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Theoretical model for the Mpemba effect through the canonical first-order phase transition
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The Mpemba effect is the phenomenon in which the system with high initial temperature cools faster than
the system with low initial temperature when all other conditions are the same. A theoretical model of the
Mpemba effect through the canonical first-order phase transition is proposed in this paper, which shows that in
the cooling processes, the path of the first-order phase transition of the system with the high initial temperature
does not pass through any metastable state, while the path of the first-order phase transition of the system with
the low initial temperature passes through a metastable state, which leads to the occurrence of the Mpemba
effect. Then an example of the theoretical model is given in the Blume-Emery-Griffiths model. The Monte Carlo
algorithm is adopted to calculate the estimated times for both systems with different initial temperature to cool
down and undergo a first-order phase transition. The simulation results demonstrate a Mpemba effect in the
system. Moreover, the evolution paths of the first-order phase transitions of the systems with high and low initial
temperatures are given, respectively. The theoretical model presented here may help explain the Mpemba effect
in water.

DOI: 10.1103/PhysRevE.106.034131

I. INTRODUCTION

If two glasses of water with the same macroscopic proper-
ties except for the initial temperature are placed in the same
environment to cool down, the water with the higher initial
temperature might freeze faster. Aristotle, Francis Bacon, and
Descartes all described this counterintuitive phenomenon in
different ways [1,2], but it was not until it was rediscovered
by a high school student that it was named after him—the
Mpemba effect [3]. The Mpemba effect is when two systems,
with the same macroscopic physical quantities except for
the initial temperature, are placed in the same cooling envi-
ronment, and the system with the higher initial temperature
will enter the cryogenic phase faster. Up to now, there has
been no consensus on the specific mechanism of the Mpemba
effect, and various explanations about this effect have been
given, such as the microscopic structure of intramolecular
hydrogen-oxygen covalent bonds and intermolecular hydro-
gen bonds [4,5], convection [6,7], hydrodynamic effects [7],
gas dissolved in water [8,9], evaporation [10,11], and so on
[12,13]. Moreover, the Mpemba-like effect was presented re-
cently. The Mpemba-like effect is when two samples of a
substance whose macroscopic parameters are all the same
(except for the initial temperatures) are both in thermal contact
with the same low-temperature heat source at the same time,
and the hotter one will take less time to reach the low temper-
ature. The Mpemba effect or the Mpemba-like effect is also
widely reported in systems other than water, such as nanotube
resonators [14], granular fluid [15] or gases [16,17], magne-
toresistance alloys [18], spin glasses [19], clathrate hydrates
[20], polymers [21], and so on [22–24].

*jxhou@seu.edu.cn

Several theories have now been developed to explain the
mechanism of the Mpemba-like effect in certain systems. Las-
anta et al. proposed that the Mpemba-like effect of granular
fluid is due to the fact that the rate of change of temperature
with time is not only related to temperature, but also to its
parameter a2, which relates to the speed distribution of the
granular particles [15]. Baity-Jesi et al. pointed out that the
Mpemba-like effect of spin glasses is due to the fact that
the cooling process depends on both the temperature and the
coherence length of the system [19]. Lu and Raz explained the
Mpemba-like effect of a three-state system, the Ising model,
and diffusion dynamics by introducing nonequilibrium path
and relaxation mode analysis, which led to a general condition
for the Mpemba effect to occur in any Markov dynamical sys-
tem [25]. However, the above are all theoretical explanations
for the Mpemba-like effect without any phase transitions.
There are also studies on the Mpemba effect with phase tran-
sitions. Yang and Hou proposed the non-Markovian Mpemba
effect in the microcanonical ensemble of a mean-field system
[26,27]. Luo and Sommer proposed a possible mechanism
for the Mpemba effect of the first-order phase transition in
polymer crystallization [28]. Very recently, Holtzman and Raz
used the phenomenological Landau phase transition theory to
determine the second-order phase transition time, and they
gave a model with the Mpemba effect of a second-order phase
transition in the canonical ensemble [29].

In this paper, we present a theoretical model of the
Mpemba effect through the canonical first-order phase transi-
tion. The model shows that the cooling path of the first-order
phase transition of the system with the high initial temperature
does not pass through any metastable state, while the cooling
path of the first-order phase transition of the system with
the low initial temperature passes through a metastable state,
which leads to the occurrence of the Mpemba effect. The
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FIG. 1. Schematic diagram of the theoretical model. (a) The surface of free energy at the temperature Tf . (b) The equilibrium line of (x1, x2)
obtained by Eq. (1) of different temperature. (c) The free-energy surface at the temperature Th. The red dots correspond to the parameters �x(Th )
of the equilibrium state of the system with high temperature Th, and the blue dots correspond to the parameters �x(Tc ) of the equilibrium state of
the system with low temperature Tc. The green dot in (a) and brown dots in (a) and (b) represent the metastable state and the equilibrium state
of the system with temperature Tf , respectively. The purple lines and white lines with an arrow in (a) represent the nonequilibrium cooling
path from the temperature Th to Tf and Tc to Tf , respectively. The direction of the arrows in (b) is the direction of temperature drop. Tp in (b) is
the temperature of the canonical first-order phase transition.

Blume-Emery-Griffiths (BEG) model is given as an example
of this theoretical model. Monte Carlo simulations are per-
formed to calculate the phase-transition estimated times for
two identical systems, except for different initial temperatures
placed at the same low temperature, which demonstrate that
the Mpemba effect exists. Their cooling paths validate our
theoretical model. The result obtained by us may help to
explain the Mpemba effect in water.

The paper is organized as follows. In Sec. II, we introduce
the theoretical model and give the reason why the Mpemba
effect of the canonical first-order phase transition exists. Then
an example of this theoretical model is given in the BEG
model in Sec. III. Finally, some conclusions are drawn in
Sec. IV.

II. A THEORETICAL MODEL AND ITS ANALYSIS

In this section, we consider a system with two order param-
eters, x1 and x2. In this case, the free energy of the system can
be written as f (T, x1, x2). From Landau theory, the order pa-
rameters corresponding to the equilibrium state is determined
by

(x1, x2) = arg min
(x1,x2 )

f (T, x1, x2). (1)

Therefore, for the system with the high initial temperature
Th, the point corresponding to the equilibrium state is at
the bottom of the surface of the free energy, as shown in
Fig. 1(c), and the order parameters of the points are denoted as
�x(Th)(xh1, xh2). Similarly, the order parameters corresponding
to the system with low initial temperature Tc are denoted
as �x(Tc) = (xc1, xc2). From Eq. (1), it is easy to get the or-
der parameters of the equilibrium state for the systems with

different temperatures. The equilibrium line is plotted in
Fig. 1(b). We can see that at the phase-transition point, the
equilibrium line is not continuous, indicating that the phase
transition is a canonical first-order phase transition.

When the systems with the temperatures Th and Tc are put
into the same cooling environment whose temperature is set
to be Tf , the surface of the free energy suddenly changes into
a surface with three local minimum points, which is shown in
Fig. 1(a). The global minimum points of the free energy are lo-
cated at x1 �= 0 and x2 �= 0 (for example, |x1| = 1 and x2 = 1),
which corresponds to the equilibrium state at the temperature
Tf . The local minimum points of the free energy are located
at x1 = 0 and x2 = 0, corresponding to a metastable state.
By marking the point [xh1, xh2, f (Tf , xh1, xh2)] which corre-
sponds to �x(Th) as well as the point [xc1, xc2, f (Tf , xc1, xc2)]
which corresponds to �x(Tc) in Fig. 1(a), it can be seen that
�x(Th) is closer to the equilibrium state at the temperature
Tf than �x(Tc), while �x(Tc) is closer to the metastable state.
Moreover, we can see that when the nonequilibrium state that
corresponds to �x(Th) reaches the equilibrium state, it does not
need to pass through any free-energy barrier, so it may need
only a little time for the phase transition to occur. On the
contrary, there is a free-energy barrier between the nonequi-
librium state, which corresponds to �x(Tc), and the equilibrium
state, while there is not any free-energy barrier between this
nonequilibrium state and the metastable state. Hence, for the
system with the low initial temperature, it tends to enter the
metastable state first and then it needs quite a long time to
pass through a high free-energy barrier from the metastable
state to the final equilibrium state. Therefore, for the system
with the low initial temperature, it may spend quite a long time
cooling to the final equilibrium state. In view of the above two
situations, there exists a Mpemba effect.
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In a word, the theoretical model of the Mpemba effect
through the canonical first-order phase transition we proposed
shows that in the cooling processes, the path of the first-order
phase transition of the system with the high initial temperature
does not pass through any metastable state, while the path
of the first-order phase transition of the system with the low
initial temperature passes through a metastable state, which
leads to the occurrence of the Mpemba effect.

III. AN EXAMPLE OF THE THEORETICAL MODEL

In this section, a specific example of the theoretical model,
the Mpemba effect in the BEG model, is proposed to further
illustrate our theoretical model.

A. The BEG model and its canonical solution

The BEG model was proposed to study the superfluid tran-
sitions as well as the phase separation in He3−He4 mixtures
[30]. The Hamiltonian of a mean-field BEG model with a
nearest-neighbor interaction term can be written as [31–33]

H =�

N∑
i=1

S2
i − J

2N

(
N∑

i=1

Si

)2

− K

2N

(
N∑

i=1

S2
i

)2

+ D
N∑

i=1

SiSi+1, (2)

where J and K are the bilinear exchange interaction pa-
rameter and the biquadratic exchange interaction parameter,
respectively. � is the crystal field of strength parameter, D
is the coefficient of the nearest-neighbor interaction, and N
is the number of spins. Moreover, Si is the spin of the ith
site of the chain, the value of which can be one of {−1, 0, 1}.
Upon a series of mathematical operations that are shown in
Appendix A, the free energy of the system can be expressed
by

f̃ (β, m, q) = 1

2
Jm2 + 1

2
Kq2 − 1

β
ln[λmax(m, q)], (3)

where m = ∑N
i=1 Si/N is the magnetization per spin, q =∑N

i=1 S2
i /N is the quadrupole moment per spin, λmax(m, q) is

the largest eigenvalue of the transfer matrix (see Appendix A
for details), and β = (kBT )−1 is the inverse temperature. kB is
the Boltzmann constant, which is set to be unity in our calcula-
tion. m and q are the order parameters of the system. The free
energy per spin of the equilibrium state in the thermodynamic
limit (N → +∞) can be determined by

f (β ) = min
m,q

f̃ (β, m, q), (4)

and the corresponding parameters m and q are the magnetiza-
tion and the quadrupole moment per spin of the equilibrium
state, respectively. Moreover, we can get the energy per spin
of the equilibrium state by

ε(β ) = f (β ) + β
∂ f (β )

∂β
. (5)

B. Canonical first-order phase transition

In the BEG model, � = 1.07, J = 0.5, K = 1, and
D = −0.5 are set for our discussion. The initial temperature
of the high-temperature system is set to be Th = 20 while
the initial temperature of the low-temperature system is set to
be Tc = 0.623, which is just above the transition temperature
T � 0.621. The temperature of the low-temperature environ-
ment is set to be Tf = 0.05. The function f̃ (β, m, q) of these
three cases is shown in Figs. 2(a), 2(b) and 2(d). When the
temperature T of the system is 20, there is only one local
minimum point of the function f̃ (β, m, q) with m = 0, which
is also the global minimum point of the function f̃ (β, m, q).
In the case of T = 0.623, it is clear to see that there are a
total of three local minimum points of the function f̃ (β, m, q),
and the minimum value of the local minimum point located
at m = 0 is smaller than that of the local minimum point
located at m �= 0, so the global minimum point of the function
f̃ (β, m, q) is still at m = 0. As the temperature of the system
decreases to T � 0.621, the local minimum values of three
local minimum points are the same, indicating that they are all
global minimum points, which is shown in Fig. 2(c). When the
temperature continues to decrease, the global minimum point
will no longer be at m = 0, which means at T � 0.621 the
global minimum point jumps from m = 0 to m �= 0 and both
the equilibrium magnetization per spin m and the equilibrium
quadrupole moment per spin q undergo a jump, indicating that
it is a canonical first-order phase transition. When T = Tf =
0.05, the global minimum points are at about m = ±1 and
q = 1.

The energy ε, the quadrupole moment q, and the magni-
tude of the magnetization |m| per spin of the system in an
equilibrium state as a function of temperature T are shown in
Figs. 2(e) and 2(f). It can be seen clearly that ε, q, and |m| of
the system in an equilibrium state are all discontinuous at the
first-order phase-transition point.

C. The time required for the systems with different initial
temperature to reach the cryogenic phase

We perform Monte Carlo simulations to see how the mag-
nitude of the magnetization per spin of the system with the
high initial temperature Ti = Th = 20 and the system with
the low initial temperature Ti = Tc = 0.623, which are both
put into the same low-temperature environment (Tf = 0.05),
changes with time. The energy, the magnitude of the magneti-
zation, and the quadrupole moment per spin of the equilibrium
state are marked in Figs. 2(e) and 2(f). The detailed Monte
Carlo simulation process is shown in Appendix B. The time
is defined as the total number of simulation steps divided by
the number of spins, or the number of Monte Carlo steps.
As shown in Fig. 3(a), we can clearly see that it takes less
time for the system with the high initial temperature to reach
the cryogenic phase than the system with the low initial tem-
perature, indicating that the Mpemba effect exists. Moreover,
we calculate the phase-transition estimated time as a function
of the number of spins in the system, which is shown in
Figs. 3(b) and 3(c). Here we assume that when the magne-
tization per spin m and the quadrupole moment per spin q of
the system satisfy the relation (q − 1)2 + (|m| − 1)2 < 0.01,
it enters the cryogenic phase. For the system that has the high
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FIG. 2. The free energy per spin f̃ (β, m, q) vs the magnetization per spin m and the quadrupole moment per spin q for four different
temperatures T : (a)–(d) the equilibrium energy per spin ε vs the temperature of the system T , (e) the equilibrium quadrupole moment per spin
q, and (f) the magnitude of the equilibrium magnetization per spin |m| vs the temperature of the system T . (a) T = Th = 20, corresponding to
the system with the high initial temperature. (b) T = Tc = 0.623, corresponding to the system with the low initial temperature. (c) T = 0.621,
which is the temperature of the canonical first-order phase-transition point. (d) T = Tf = 0.05, corresponding to the final temperature that the
system will reach after cooling down, i.e., the temperature of the environment. The black mark (�) in (a)–(d) represents the global minimum
point of f̃ (β, m, q). The black mark (�) in (b)–(d) represents the local minimum point of f̃ (β, m, q). The red mark (�) in (e) and (f) represents
the system with the high initial temperature. The orange mark (�) in (e) and (f) represents the system with the low initial temperature. The
blue mark (•) represents the final equilibrium state that the system reaches after cooling down.

initial temperature Th, the phase-transition estimated time τ

is approximately proportional to the logarithm of the total
number of spins lg N , as shown in Fig. 3(b). On the contrary,
the logarithm of the phase-transition estimated time lg τ of the
system with the low initial temperature Tc is approximately
proportional to the number of spins N , which is shown in

Fig. 3(c). Therefore, the Mpemba effect of the system is a
strong Mpemba effect [35], i.e., it is substantially enhanced
on a discrete set of initial temperatures. Contrary to Ref. [35],
the strong Mpemba effect mentioned in this paper does not
only occur in special initial temperatures, but in a range of
temperatures.

(a) (b) (c)
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FIG. 3. The magnetization per spin m vs the cooling time of the system t during the cooling process of two systems that have different
initial temperature obtained by a Monte Carlo simulation by setting N = 20 (a). The canonical first-order phase transition estimated time τ vs
the total number of the spin N for two systems which have different initial temperature, (b),(c). The orange line in (a) represents the system
with the high initial temperature, while the green line represents the system with low initial temperature. The red dots in (b) and (c) represent
the average first-order phase transition estimated time from multiple Monte Carlo simulations, and they are all approximately in a straight blue
line, respectively.
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FIG. 4. The average evolution paths taken by the systems of two different initial temperatures during the cooling process, characterized
by the energy per spin ε, the magnetization per spin m, and the quadrupole moment per spin q of the system, from two perspectives, (a) and
(b). The cooling paths of the systems with two different initial temperatures obtained by a single Monte Carlo simulation, characterized by
the energy per spin ε, the magnetization per spin m, and the quadrupole moment per spin q of the system, (c). The dark blue line in (a) and
(b) represents the equilibrium energy of the system at different temperatures. The orange line with an arrow in (a) and (b) represents the average
cooling path of the system with the high initial temperature Ti = Th = 20. The green line with an arrow in (a) and (b) represents the average
cooling path of the system with the low initial temperature Ti = Tc = 0.623. The brown line with an arrow and the light blue line with an arrow
in (c) represent the cooling paths of the system with the high initial temperature Ti = Th = 20 and the low initial temperature Ti = Tc = 0.623,
respectively, which are both obtained by a single Monte Carlo simulation.

D. The average evolution paths during the cooling processes

The average evolution paths during the cooling processes
for the system with the higher initial temperature and the
system with the lower initial temperature, which can be cal-
culated according to the method proposed by Klich et al.
[35], are shown in Figs. 4(a) and 4(b), and the evolution
path obtained by a Monte Carlo single simulation is shown
in Fig. 4(c). It is clear that the cooling process of the system
does not follow the equilibrium path, thus it is a nonequilib-
rium process. Moreover, the cooling paths of the system with
the higher initial temperature and that with the lower initial
temperature are not the same.

For the system with initial temperature Ti = Th = 20, it
proceeds directly to the final equilibrium state (|m| � 1,
q � 1) without going through any metastable state. Therefore,
the system does not experience any free-energy barriers in
this evolution path, leading the phase-transition time τ to
reach the final equilibrium state very quickly. Moreover, the
phase-transition time τ and the total number of the spins N
satisfy the relation τ ∝ lg N [34].

On the contrary, for the system whose initial temperature
is Ti = Tc = 0.623, it first enters a metastable state along the
paramagnetic path of m = 0, and then stays in the metastable
state (m = 0, q � 0) for a long period of time before entering
the final equilibrium state (|m| � 1, q � 1). When the system
evolves from the metastable state to the final equilibrium state,
it needs to pass through a high free-energy barrier. The system
needs to wait for a huge fluctuation to absorb enough energy
to overcome the free-energy barrier. Therefore, it takes quite
a long time for the system to reach the equilibrium state
from the metastable state. Moreover, the time required for the
system to reach the metastable state from the initial state is
much less than the time required to reach the equilibrium state
from the metastable state, indicating that the phase-transition

time τ is mainly determined by the latter. In this case, the
phase-transition time τ and the total number of spins N satisfy
the relation lg τ ∝ N . Comparing the above two situations,
we can see that there is a strong Mpemba effect in the
system.

The nonequilibrium cooling path and the equilibrium path
we obtained is fully in line with the model we propose in
Sec. II.

IV. SUMMARY

In summary, we propose a theoretical model of the
Mpemba effect through the canonical first-order phase transi-
tion. In the process of the canonical first-order phase transition
of the system whose initial temperature is high, the system
will directly reach the final equilibrium state without being
trapped in any metastable state or passing through any free-
energy barrier, thus leading to the short phase-transition time.
On the contrary, in the process of the canonical first-order
phase transition of the system whose initial temperature is
low, the system first experiences a metastable state, stays in
the metastable state for a long period of time, and then enters
the final equilibrium state. And in the process of evolution
from the metastable state to the equilibrium state, the system
must cross a free-energy barrier, resulting in a long first-order
phase-transition time. According to the analysis above, we can
see that the Mpemba effect of the theoretical model is actually
a strong Mpemba effect.

The BEG model is chosen to further illustrate this theoret-
ical model. The result shows that for the system with the high
initial temperature, its first-order phase-transition time τ and
the total number of spins N satisfy the relation τ ∝ lg N , while
for the system with the low initial temperature, its first-order
phase-transition time τ and the total number of spins N satisfy
the relation lg τ ∝ N , indicating that the Mpemba effect is
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strong. Furthermore, the nonequilibrium cooling path is in line
with the expected results of the theoretical model.

From the theoretical model we proposed, it can be seen
that the cooling process is a nonequilibrium process while the
temperature is a physical quantity of the equilibrium state, so
the cooling path of a system is not necessarily its equilibrium
path. Going back to the Mpemba effect of water, the evolution
paths taken by the freezing of hotter water and colder water
may be different. During the cooling process, the water with
a high initial temperature does not cool down to the initial
state of water with a low initial temperature. Moreover, in
the canonical BEG model, there is a metastable state in the
cooling path of the system with the low initial temperature,
while there is not any metastable state in the cooling path of
the system with the high initial temperature, which is the main
reason for the strong Mpemba effect. Similarly, there may not
be any metastable state in the cooling path of the hotter water,
while there may exist a metastable state in the cooling path of
the colder water (such as supercooled water [12,13]), leading
to the Mpemba effect of the water.

APPENDIX A: THE SOLUTION TO THE CANONICAL
PARTITION FUNCTION AND THE FREE-ENERGY

FUNCTION OF THE BEG MODEL

The Hamiltonian of the BEG model is

H =�

N∑
i=1

S2
i − J

2N

(
N∑

i=1

Si

)2

− K

2N

(
N∑

i=1

S2
i

)2

+ D
N∑

i=1

SiSi+1. (A1)

The canonical partition function of the system can be written
as

Z (β, N ) =
∑
{Si}

e−βH =
∑
{Si}

e−β�
∑N

i=1 S2
i + βJ

2N (
∑N

i=1 Si )
2

× e
βK
2N (

∑N
i=1 S2

i )2−βD
∑N

i=1 SiSi+1 , (A2)

where β = (kBT )−1 is the inverse temperature. It can be
simplified without squared terms by using the Hubbard-
Stratonovich transformation,

eab2 =
√

a

π

∫ +∞

−∞
e−ax2+2abxdx. (A3)

Then Eq. (A2) can be transformed as

Z (β, N ) =Nβ
√

JK

2π

∫ +∞

−∞

∫ +∞

−∞
e− βNJ

2 x2− βNK
2 y2

×
∑
{Si}

N∏
j=1

e−βH̃j dx dy, (A4)

where

H̃j =1

2
�

(
S2

j + S2
j+1

) − 1

2
Jx(S j + S j+1)

− 1

2
Ky

(
S2

j + S2
j+1

) + DSjS j+1. (A5)

Using the technique of the transfer matrix, Eq. (A4) can be
rewritten as

Z (β, N ) =Nβ
√

JK

2π

∫ +∞

−∞

∫ +∞

−∞
e− βNJ

2 x2− βNK
2 y2

× Tr{[A(x, y)]N }dx dy, (A6)

where

A(x, y)

=
⎡⎣eβ(Jx+Ky−�−D) e

1
2 β(Jx+Ky−�) eβ(Ky−�+D)

e
1
2 β(Jx+Ky−�) 1 e

1
2 β(−Jx+Ky−�)

eβ(Ky−�+D) e
1
2 β(−Jx+Ky−�) eβ(−Jx+Ky−�−D)

⎤⎦.

(A7)

Denoting the largest eigenvalue of the transfer matrix A(x, y)
as λmax(x, y), the canonical partition function of the system
can be expressed by

Z (β, N ) = Nβ
√

JK

2π

∫ +∞

−∞

∫ +∞

−∞
e−βN f̃ (β,x,y)dx dy, (A8)

where

f̃ (β, x, y) = 1

2
Jx2 + 1

2
Ky2 − 1

β
ln[λmax(x, y)] (A9)

is the free energy per spin. Actually, it can be proved that
x = ∑N

i=1 Si/N = m is the magnetization per spin and y =∑N
i=1 S2

i /N = q is the quadrupole moment per spin. We define

f (β ) = min
m,q

f̃ (β, m, q), (A10)

and we suppose that the global minimum point of f̃ (β, m, q)
is located at m = m0 and q = q0. The integral in Eq. (A8) can
be evaluated:∫ ∞

−∞

∫ ∞

−∞
e−βN f̃ (β,m,q)dm dq

= e−βN f (β )
∫ ∞

−∞

∫ ∞

−∞
e−βN[ f̃ (β,m,q)− f̃ (β,m0,q0 )]dm dq

� e−βN f (β )
∫ ∞

−∞

∫ ∞

−∞
e− 1

2 βN f̃mm (m−m0 )2

× e− 1
2 βN[ f̃qq (q−q0 )2+2 f̃mq (m−m0 )(q−q0 )]dm dq

= e−βN f (β )
∫ ∞

−∞
e
− 1

2 βN ( f̃mm− f̃ 2
mq
f̃qq

)(m−m0 )2

dm

×
∫ ∞

−∞
e
− 1

2 βN f̃qq[q−q0+ f̃mq
f̃qq

(m−m0 )]2

dq

= e−βN f (β )

√√√√ 2π

Nβ( f̃mm − f̃ 2
mq

f̃qq
)

√
2π

Nβ f̃qq

= 2πe−Nβ f (β )

Nβ

√
f̃mm f̃qq − f̃ 2

mq

, (A11)
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where

f̃mm = ∂2 f̃ (β, m, q)

∂m2

∣∣∣
(m,q)=(m0,q0 )

,

f̃qq = ∂2 f̃ (β, m, q)

∂q2

∣∣∣
(m,q)=(m0,q0 )

, (A12)

f̃mq = ∂2 f̃ (β, m, q)

∂m∂q

∣∣∣
(m,q)=(m0,q0 )

.

So the canonical partition function can be evaluated as

Z (β, N ) =
√

JK

f̃mm f̃qq − f̃ 2
mq

e−βN f (β ). (A13)

Therefore, the free energy per spin of the equilibrium state in
the thermodynamic limit (N → +∞) can be obtained by

f = − lim
N→+∞

ln Z (β, N )

Nβ

= lim
N→+∞

[
f (β ) + 1

Nβ
ln

√
JK

f̃mm f̃qq − f̃ 2
mq

]
= f (β ), (A14)

and the corresponding parameters m = m0 and q = q0 are the
magnetization and the quadrupole moment per spin of the
equilibrium state, respectively.

Moreover, we can get the energy per spin of the equilibrium
state by

ε(β ) = − 1

N

∂ ln Z (β, N )

∂β
= f (β ) + β

∂ f (β )

∂β
. (A15)

APPENDIX B: The detailed Monte Carlo simulation process

The Monte Carlo simulation is performed to calculate the
estimated time required for the first-order phase transition of
the system and the paths of the first-order phase transition
in the paper. First, we should obtain the spin configurations
corresponding to the system with the high initial tempera-
ture and the low initial temperature, respectively. The Monte
Carlo simulation method to obtain the spin configuration cor-
responding to the system of the specific temperature T is as
follows:

(i) Randomly generate a spin configuration.

(ii) Randomly choose a spin.
(iii) Randomly generate a random number in {−1, 0, 1}

and assign it to the spin.
(iv) Calculate the energy change �E = Enew − Eold, where

Enew is the energy of the new spin configuration and Eold is the
energy of the old spin configuration.

(v) If �E > 0, generate a random number (RN) in the
interval [0, 1]. If e−�E/(kBT ) � RN, accept the new config-
uration, otherwise reject the new configuration. If �E � 0,
accept the new configuration.

(vi) Repeat steps (ii)–(v) as necessary.
The final spin configuration corresponds to the stable spin

configuration at temperature T .
After obtaining the spin configuration corresponding to the

system with the high initial temperature and that with the low
initial temperature, we perform the Monte Carlo simulation to
get the cooling paths of the system as well as the estimated
time required for the first-order phase transition to occur. The
temperature of the cooling environment is set to Tlow = 0.05.
The Monte Carlo simulation method to obtain the cooling
paths and the phase transition estimated time is as follows:

(i) Assign each spin according to the previously obtained
spin configuration.

(ii) Calculate the magnetization per spin m = ∑N
i=1 Si/N ,

the quadrupole moment per spin q = ∑N
i=1 S2

i /N , the energy
per spin ε = H/N , and the time t = Nm/N , where H is the
Hamiltonian expressed by Eq. (A1) and Nm is the number
of steps for the Monte Carlo simulation that have been per-
formed.

(iii) Calculate judge = (|m| − 1)2 + (q − 1)2. If judge <

0.01, stop the simulation, and the time τ = NM/N is the first-
order phase-transition estimated time, where NM is the total
steps for the Monte Carlo simulation.

(iv) Randomly choose a spin.
(v) Randomly generate a random number in {−1, 0, 1} and

assign it to the spin.
(vi) Calculate the energy change �E = Enew − Eold, where

Enew is the energy of the new spin configuration and Eold is the
energy of the old spin configuration.

(vii) If �E > 0, generate a RN in the interval [0, 1]. If
e−�E/(kBTlow ) � RN, accept the new configuration, otherwise
reject the new configuration. If �E � 0, accept the new con-
figuration.

(viii) Repeat steps (ii)–(vii) continuously.
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