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Localization in a one-dimensional alloy with an arbitrary distribution of spacing between
impurities: Application to Lévy glass
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We have studied the localization of waves in a one-dimensional lattice consisting of impurities where the
spacing between consecutive impurities can take certain values with given probabilities. In general, such a distri-

bution of impurities induces correlations in the disorder. In particular, with a power-law distribution of spacing,
this system is used as a model for light propagation in Lévy glasses. We introduce a method of calculating the
Lyapunov exponent which overcomes limitations in the previous studies and can be easily extended to higher
orders of perturbation theory. We obtain the Lyapunov exponent up to fourth order of perturbation and discuss the
range of validity of perturbation theory, transparent states, and anomalous energies which are characterized by
divergences in different orders of the expansion. We also carry out numerical simulations which are in agreement

with our analytical results.
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I. INTRODUCTION

Propagation of waves in random media is a subject of inter-
est in a variety of areas ranging from visible light propagation
in human tissue for medical purposes to electromagnetic wave
propagation in interstellar clouds [1-4]. A daily life example
is the propagation of sunlight in clouds. Even though the sun
can be invisible on a cloudy day we still can see diffuse
light coming in all directions. Usually, the propagation of
light through such a scattering medium can be approximated
by normal diffusion. Likewise the transport of heat or sound
waves, in certain length scales, is also described by normal
diffusion.

In a recent study, a disordered optical medium has been
designed in which the propagation of light is governed by
superdiffusion rather than normal diffusion [5]. These engi-
neered materials, which are named Lévy glasses, are realized
with an assembly of transparent microspheres, with a con-
trolled size distribution, embedded in a scattering medium.
The power-law distribution of the size of these microspheres
induces a heavy tail distribution of the step length for light
rays and therefore a Lévy-type random walk through the
medium. Although the transport properties can be described
by the random walk model to a large extent, it would be
interesting to see how these properties are influenced by wave
phenomena such as interference.

This problem is addressed in Ref. [6] where a one-
dimensional discrete model of a mechanical analog of Lévy
glass, represented by a harmonic chain of coupled oscillators,
is studied. Randomness is introduced in the spacing between
impurities with a power-law distribution p(s) o< s~@+D, It
turns out that this model exhibits anomalous localization prop-
erties. Namely, the localization length of vibrational modes at
low frequencies (long wavelength) exhibits a scaling behav-
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ior § x w™¥, in contrast with the standard scaling behavior
£ o< w2 for uncorrelated disorder. Similar scaling behavior
is found in a continuous model of a one-dimensional lay-
ered system at long-wavelength limit [7]. In Ref. [8] the
discrete model is reconsidered and an analytical formula for
the power spectrum of the mass distribution of this model is
obtained.

The studies on the discrete model [6,8] rely on the second-
order perturbative expression for the Lyapunov exponent
which is obtained [9] in terms of the correlation functions
of the disorder. For the Lévy-type distribution of impurities,
this method does not lead to a conclusive result in the entire
range of the power-law exponent «. Here, we introduce an
alternative method of calculating the Lyapunov exponent for
this model which does not require determining the correla-
tion functions. Our approach provides a systematic way of
calculating the higher orders of perturbation expansion with
any given distribution of spacing between impurities. In this
paper, we study the problem of electron localization [10—12]
although mathematically it is equivalent to the problem of
mechanical vibrations.

Higher-order terms in the expansion allow us to study the
phenomenon of the Kappus-Wegner anomaly [13] which is
the result of constructive interference of certain scattering
amplitudes [14] and characterized by the enhancement of the
localization length at certain isolated energies. It turns out
that for the special random potential that we study here, such
anomalies occur at several energies, which is in contrast with
the white noise potential. We also investigate the range of
validity of the perturbative expansion, transparent states, and
carry out numerical simulations and compare them with our
analytical results.

II. MODEL

The model under consideration is a one-dimensional tight-
binding chain (Fig. 1), represented by the discrete Schrodinger

©2022 American Physical Society
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FIG. 1. Schematic illustration of the tight-binding chain. Small

circles show the background lattice with zero on-site potential and

the large circles are the impurities with on-site potential AU. Here,
S;i = 3 and Sit1 = 5.

equation
lljn+1 + V¥, + AU, = EVY,. (D

The potential U, is assumed to take two values U, = 0 and
U, = U in the following way. There are sequences of U, = 0
with length s — 1 and after each such sequence there will be
an impurity with U, = U. The sequence length s is a random
variable with integer values s = 1, 2, .. ., drawn from a given
distribution p(s).

As we mentioned, vibrations of atoms in a one-dimensional
crystal with harmonic forces between nearest-neighbor atoms

J

and binary mass distribution can also be described with
this model. The following replacement should be done, E —
AU, =2 — m,w*/k, with @ being the frequency and « being
the spring constant. For the binary mass distribution m, M, we
can use £ = 2 — mw?*/k and AU = (M — m)w?/k to trans-
form the mass-spring model to model Eq. (1).

III. PERTURBATION THEORY

The solution of Eq. (1), in the presence of the weak random
potential, can be treated perturbatively [15-19] by rewriting it

. . w,
in terms of variables R, = 2,
n

1
Rnfl ’

The solution of Eq. (2) for nonzero weak random potential can
be expressed as the following expansion in powers of disorder
strength,

R, =AexpBur +CA> + DA+ EAY +--0).  (3)

R,=E —\U, —

@)

By substituting (3) in (2) and collecting terms in different
orders of A, one gets [20]

A’ +1=AE, (4a)
A’B, = B,_| — AU, (4b)
A*(C,+1B)) =Cooy — 1B2 ). (4c)
A*(Dy + B,C, + ¢B;) = Dy — BioiGomt + B3 (4d)
2 2 2 2 2
A*(F, + B,D, + 1C: + 1B.C, + %2B,) = F,_1 — B, 1Dy — 3C;_ | + 1B;_C,my — 5B, (4e)
(
The rate of exponential growth of solutions, i.e., the inverse is stationary, we can consider them as spatial averages
localization length, is determined by the Lyapunov exponent, 1
ich is ei Pdy — — P4
which is given by (xrug) = 7 ZX,, U, (11)
1Y ’
y(E)= lim — Z logR, = (logR) 5) and also using the fact that the potential U, is only nonzero on
N=oo N n=1 impurities we will have
=logA + A(B) +A*(C) + A3(D) +--- . (6)

The averages in the last equation can be obtained using the
average of Egs. (4b)—(4e) and their multiplications. We have

(B) =~ (U), )
(€)= —%;‘f—f‘:iwzx (®)
(D) = —if—f\jwa — é<B3> )
(F) = —ﬁf—f‘_i(wm + %(C% + §<B“>> - %(Bzcy
(10)

There is an obstacle in calculating the averages on the right-
hand side. Unlike the uncorrelated case [17], the averages
such as (X/U,!) cannot be replaced with (X;)(U,) because of
the correlations in the potential. Here, X,, can be B,, C,, B,,C,,
etc. In order to calculate such averages, since the process X,

(xpug) = 09 YO/, (12)

where the sum is restricted to impurity positions. Since L =
N{s), with the N being the average number of impurities in
the sequence of length L, we will have
U1
(XPUT) = —= (X )imp, (13)
(s)
where (-)imp means the average of the values on the impurities.
As an example, the average of the potential is given by
U1
U?) = . (14)
(s)
In order to calculate the averages such as (X”)iy,, we need
to know the values of X on impurity positions which we
indicate by index i. First, we derive the recurrence relations in
terms of the impurity index. As it is considered the number of
lattice points between two consecutive impurities is s; — 1, by
starting with B;_; and applying B, = A™2B,_,, s; — | times
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followed by B, = A72B,_, — A~'U for the last point (which
is an impurity), we obtain B;,

Bi=A"%B;_, —A"'U. (15)

The advantage of the above recursive relation is that we can
now use the statistical independence of B;_; and s; because
s;’s are assumed to be uncorrelated. By taking the average
of both sides and using the statistical independence, i.e.,
(A2 B;_1)imp = (A7) (Bi_1)imp, We obtain

AU

<B>imp = m,

(16)

where (A=) = > p(s)A%. We use the calligraphic font
to indicate the averages A,, = (A™"™), for convenience. We
emphasize the difference between this average and the total
average of B,, given by Eq. (7) which by inserting from
Eq. (14) is as follows,

Similarly, we can calculate (Bz)imp and then (B?)

o U+ A2
B = 0= (1= Ay (19
o (14 A)U?
=@ —ana - 4y 12
from which we obtain
2
) = (14 AU )

2 — AT = Ay
By taking the real part of the above expression we reproduce
the second-order result of Ref. [8],

U? 1— A

Re ) = A A P T — AP

1)

where we have assumed the limit A — ¢ to be taken. The
wave vector k is related to the energy via the zero-order
equation (4b), which gives the dispersion relation £ = 2 cos k.

Having introduced the approach we can now proceed to
calculate the higher orders of perturbation. The final result up

(B) = —Lf. a7 to fourth order is obtained as follows,
() (A—A"1)
|
U A 1+ AP 2 (1444 + A)U?
y =logA+ A - = - =
(A=A 2 (A-ATNPA-A) 3 (HA-AT)A - A)?

AR A)(1+ 8A; — A3 + Ay — 84 Ay — A3A,)U?

+ 0. (22)

4 (A —-ATH A = A1 - Ay

IV. TRANSPARENT STATES

The simplest choice for the distribution of sequence length
s is p(s) = ds.5,- This means we will have one repeating pat-
tern, therefore a periodic potential. Thus all states are expected
to be Bloch wave functions that are delocalized, i.e., the real
part of the Lyapunov exponent must be zero. We can see that
this is the case in our result by noting that A, = A=2 which
has a unit modulus, and as a result, the real part of each term in
the expansion Eq. (22) vanishes identically. This should be the
case in all orders of perturbation because, as we mentioned,
the potential is periodic in this case. Although the potential
is periodic, since there are two types of atoms in the chain,
the energy band splits into sy subbands with sy — 1 gaps. This
latter property will be relevant in our later discussion.

If there is more than one value of s then the chain will
be disordered. Even in such a random case, there could
be some energies where the corresponding states are fully
transparent. Similar states is known for example in aperi-
odic Kronig-Penney [21] and the random dimer [9] models.
The present model may also possess such states which we
demonstrate with a couple of examples. Let us take p(s) =
PSs.s, + qbss, Where p+q=1. We need A, = pe=2*s1 4
ge~2*%2 to have a unit modulus but 4, # 1. The only solution
for |p672iks] + q672iksz| — 1 such that p672iks] + q672iksz ?é 1
is k = nm /(s — s1). This can be interpreted using the fact
that the difference in the phase acquired by the solutions of
Eq. (1) between two consecutive impurities will be zero or &

[
if k275 = 41, Therefore the incoming wave perceives a
periodic potential and will be a Bloch wave with an overall
phase of zero or 7.

This can also be seen if Eq. (1) is expressed in terms of the

transfer matrices
—1 v,
; )(W) 23)

lIJVL-H _ E — )LUn
v, | 1

The transfer matrix of the chain will be as

()0

If we have

—1\*
O) e (29

E _1 §2—5
<1 0) — 1, (25)

then the transfer matrix of the whole chain will be the same
as that of a periodic chain up to a sign. This means that the
corresponding state will be a Bloch wave. The solutions of
Eq. (25) are the same as we obtained above.

Similarly, for the probability distribution p(s) = pd;s, +
qés.s, + 185 5, With p + g + r = 1, the wave vectors that corre-
spond to transparent states are common multiples of 7 /(s; —
s1) and 7 /(s3 — s1), i.e., k =nw /(s —s1) =mm/(s3 — §1)
where n and m are integers.
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V. VALIDITY OF PERTURBATIVE EXPANSION
A. Band edges

As in the case of uncorrelated disorder [17] we see that if
A — %1, ie., E — %2, each term of the expansion Eq. (22)
diverges because of the factor (A — 1/A)" in the denominator.
This is due to the fact that the expansion in integer powers
of A is incorrect. It turns out that for an uncorrelated disor-
der with zero mean in the neighborhood of the band edges
Yy X 223 [17]. However, in addition to the term (A — 1 JAY!
in the denominator the factor (1 — 4,)"~!, which comes from
correlated disorder, also becomes zero in this limit. This can
change the scaling of the Lyapunov exponent with disorder
strength at the band edge. The particular potential that we
have used has a nonzero mean value, therefore the Lyapunov
exponent scales as y oc A!'/? at the band edge.

In addition to band edges, depending on the distribution
p(s), the factor (1 — A,)"~! causes other divergences which
are associated with the above-mentioned energy gaps inside
the band. Again, let us look at the binary distribution p(s) =
P8s.s, + qds5, for which Ay = pe=2kst 4 ge=2iks2 If gy, sy,
and k are such that e=21 = ¢=2i> — 1 then the expansion
will diverge at the corresponding energy. Below we will illus-
trate this in the figures.

B. Anomalous energies

The fourth-order term in the expansion has 1 — Ay in the
denominator which also makes this term diverge at certain
points. This is similar to what happens at the band center
of the uncorrelated disorder model which is known as the
Kappus-Wegner anomaly that is characterized with an en-
hancement in the localization length due to the constructive
interference of certain scattering amplitudes. In our case, there
could be multiple anomalous energies of this type at which the
fourth-order term diverges.

At the band center (k=m/2) we have A=
> p(s)e‘z”” = 1. Therefor close to the band center the
fourth-order term satisfies

(1 + A)?U*

(1 — AN(F) ~ 2001 — A2

(26)

If A, # 1, the band center anomaly exists unless A, — —1,
in which case the fourth-order term (as well as other terms)
would be zero and we will have a transparent state at £ = 0
as we mentioned earlier.

Unlike the uncorrelated disorder case, here the fourth-order
term may diverge at other energies too, because 1 — A4 may
have other roots which give rise to similar anomalies out of the
band center. For example, in the binary distribution the roots
of Ay = pe ¥ 1 ge=4k: = 1 are k = nw /25, = mm /2s,.

VI. COMPARISON WITH NUMERICAL RESULTS

In order to illustrate these predictions and validate our
analytical results, we do the numerical calculation of the
Lyapunov exponent, using the standard numerical transfer
matrix method, for several distributions of spacing between
impurities.
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FIG. 2. Localization length as a function of energy for binary
distribution with s; =2, s, =5, p=¢g=1/2, and U = 0.1. The
solid line is the result of weak disorder expansion and circles are data
obtained from numerical calculations. States with energies E = %1
[k = nm /(s, — s1) = nm /3] are fully transparent.

A. Binary distribution

As a first example, we consider the binary distribution that
was mentioned above,

p(s) - p(Ss,sl + qSS,Sz' (27)

The averages that appear in the analytical formula Eq. (22)
are given by

(s) = ps1 + gs2, (28)
Ay = pA™>1 4 gAT™, (29)
Ay = pA™ 4 gA™*, (30)

Figure 2 shows the localization length as a function of
energy for a binary distribution where the sequence length
takes two different values s; =2, s, =5 with p =g = 1/2.
The localization length diverges at E = %1 which correspond
to wave vectors k = /3 and k = 2 /3, respectively. As it
was discussed above, these are transparent states. In this case,
the anomalous energy is at the band center.

Figure 3 is a similar result for s; = 3, s, = 6. Since s, —
s; = 3, again we expect £ = £1 to be transparent states,
however, these energies coincide with energy gaps where the
weak disorder expansion fails. Therefore we see deviations
from numerical data in the neighborhood of them. In this
case, we have three anomalous energies corresponding to
k=m/6,7/3,2m/3 (see Fig. 4). The analytical result up to
second order of perturbation [9] is also included for com-
parison. As it can be seen, the second-order result has
considerable deviation from the numerical data in the vicinity
of E = +1.
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FIG. 3. Localization length as a function of energy for binary dis-
tribution with s; =3, 50 =6, p=¢ = 1/2, and U = 0.1. The solid
red line shows the analytical result up to fourth order, the dashed
green line shows the result of weak disorder expansion up to second
order, and circles are data obtained from numerical calculations.
As the numerical results indicate, states with energies £ = +£1 are
fully transparent. However, since the perturbative expansion fails
at these energies, so the solid line deviates from numerical results
in the neighborhood of £ = £1. The arrows show the position of
anomalous energies.
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FIG. 4. Here, we have plotted |A,| — 1 (red), |.A; — 1] (green),
|A4] — 1 (blue), and | A4 — 1| (black) as a function of wave vector,
for binary distribution with s; = 3 and s, = 6. The roots of | A,| — 1
and | A, — 1] correspond to transparent states and band edges, re-
spectively, and the roots of |.A4 — 1| correspond to the anomalous
energies (see Fig. 3).
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FIG. 5. Localization length as a function of energy for exponen-
tial distribution with £ = 0.5 and U = 0.2. The solid red line shows
the analytical result up to fourth order, the dashed green line shows
the result of weak disorder expansion up to second order, and circles
are data obtained from numerical calculations. The inset shows the
numerical result for localization length with © = 0.5 and U = 0.1
where the band center anomaly can be seen.

B. Exponential distribution

Now let us consider the exponential distribution

e 31
ps) = ——. (31)
where i > 0 and s > 1. The averages are given by
et

= —, 32

(5) = (32)
et —1

=—, 33

A= e 59
et —1

=— 34

A= e GY

As it can be seen from Eq. (34) and Fig. 6, in this case, there is
only one anomalous energy at the band center, where A — 1,
thus A4 — 1. This is shown in Fig. 5. At the band edges there
are similar divergencies but with different degrees because
1 — A, also vanishes.

C. Power-law distribution

A simple one-dimensional model of a Lévy glass can be
realized by using the power-law distribution for spacing be-
tween impurities [6]

g~
p(s) = ——, (35)

where @ > 0, s > 1, and ¢(z) is the Riemann zeta function.
For this case we have
¢(a)

(s) = Ata) (36)
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FIG. 6. Here, we have plotted |A;| — 1 (red), |4, — 1| (green),
|A4] — 1 (blue), and | A4 — 1| (black) as a function of wave vector,
for exponential distribution with u = 0.5. The roots of |A,| — 1
and | A, — 1] correspond to transparent states and band edges, re-
spectively, and the roots of |.A4 — 1] correspond to the anomalous
energies (see the inset of Fig. 5).

_ Lijw(A™)
2= Trw 37
Lijso(A™)
= - 7 38
A (1+a) %)

where Lig(z) = Z;’il 7*s~#. Again, an anomalous behavior
is expected at the band center because Lij (1) = (1 + @),
therefore A, = 1.

Figure 7 shows the localization length as a function of en-
ergy for the power-law distribution with « =2 and U = 0.2.
It is interesting to note that even though the mean spacing
between impurities for this power-law distribution ((s)y—> =
1.36) is smaller than the case of exponential distribution in
Fig. 5 ({s),=05 = 2.54), the localization length is larger for
the power-law distribution.

The power-law distribution with & < 1 is a peculiar case
because the average spacing between consecutive impuri-
ties, (s), diverges, which means zero density of impurities
in the thermodynamic limit. In Ref. [6] it is argued that the
Lyapunov exponent should be zero in this range of «, but the
numerical simulations of Ref. [8] show a nonzero Lyapunov
exponent. Our result shows the explicit dependence on (s) in
each term of the expansion. The Lyapunov exponent vanishes
as the density of the impurities tends to zero. We believe that
for a similar reason the Lyapunov exponent will also vanish
when o < 1. However, it should be noted that even though
the localization length diverges for this case, the transmission
coefficient might vanish in the thermodynamic limit [10,22].
Such states are called anomalously localized.
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FIG. 7. Localization length as a function of energy for power-law
distribution with « = 2 and U = 0.2. The solid red line shows the
analytical result up to fourth order, the dashed green line shows the
result of weak disorder expansion up to second order, and circles are
data obtained from numerical calculations.

VII. SUMMARY AND CONCLUSION

We have studied electron localization in a one-dimensional
lattice consisting of impurities with a given distribution of
spacing between them. The model is also applicable to the
propagation of classical waves in harmonic chains. Since the
potential is correlated, one needs to know the correlations
in order to obtain the Lyapunov exponent. We introduce a
method of obtaining the Lyapunov exponent which does not
require the explicit calculation of the correlation functions
of the disorder. Our result exhibits the dependence of the
Lyapunov exponent on the average spacing between impuri-
ties (s) explicitly, therefore it is more conclusive in the limit of
infinite average spacing compared to previous studies which
have used the power spectrum. As (s) goes to infinity (the
case o < 1 in power-law distribution) the Lyapunov exponent
vanishes. Also, our approach allows a systematic calculation
of higher orders of perturbative expansion. This allows us to
study the anomalous energies where the localization length
is enhanced in a narrow window of energy. We show that
in addition to the band center anomaly, which occurs in the
uncorrelated model, there could be other anomalous energies
depending on the distribution function of the spacing between
the impurities. We also discuss the range of validity of the
perturbation theory and transparent states that might exist in
different cases. The method that we introduced in this paper
can be applied to other potentials of this type.
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