sizes are 10002 and 2003 for the two- and three-
dimensional lattices, respectively, and the survival probability curves
were obtained from 5000 (d = 2) and 3000 (d = 3) independent
realizations.

crossover time can be reduced significantly upon increasing
the recovery rate.

Consequently, due to the system’s finite size there is a
danger of mistaking transient impurity effects for apparent
signatures of nonuniversal critical scaling. We note that this
feature may be relevant for experiments, too, where im-
perfections are almost inevitable and for which finite-size
effects may be especially prominent. We also provide an
estimate for the characteristic crossover time when the sys-
tem transitions to the asymptotic universal DyIP scaling
behavior.

Finally, we have shown that when the SIR reactions are
modeled on a diluted lattice with enabled nearest-neighbor
agent hopping, the long crossover that we observe for the
lattice with quenched disorder is no longer present, and
the nonequilibrium active-to-absorbing phase transition is
simply governed by the DyIP exponents. In accord with
Ref. [35], our findings demonstrate the asymptotic irrelevance
of quenched disorder on the critical properties of the dynamic
isotropic percolation universality class for generalized epi-
demic spreading with recovery and immunity. This is in stark
contrast to the strong modifications induced by disorder on the
related directed percolation universality class that describes
simple epidemic processes (without recovery) near their
threshold.

Here we were able to consistently measure only the criti-
cal exponent δ that characterizes the temporal power law of
the survival probability curve. Other quantities such as the
infection curve exhibit an early maximum that cuts off critical
power laws, while we found the mean-square displacement
data to be plagued by very noisy statistics. Therefore, to
probe carefully the other critical exponents such as θ or z
in the presence of quenched disorder, one would need to
run simulations for substantially greater system sizes and
collect even more independent realizations; neither of which
is currently feasible with the computational resources avail-
able to us. It would also be interesting to further investigate
the effects of Poisson-generated disconnected clusters, which
appear to induce the observed long crossover times, and to
shed additional light on how the increase in lattice size fa-
cilitates the system to eventually exit this transient crossover
regime.

ACKNOWLEDGMENTS

The authors would like to thank Shengfeng Deng, Geza
Ódor, and Michel Pleimling for insightful discussions. This
research was sponsored by the Army Research Office and
was accomplished under Grant No. W911NF17-1-0156. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army
Research Office or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
herein.

[1] G. Ódor, Rev. Mod. Phys. 76, 663 (2004).
[2] H. Hinrichsen, Adv. Phys. 49, 815 (2000).
[3] H. K. Janssen, Phys. Rev. E 55, 6253

(1997).

[4] R. Cafiero, A. Gabrielli, and M. A. Muñoz, Phys. Rev. E 57,
5060 (1998).

[5] J. Hooyberghs, F. Iglói, and C. Vanderzande, Phys. Rev. Lett.
90, 100601 (2003).

034132-7

https://doi.org/10.1103/RevModPhys.76.663
https://doi.org/10.1080/00018730050198152
https://doi.org/10.1103/PhysRevE.55.6253
https://doi.org/10.1103/PhysRevE.57.5060
https://doi.org/10.1103/PhysRevLett.90.100601


RUSLAN I. MUKHAMADIAROV AND UWE C. TÄUBER PHYSICAL REVIEW E 106, 034132 (2022)

[6] T. Vojta, J. Phys. A: Math. Gen. 39, R143 (2006).
[7] T. Vojta, Phys. Rev. E 86, 051137 (2012).
[8] A. H. O. Wada and M. J. de Oliveira, J. Stat. Mech.: Theory

Exp. (2017) 043209.
[9] I. A. Kovács and R. Juhász, Sci. Rep. 10, 21874 (2020).

[10] T. Vojta and J. A. Hoyos, Phys. Rev. Lett. 112, 075702 (2014).
[11] A. J. Noest, Phys. Rev. Lett. 57, 90 (1986).
[12] A. G. Moreira and R. Dickman, Phys. Rev. E 54, R3090

(1996).
[13] J. Hooyberghs, F. Iglói, and C. Vanderzande, Phys. Rev. E 69,

066140 (2004).
[14] T. Vojta and M. Dickison, Phys. Rev. E 72, 036126 (2005).
[15] A. K. Ibrahim, H. Barghathi, and T. Vojta, Phys. Rev. E 90,

042132 (2014).
[16] P. Grassberger, Math. Biosci. 63, 157 (1983).
[17] H. K. Janssen, Z. Phys. B 58, 311 (1985).
[18] J. L. Cardy and P. Grassberger, J. Phys. A: Math. Gen. 18, L267

(1985).
[19] T. Tomé and R. M. Ziff, Phys. Rev. E 82, 051921 (2010).
[20] D. R. de Souza, T. Tomé, and R. M. Ziff, J. Stat. Mech.: Theory

Exp. (2011) P03006.
[21] H.-K. Janssen and U. C. Täuber, Ann. Phys. (NY) 315, 147

(2005).
[22] M. Henkel, H. Hinrichsen, S. Lübeck, and M. Pleimling, Non-

Equilibrium Phase Transitions, Vol. 1 (Springer, New York,
2008).

[23] U. C. Täuber, Critical Dynamics – A Field Theory Approach
to Equilibrium and Non-Equilibrium Scaling Behavior (Cam-
bridge University Press, Cambridge, 2014).

[24] A. B. Harris, J. Phys. C 7, 1671 (1974).
[25] A. Weinrib and B. I. Halperin, Phys. Rev. B 27, 413 (1983).
[26] W. Kinzel, Z. Phys. B 58, 229 (1985).
[27] J. J. Alonso and M. A. Muñoz, Europhys. Lett. 56, 485

(2001).
[28] T. Vojta and R. Dickman, Phys. Rev. E 93, 032143 (2016).
[29] T. Vojta and M. Y. Lee, Phys. Rev. Lett. 96, 035701 (2006).
[30] P. Forgács, A. Libál, C. Reichhardt, N. Hengartner, and C. J. O.

Reichhardt, Sci. Rep. 12, 11229 (2022).

[31] A. H. O. Wada and J. A. Hoyos, Phys. Rev. E 103, 012306
(2021).

[32] R. Kree, B. Schaub, and B. Schmittmann, Phys. Rev. A 39, 2214
(1989).

[33] F. van Wijland, K. Oerding, and H. Hilhorst, Physica A 251,
179 (1998).

[34] B. Polovnikov, P. Wilke, and E. Frey, Phys. Rev. Lett. 128,
078302 (2022).

[35] G. Ódor, Phys. Rev. E 103, 062112 (2021).
[36] U. C. Täuber, Fluctuations and correlations in chemical reaction

kinetics and population dynamics, in Chemical Kinetics (World
Scientific, Singapore, 2022), chap. 1, pp. 1–34.

[37] R. I. Mukhamadiarov, S. Deng, S. R. Serrao, Priyanka, R.
Nandi, L. H. Yao, and U. C. Täuber, Sci. Rep. 11, 130
(2021).

[38] U. C. Täuber, J. Phys. A: Math. Theor. 45, 405002 (2012).
[39] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A.

Vespignani, Rev. Mod. Phys. 87, 925 (2015).
[40] M. J. Keeling and K. T. Eames, J. R. Soc. Interface 2, 295

(2005).
[41] A. Liccardo and A. Fierro, PLoS One 8, e63935 (2013).
[42] R. I. Mukhamadiarov, S. Deng, S. R. Serrao, Priyanka, L. M.

Childs, and U. C. Täuber, J. Phys. A: Math. Theor. 55, 034001
(2022).

[43] W. van Saarloos, Phys. Rep. 386, 29 (2003).
[44] E. Moro, Phys. Rev. Lett. 87, 238303 (2001).
[45] B. G. Barreales, J. J. Meléndez, R. Cuerno, and J. J. Ruiz-

Lorenzo, J. Stat. Mech.: Theory Exp. (2020) 023203.
[46] J. D. Murray, Mathematical biology II: spatial models and

biomedical applications, Vol. 3 (Springer, New York, 2001).
[47] H. Herrmann, Phys. Rep. 136, 153 (1986).
[48] D. Stauffer and A. Aharony, Introduction To Percolation Theory

(Taylor and Francis, London, 1994).
[49] M. A. Muñoz, G. Grinstein, and Y. Tu, Phys. Rev. E 56, 5101

(1997).
[50] S. M. Dammer and H. Hinrichsen, J. Stat. Mech.: Theory Exp.

(2004) P07011.
[51] S. Deng and G. Ódor, arXiv:2208.12038.

034132-8

https://doi.org/10.1088/0305-4470/39/22/R01
https://doi.org/10.1103/PhysRevE.86.051137
https://doi.org/10.1088/1742-5468/aa694b
https://doi.org/10.1038/s41598-020-78769-2
https://doi.org/10.1103/PhysRevLett.112.075702
https://doi.org/10.1103/PhysRevLett.57.90
https://doi.org/10.1103/PhysRevE.54.R3090
https://doi.org/10.1103/PhysRevE.69.066140
https://doi.org/10.1103/PhysRevE.72.036126
https://doi.org/10.1103/PhysRevE.90.042132
https://doi.org/10.1016/0025-5564(82)90036-0
https://doi.org/10.1007/BF01303673
https://doi.org/10.1088/0305-4470/18/6/001
https://doi.org/10.1103/PhysRevE.82.051921
https://doi.org/10.1088/1742-5468/2011/03/P03006
https://doi.org/10.1016/j.aop.2004.09.011
https://doi.org/10.1088/0022-3719/7/9/009
https://doi.org/10.1103/PhysRevB.27.413
https://doi.org/10.1007/BF01309255
https://doi.org/10.1209/epl/i2001-00545-8
https://doi.org/10.1103/PhysRevE.93.032143
https://doi.org/10.1103/PhysRevLett.96.035701
https://doi.org/10.1038/s41598-022-15223-5
https://doi.org/10.1103/PhysRevE.103.012306
https://doi.org/10.1103/PhysRevA.39.2214
https://doi.org/10.1016/S0378-4371(97)00603-1
https://doi.org/10.1103/PhysRevLett.128.078302
https://doi.org/10.1103/PhysRevE.103.062112
https://doi.org/10.1038/s41598-020-80162-y
https://doi.org/10.1088/1751-8113/45/40/405002
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1098/rsif.2005.0051
https://doi.org/10.1371/journal.pone.0063935
https://doi.org/10.1088/1751-8121/ac3fc3
https://doi.org/10.1016/j.physrep.2003.08.001
https://doi.org/10.1103/PhysRevLett.87.238303
https://doi.org/10.1088/1742-5468/ab6a03
https://doi.org/10.1016/0370-1573(86)90047-5
https://doi.org/10.1103/PhysRevE.56.5101
https://doi.org/10.1088/1742-5468/2004/07/P07011
http://arxiv.org/abs/arXiv:2208.12038

