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Competition in a system of Brownian particles: Encouraging achievers
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We introduce and analytically and numerically study a simple model of interagent competition, where
underachievement is strongly discouraged. We consider N � 1 particles performing independent Brownian
motions on the line. Two particles are selected at random and at random times, and the particle closest to the
origin is reset to it. We show that, in the limit of N → ∞, the dynamics of the coarse-grained particle density
field can be described by a nonlocal hydrodynamic theory which was encountered in a study of the spatial extent
of epidemics in a critical regime. The hydrodynamic theory predicts relaxation of the system toward a stationary
density profile of the “swarm” of particles, which exhibits a power-law decay at large distances. An interesting
feature of this relaxation is a nonstationary “halo” around the stationary solution, which continues to expand in
a self-similar manner. The expansion is ultimately arrested by finite-N effects at a distance of order

√
N from

the origin, which gives an estimate of the average radius of the swarm. The hydrodynamic theory does not
capture the behavior of the particle farthest from the origin—the current leader. We suggest a simple scenario
for typical fluctuations of the leader’s distance from the origin and show that the mean distance continues to
grow indefinitely as

√
t . Finally, we extend the inter-agent competition from n = 2 to an arbitrary number n of

competing Brownian particles (n � N). Our analytical predictions are supported by Monte Carlo simulations.
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I. INTRODUCTION

Recent years have witnessed a significant interest in
stochastic reset models. Motivated by optimization of random
search, a basic reset model was introduced in Ref. [1]: a single
Brownian particle on the line that is stochastically reset to
a specified point. In this model, a target is found in a finite
time, in contrast to Brownian motion without reset [2]. Apart
from the random search optimization, the basic reset model is
interesting because it exhibits a simple nonequilibrium steady
state (NESS) [1]: a convenient platform for probing different
aspects of statistical mechanics out of equilibrium. The reset
model [1] has been extended to many other stochastic pro-
cesses and settings, see Ref. [3] for a recent review.

When there is a population of N � 1 particles subject to
random resets, the problem acquires qualitatively new features
(“more is different”) and becomes quite rich, especially in
the presence of inter-particle interactions [4]. Furthermore, N-
particle reset models have close relatives among the family of
Brunet-Derrida N-particle models: branching Brownian mo-
tions with selection [5,6]. In these models when a branching
event occurs, the particle with the lowest fitness is eliminated.
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The Brunet-Derrida N-particle models differ by the choice of
the fitness function mimicking different circumstances of bio-
logical selection [7–17]. The “Brownian bees” model [13–17]
is especially similar to N-particle models with reset. In the
Brownian bees model, the particle farthest from the origin
[13,14,16,17] (or from the instantaneous center of mass of
the system [15]), is eliminated immediately when a branching
event occurs. The similarity becomes evident upon an obser-
vation that the Brownian bees model can be reformulated as a
reset model. Indeed, a simultaneous process of branching and
elimination of the farthest particle is equivalent to resetting the
farthest particle to the location of any of the remaining N − 1
particles.

Reset of the farthest particle encapsulates (i) global com-
petition among all the particles and (ii) discouragement of
achievers. In this paper, we modify the competition rules sig-
nificantly. First, the competition is now among two randomly
chosen particles (later on, we will extend it to an arbitrary
number n � N of particles). Second, the competition discour-
ages underachievers: it is the competitor closest to the origin
which is reset to the origin and should start from scratch.

Our motivation to study this model is partly due to the
widely known fact that wealth is not distributed equally across
society. As early as in 1897, Pareto showed that the distribu-
tion of incomes follows a power law [18], a finding that has
since been validated in many studies, see e.g., [19,20]. Our toy
model is based on the idea of nonlocal competition and reset,
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and it leads to the emergence of a broad wealth distribution.
We make no pretense of accounting for the many real factors
leading to inequality of wealth. However, as we show below,
our model does capture some prominent features of wealth
distribution in a society in the limit of many interacting agents.

We will show that, in the limit of N → ∞, the behavior
of all particles except for the current leader (see below) can
be described by a nonlocal hydrodynamic theory. This theory
can be brought to the form of a reaction-diffusion equa-
tion which was encountered previously in multiple contexts.
The hydrodynamic theory predicts how the coarse-grained
particle density field approaches a steady state which exhibits
a power-law tail at large distances. This is in contrast with the
previously studied Brownian reset models [4,13–15], where
achievement is discouraged to such an extent that the steady-
state hydrodynamic density profile has a compact support.
In addition, the relaxation of the coarse-grained density to a
steady state exhibits a nonstationary “halo” around the station-
ary solution. This halo expands in a self-similar manner until
the expansion is arrested, due to finite-N effects, at a distance
of order

√
N from the origin.

The dynamics of the leader, defined as the particle which is,
at a given time, farthest from the origin, is entirely different.
The leader (whose identity changes in time) never loses in the
competition, so it continues its Brownian explorations forever.
In particular, its average distance from the origin increases
indefinitely with time as

√
t . We suggest a simple scenario

for typical fluctuations of the leader’s position at long times.
In this scenario, (i) the leader performs Brownian motion, (ii)
the rest of the particles form the steady-state swarm, and (iii)
the average radius of the swarm serves as a reflecting wall for
the leader. We verify this and other main analytical predictions
in Monte Carlo simulations.

The remainder of the paper is organized as follows. In
Sec. II we present the hydrodynamic model for the coarse-
grained particle density and obtain the steady state density
profile. In Sec. III we study the relaxation of the density profile
toward the steady state at long times. Section IV deals with an
important finite-N effect: the arrest of the swarm’s expansion.
In Sec. V we present our simple scenario for the dynamics of
the current leader, and in Sec. VI we extend the competition
to an arbitrary number of n particles (we require n � N). We
summarize and discuss our results, in particular with respect
to the distribution of wealth and inequality, in Sec. VII.

II. HYDRODYNAMIC THEORY AND STEADY STATE

We restate the rules of our model for clarity: N Brownian
particles perform Brownian motion on the line. At a constant
reset rate, two particles are randomly chosen, and the one
closest to the origin x = 0 is reset to it. We rescale time and
distance so that the diffusion constant and the reset rate per
particle are both equal to 1.

When N � 1, the dynamics of all the particles except the
leader (the particle currently farthest from the origin) can be
described by the hydrodynamic theory which ignores fluctua-
tions. The theory has the form of a nonlocal equation in partial
derivatives for the coarse-grained particle density ρ(x, t ),
rescaled by N . In addition to the conventional diffusion term,
the governing equation accounts for the particle’s reset due to

the pairwise competition. We obtain

ρt = ρxx − 4ρ

[∫ −|x|

−∞
ρ(y, t )dy +

∫ ∞

|x|
ρ(y, t )dy

]

+ 4δ(x)
∫ ∞

−∞
dy ρ(y, t )

[ ∫ −|y|

−∞
dz ρ(z, t )

+
∫ ∞

|y|
dz ρ(z, t )

]
. (1)

The second term on the right describes the particle loss at
position x. This term represents, in the continuous limit, the
total number of pairs of particles at positions x and y such
that |y| < |x|. The factor 4 in the loss terms assures that the
total rate of particle reset, rescaled by N , is equal to the unity.
The last term on the right describes the reappearance of the
reset particles at the origin. This term is determined by the
condition that the total number of particles in the system is
conserved at all times.

Let us assume for simplicity that the initial particle den-
sity is symmetric, ρ(x, t = 0) = ρ(−x, t = 0). Then ρ(x, t )
remains symmetric throughout the evolution, and Eq. (1) can
be rewritten as

ρt = ρxx − 4ρ

∫ ∞

x
ρ(y, t )dy, x > 0. (2)

A greater simplification, however, is obtained upon transform-
ing Eq. (2) into an equation for the fraction of particles on the
(x,∞) ray,

r(x, t ) =
∫ ∞

x
dy ρ(y, t ). (3)

Indeed, plugging this definition into Eq. (2) and integrating
over x we obtain

rt = rxx − 2r2. (4)

It is evident from Eq. (3) that

r(0, t ) = 1
2 and r(∞, t ) = 0, (5)

and we can consider Eq. (4) on the x > 0 half-line with the
boundary conditions (5) and a specified initial condition for
r(x, t = 0).

Equation (4) is a reaction-diffusion equation [21,22]. If
one interprets r(x, t ) as the particle density, Eq. (4) provides
a mean-field description to aggregation and annihilation pro-
cesses with diffusing reactants [23,24]. This equation and its
stationary solution, see below, have also appeared in other
contexts, e.g., Refs. [25–27].

The steady state solution of Eq. (4) solves the equation

r′′ − 2r2 = 0, (6)

where the primes denote the x derivatives. The “energy inte-
gral” of Eq. (6) can be written as

(r′)2 − 4
3 r3 = 0, (7)

where the constant in the r.h.s. is zero by virtue of the second
boundary condition in Eq. (5). The proper solution of Eq. (7)
is

r0(x) = 1

2

(
1 + x√

6

)−2

, x > 0, (8)
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FIG. 1. The steady state density profile for pair competition with
N = 102 particles, as observed in simulations (points) and predicted
by Eq. (9) (solid line).

where we used the first boundary condition in Eq. (5). Differ-
entiating Eq. (8) with respect to x, we arrive at the steady-state
density

ρ0(x) = 1√
6

(
1 + |x|√

6

)−3

, |x| < ∞, (9)

where we have taken into account the x ↔ −x symmetry.
The main feature of the steady state (9) is the power-law
tail ∼|x|−3 at |x| � 1. This is in contrast with the previously
studied Brownian reset models [4,13–15], where achievement
is discouraged to such an extent that the steady-state hydro-
dynamic density profile has a compact support. The corner
singularity (a jump in the first derivative) at x = 0 is a direct
consequence of the presence of the delta-function source at
x = 0, see Eq. (1); it is a common feature of models where
the particles are reset to a single point. Equation (9) is in good
agreement with our Monte-Carlo simulations (see Fig. 1).

III. RELAXATION TO STEADY STATE

The relaxation of the density field ρ(x, t ) to the stationary
solution (9) is described by the time-dependent equation (4),
and it is nontrivial [26]. At long times, t � 1, the relaxation
process obeys the remarkable asymptotic scaling solution [26]

r(x, t ) = r0(x)R(ξ ), (10)

where ξ = x/
√

4t is the scaling variable. The ansatz (10)
describes the establishment of the stationary solution r0(x) in
an expanding region of space surrounded by a nonstationary
halo which is expanding in a self-similar manner.

The scaling function R(ξ ) has not been determined previ-
ously. To compute it, we insert the ansatz (10) into Eq. (4).
In the limit of t → ∞ this leads to an ordinary differential
equation

R′′(ξ ) +
(

2ξ − 4

ξ

)
R′(ξ ) + 6

ξ 2
R(1 − R) = 0. (11)

The boundary conditions [cf. Eqs. (5) and (10)] are

R(0) = 1, R(∞) = 0. (12)

The nonlinear problem (11) and (12) is parameterfree, and
we solved it numerically with a shooting method. ξ = 0 is

FIG. 2. The shape function R(ξ ), see Eq. (10), determined by
solving Eqs. (11) and (12) numerically. The dashed line shows the
small-ξ asymptotic (14).

a singular point of Eq. (11), and the existence of a regular
solution demands that the first and second derivatives of R
vanish at ξ = 0. The asymptotic of R(ξ ) at ξ → 0 can be
found perturbatively. We set R(ξ ) = 1 − u(ξ ), where ξ � 1
and u(ξ ) � 1. To leading order the equation for u(ξ ) is the
following

u′′ − 4

ξ
u′ − 6

ξ 2
u = 0. (13)

The solution is a linear combination of ξ 6 and ξ−1. The ξ−1

term must be ruled out, and we obtain

R(ξ � 1) = 1 − Aξ 6 + . . . ξ � 1, (14)

where A = O(1) is an a priori unknown constant. Interest-
ingly, not only the first and second derivatives, but also the
third, fourth, and fifth derivatives of R(ξ ) vanish at ξ = 0.

At ξ � 1 Eq. (11) simplifies to

R′′(ξ ) + 2ξR′(ξ ) = 0. (15)

The solution vanishing at infinity behaves as

R(ξ ) 
 B e−ξ 2

ξ
. (16)

A unique value of the coefficient B = O(1), for which the
asymptotic (16) matches with the “body” of R(ξ ), can only
be found numerically.

Using the small-ξ asymptotic (14), we solved the Cauchy
problem for Eq. (11) on a finite interval (ε, L), where 0 <

ε � 1. The numerical solution approaches zero at large ξ for
a single value of the constant A, and this constant was used
as the shooting parameter. Figure 2 shows the resulting shape
function R(ξ ) alongside with the asymptotic (14).

To verify the long-time solution (10), we numerically
solved the time-dependent Eq. (4) with boundary conditions
(5) and a localized initial density. Figure 3 shows how the
numerical solution relaxes to the steady state (8). Figure 4
provides a closer look at the solution at larger distances by
showing how the halo of r(x, t ) expands in time. Finally,
Fig. 5 compares, at t = 100, the ratio r(x, t )/r0(x) with the
shape function R(ξ ), found from Eq. (11), and also verifies
the dynamical scaling x ∼ √

t .
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FIG. 3. The time-dependent numerical solution for r(x, t ) ap-
proaches the steady state solution r0(x). Solid lines: r(x, t ) at times
0, 5, 200, and 400 (from left to right). The last two lines coincide
with each other and with the analytical prediction (8) for the steady
state (dashed line).

To appreciate the nontrivial character of the system’s long-
time relaxation, let us consider the density moments for
positive x:

Ma(t ) = 〈xa〉 =
∫ ∞

0
dx xaρ(x, t ), (17)

for arbitrary a � 0. For a < 2 the presence of the expanding
halo is inconsequential in the leading order. Indeed, plugging
ρ(x, t ) = r0(x) into Eq. (17), we obtain

Ma = 6a/2 πa(1 − a)

2 sin(πa)
. (18)

This expression is finite for a < 2, and it is independent of
time. As to be expected, M0 = 1/2.

For a � 2, the a-moments of ρ0(x) diverge. A finite result
for Ma(t ), increasing indefinitely with time, appears because
of the halo, which causes the integral to converge. In the
marginal case a = 2 the exact form of the shape function R(ξ )
is unimportant to logarithmic accuracy [26]. Indeed, using the

FIG. 4. The time-dependent numerical solution for r(x, t ) ex-
hibits an expanding halo as predicted by Eq. (10). Shown is the ratio
r(x, t )/r0(x) at times 50, 100, 200, and 400 (from left to right).

FIG. 5. (a) The ratio r(x, t = 100)/r0(x) (solid line) is compared
with the shape function R(ξ ) from Eq. (11), (dashed line). The
horizontal axis is rescaled to the distance x1/2(t ) where the depicted
functions are both equal to 1/2. (b) ln x1/2(t ) versus ln t at t = 50,
100, 200, and 300 (symbols). A fit (straight line) gives the dynamic
exponent 0.51 in agreement with Eq. (10).

relation ρ(x, t ) = −rx(x, t ) and (10), one obtains

M2(t ) =
∫ ∞

0
dx x2ρ(x, t ) = 2

∫ ∞

0
dx x r(x, t )

= 2
∫ ∞

0
dx x r0(x)R

(
x√
4t

)


 6
∫ √

t

1

dx

x
= 3 ln t, (19)

a logarithmic scaling with time. This result was obtained in
Ref. [26].

For a > 2, Ma grows with time as a power law, and the
numerical coefficient of the power law explicitly depends on
the scaling function R(ξ ). Overall, we obtain

Ma(t ) 

⎧⎨
⎩

6a/2 πa(1−a)
2 sin(πa) , a < 2,

3 ln t, a = 2,

ma(4t )
a
2 −1, a > 2,

(20)

where

ma = 3a
∫ ∞

0
dξ ξ a−3R(ξ ). (21)

A numerical evaluation gives m3 
 15, m4 
 18, and
m5 
 29.

Figure 6 shows simulation results for the moments Ma.
As one can see, M1 approaches the constant value, predicted
by Eq. (18). The growth of M2 with time agrees very well
with the prediction from the hydrodynamic theory, and also
agrees with the leading-order asymptotic (19) up to a constant
shift O(1) which is beyond the logarithmic accuracy of
Eq. (19). M3(t ) and M4(t ) follow the hydrodynamic theory
until t 
 500, where their growth starts to saturate because of
the finite N .

IV. FINITE-N EFFECTS

At large but finite N , two types of deviations from the
predictions of hydrodynamic theory appear. First, the hydro-
dynamic predictions break down in the region where there are
few or no particles. Second, the swarm fluctuates. The former
effect defines a finite swarm radius, �, formally defined as the
maximum distance of N − 1 particles (the leader excluded)
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FIG. 6. The density moments (17) versus time for a = 1, 2, 3,

and 4 (from bottom to top) for N = 104. Solid lines: simulations.
Dashed lines: the leading-order predictions (20). Dash-dotted lines
for a = 2, 3, and 4: more accurate predictions from Eqs. (10) and
(17) with numerically found R(ξ ).

from the origin. The average value of � can be estimated from
the simple condition

∫ ∞
�̄(t ) dx ρ(x, t ) ∼ 1/N , or equivalently

r[�̄(t ), t] ∼ 1/N. (22)

Of most interest is a late-time regime, t � 1, which includes
two different asymptotic subregimes, determined by the in-
terplay between two large parameters, t � 1 and N � 1. For
very late times (the condition will be presented shortly) the
halo no longer exists because of the particle depletion, and the
whole swarm reaches the steady state described by Eq. (9). In
this regime �̄ is already independent of time, and Eqs. (9) and
(22) yield

�̄ 
 C2

√
N, (23)

where C2 
 2.3 as we obtained in Monte-Carlo simulations.
At earlier times (but still t � 1) the halo of the swarm

is still at work. Here we can substitute Eq. (10) in Eq. (22)
and use the large-x asymptotic r0(x) ∼ x−2 of Eq. (8). If the
resulting �̄(t ) is much larger than

√
4t , we can also use the

large-ξ asymptotic (16) of R(ξ ). This calculation yields an
algebraic equation for �̄(t ),

�̄3 exp

(
�̄2

4t

)
= O(N

√
t ). (24)

Its solution can be written as

�̄(t ) 
 [6t W (C1N2/3t1/3)]1/2, (25)

where W (z) is the product log (or Lambert W ) function [28],
and C1 = O(1) is an unknown numerical factor. The leading-
order asymptotic of the Lambert function W (z) at z → ∞
is ln z, so the Lambert function describes logarithmic depen-
dence of �̄(t ) on N and determines logarithmic corrections to
the simple diffusive scaling t1/2. The large logarithmic factors
justify a posteriori our assumption that �̄/

√
4t � 1.

Equation (25) breaks down at later times, when �̄(t )
becomes comparable with the asymptotic time-independent
result (23). This happens at t ∼ N/ ln N . Altogether, our pre-
dictions for �̄(t ) are the following:

�̄(t ) 

{

Eq. (25), 1 � t � N
ln N ,

Eq. (23), t � N
ln N ,

(26)

FIG. 7. (a) The average swarm radius �̄(t ) versus time for differ-
ent N (see legend). Solid lines: simulations. Dashed lines: predictions
from numerically solving r[�̄(t ), t] = 1/N [Eq. (22)]. (b) Saturation
of the growth of �̄ with time for N = 103. Shaded areas in panels
(a) and (b) represent a 95% confidence interval around the mean.
(c) The steady-state value of �̄ versus N . Symbols: simulations.
Dashed line: Eq. (23) with C2 = 2.3. (d) The variance of the swarm
radius var� versus N in the steady state. Symbols: simulations.
Dashed line: var� = BN , where B 
 0.53.

and it is also assumed that both ln t and ln N are very large.
It is impractical, however, to meet the latter conditions in
Monte-Carlo simulations. Therefore, for moderately large t
and N , we estimated �̄(t ) using Eq. (22) with the numerically
found R(ξ ) and numerically solved the resulting algebraic
equation. The resulting �̄(t ) for different N is shown in
Fig. 7(a), and a good agreement between the theory and
simulations is observed. Figure 7(b) shows the growth of �̄

with time, followed by a saturation predicted by Eq. (23).
Figure 7(c) verifies the predicted

√
N dependence of �̄ in the

steady state, see Eq. (23).
Another important type of finite-N effects is fluctuations

around the hydrodynamic steady state, caused by the discrete-
ness of particles and by the random character of the elemental
processes of Brownian motion and competition. One interest-
ing question here concerns fluctuations of the swarm radius
�. At very long times, not only the average radius �̄, but the
whole �-distribution approaches a steady state. Our simula-
tions show [see Fig. 7(d)], that the variance var� of the swarm
radius in the ultimate steady state scales linearly with N at
large N : var� = BN , where B 
 0.53. As a result, the relative
magnitude of the fluctuations, �̄/

√
var�, is independent of N ,

so the swarm’s radius is not a self-averaging quantity.

V. DYNAMICS OF THE LEADER

By definition, a particle that is currently farthest from the
origin will always win when competing with any other par-
ticle. As a result, the dynamics of the current leader (whose
identity can change during the process) is very different from
that of the rest of the particles: the leader continues its ex-
ploration indefinitely. We argue that the distribution p(X, t ) of
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FIG. 8. (a) The average distance of the leader from the origin vs.
time. Dashed line: Eq. (29), solid line: simulations. (b) The rescaled
distribution of the distance of the leader from the origin at different
times. Dashed line: Eq. (28), solid line: simulations. In both panels
N = 102.

the typical fluctuations of the distance X of the leader from the
origin follows a simple scenario, where (i) the leader performs
a pure Brownian motion on the ray �̄(t ) < X < ∞, and (ii)
there is a reflecting wall at X = �̄(t ), where the leader can
change its identity. At very long times �̄ = O(N ) ceases to
depend on time, see Eq. (23). As a result, at these long times
p(X, t ) can be described by the long-time asymptotic solution
of the diffusion equation

pt = pXX , X > �̄, (27)

subject to the reflecting boundary condition pX (X = �̄, t ) =
0. This asymptotic is elementary:

p(X, t ) = e− (X−�̄)2

4t√
πt

, X > �̄. (28)

In particular, the average value of X grows as

X̄ (t ) 
 2
√

t√
π

+ �̄. (29)

Equation (29), at long times, is compared with simulation
results in Fig. 8(a), and a very good agreement is observed.
Figure 8(b) compares, at different times, the rescaled dis-
tribution

√
πt p(X, t ) versus (X − �̄)/

√
t , measured in the

simulations, with theoretical prediction (28). Some disagree-
ment at small distances is to be expected as we assumed that
the reflecting wall is fixed at X = �̄, whereas the actual swarm
radius exhibits relatively large fluctuations, see Sec. IV.

VI. MANY-PARTICLE COMPETITION

The inter-particle competition can be readily extended to
an arbitrary number of Brownian particles 2 � n � N . In the
generalized model, in each resetting event, n particles are
selected randomly, and the particle closest to the origin is
reset to the origin. One immediate consequence of this rule
is the presence of n − 1 leaders which never lose in the com-
petition and should therefore be described separately. We will
deal with these particles below. The rest of particles can be
described by the hydrodynamic theory which generalizes the
theory presented in Secs. II and III. In particular, Eq. (2) for
the coarse-grained particle density gives way to the following
equation:

ρt = ρxx − 2n−1nρrn−1, x > 0. (30)

FIG. 9. The steady state density profile for n = 3 and N = 102,
as obtained in Monte-Carlo simulations (points) and predicted by
Eq. (35) (dashed line).

As before, r = r(x, t ) is defined by Eq. (3), and we have
assumed a symmetric initial density profile, ρ(x, t = 0) =
ρ(−x, t = 0). Using Eq. (30), Eq. (4) is now replaced by the
equation

rt = rxx − 2n−1rn, (31)

which can be interpreted as a reaction-diffusion equation with
a loss reaction of order n. The boundary conditions (5)
continue to hold. The hydrodynamic steady state obeys the
equation

r′′ = 2n−1rn, (32)

which can be integrated once to give

r′ = −
√

2n

n + 1
r

n+1
2 , x > 0. (33)

Integrating Eq. (33) subject to r(0) = 1/2 [see Eq. (5)], we
obtain the steady-state profile of r(x):

r0(x) = 1
2 [1 + (n − 1)Cn|x|]− 2

n−1 , (34)

where Cn = [2(n + 1)]−1/2. The steady-state density,

ρ0(x) = Cn(1 + (n − 1)Cn|x|)− n+1
n−1 , (35)

agrees well with our simulations for n = 3, see Fig. 9. Notice
that as n increases, the tails of the steady-state density become
fatter and fatter. The zeroth moment of the density, M0, is
convergent for any n, but the first moment M1 diverges already
for n = 3. In general, the moment Ma of the steady-state
density profile diverges for a � 2/(n − 1).

When N is finite, the long-time behavior of the density
moments Ma for n > 2 is once more determined by the com-
petition of two large parameters: t and N . As in the case
of n = 2, for sufficiently large N there is a dynamical stage
where the scaling ansatz (10) holds, except that the stationary
factor r(x) is now given by (34). Inserting the ansatz (10)
into (31), we obtain an ordinary differential equation for the
scaling function:

R′′(ξ )+
(

2ξ− 4

(n − 1)ξ

)
R′(ξ )+ 2(n + 1)

(n − 1)2

R−Rn

ξ 2
= 0.
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A numerical solution of this equation with the boundary
conditions (12) enables one to determine, for a > 2/(n − 1),
the amplitudes of the time-dependent density moments Ma(t )
which exhibit power-law scaling with time. Notice that for
n = 3 it is the first moment M1(t ) which grows with time
logarithmically.

The ultimate steadystate at t → ∞ is still determined by
finite-N effects. In particular, using the condition r(�̄) ∼ N−1,
we obtain an estimate for the average swarm radius (the max-
imum distance from the origin of the N − n + 1 particles who
make the swarm) at t → ∞:

�̄ ∼ N
n−1

2 . (36)

For n = 3 this gives �̄ ∼ N .
Now let us focus on the n − 1 leaders who “play a different

game” by continuing their eternal Brownian exploration. As
they are independent of each other, the joint probability distri-
bution P(X1, X2, . . . Xn−1, t ) of their distances from the origin
is equal to the product of the single-particle distributions.
According to our simple scenario, at long time, each of these
single-particle distributions is described by Eq. (28). The joint
distribution is therefore

P(X1, . . . Xn−1, t ) = (πt )−
n−1

2 exp

[
−

n−1∑
i=1

(Xi − �̄)2

4t

]
.

The distribution Pn(X, t ) of the distance X from the origin of
the absolute leader can be found in a standard way, see e.g.,
Ref. [29]:

Pn(X, t ) = d

dX
[Q(X, t )]n−1, (37)

where Q(X, t ) = ∫ X
�̄

dX ′ p(X ′, t ). Using Eq. (28) and evaluat-
ing Q(X, t ), we obtain

Pn(X, t ) = n − 1√
πt

e− (X−�̄)2

4t

[
erf

(
X − �̄√

4t

)]n−2

. (38)

The average distance X̄ grows with time diffusively, namely
as X̄ (t ) = μn

√
t + �̄, where

μn = 4(n − 1)√
π

∫ ∞

0
dz z e−z2

[erf(z)]n−2. (39)

In particular, μ2 = 2/
√

π is in agreement with Eq. (29). Fur-
ther,

μ3 = 2
√

2√
π

, μ4 = 12
√

2

π3/2
arctan

1√
2
, . . . . (40)

The prediction for n = 3 is compared with simulations in
Fig. 10, and a good agreement is observed.

VII. DISCUSSION

We introduced and analytically and numerically studied
a simple N-particle model which combines Brownian mo-
tion with inter-particle competition encouraging achievers.
In the N → ∞ limit, the swarm density follows a nonlocal
hydrodynamic theory and ultimately relaxes to a stationary
density profile. This profile exhibits a power-law decay at
large distances followed by a cutoff at a (fluctuating) distance

FIG. 10. The average distance of the leader from the origin vs.
time for n = 3 and N = 102. Solid lines: simulations, dashed line:
X̄ = μ3

√
t + �̄.

O(
√

N ) for the 2-particle competition, and O(N
n−1

2 ) for the
n-particle competition. At intermediate times, the relaxation
process exhibits a a nonstationary halo in a peripheral region,
which expands in a self-similar manner.

We further showed that there are n − 1 particles (the cur-
rent leaders) which follow different dynamics: they cannot
lose in the competition and continue their Brownian explo-
ration forever. We suggested a simple scenario for typical
fluctuations of the leaders, where in particular, the location
of the leader grows diffusively with time.

Our results capture some prominent features of the distri-
bution of wealth. Among these are the power law decay of
the distribution of incomes [18], and the fact that the expo-
nent of this power law can vary depending on the number of
agents n in each inter-agent competition [30]. Another note-
worthy result is the presence of the expanding halo, indicating
inequality that increases over time [31]: while the bulk of
the distribution (most incomes) is already in a steady state,
the distribution tail (extremely large incomes) still grows for
many agents. The presence of individual leaders who “play a
different game” is also a natural consequence of encouraging
the achievers. Given these interesting features, our model does
seem to capture some basic mechanisms leading to a broad
wealth distribution.

On the physics side, future work can deal with extensions
of the model to higher dimensions. One can also try to develop
a macroscopic fluctuation formalism in the spirit of fluctuating
hydrodynamics of Landau and Lifshitz [32], as it has been
recently done for three other N-particle models with reset
[4,17]. Such a framework should be useful for studying fluctu-
ations of macroscopic quantities: for example, of the center of
mass of the swarm. An even more interesting question about
the (intrinsically large) fluctuations of the swarm’s radius (cf.
[4,17]) will most likely demand different methods.
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