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Effect of the search space dimensionality for finding close and faraway targets in random searches
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We investigate the dependence on the search space dimension of statistical properties of random searches with
Lévy α-stable and power-law distributions of step lengths. We find that the probabilities to return to the last
target found (P0) and to encounter faraway targets (PL ), as well as the associated Shannon entropy S, behave as
a function of α quite differently in one (1D) and two (2D) dimensions, a somewhat surprising result not reported
until now. While in 1D one always has P0 � PL , an interesting crossover takes place in 2D that separates the
search regimes with P0 > PL for higher α and P0 < PL for lower α, depending on the initial distance to the last
target found. We also obtain in 2D a maximum in the entropy S for α ∈ (0, 2], not observed in 1D apart from
the trivial α → 0 ballistic limit. Improving the understanding of the role of dimensionality in random searches
is relevant in diverse contexts, as in the problem of encounter rates in biology and ecology.
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I. INTRODUCTION

Random searches are important in many different contexts,
from proteins seeking DNA sites to information technology
and animal foraging, to name a few [1–6]. The wide range of
applicability of random search processes results in part from
the quite common need, even in practical everyday situations,
to look for target sites whose locations are not entirely known
to the searcher.

The statistical properties of random searches have been ex-
tensively investigated in the past decades [1–6]. By generally
regarding the searcher as a random walker or random flier
that diffuses over the search space while looking for targets, a
great variety of random search models [7–38] have benefited
from ideas and approaches from random walk theory, many of
them primarily concerned with the animal foraging problem
[1,2,39–42], in which the locations of the resource sites are
unknown and the encounter rates play a significant role. In
general, search models comprise as key elements the search
space dimensionality, targets distribution, and the searcher’s
probability density functions (PDFs) of turning angles and
step lengths.

One of the central statistical quantities in the random
search problem is the efficiency η(x0) of a random search
walk starting at a distance x0 from the last target found, de-
fined [1,2] as the number of targets located during the search
path divided by the total distance traversed. In Ref. [7] the
search efficiency η was first investigated both numerically

and analytically in a search model with power-law tailed
PDF of step lengths, p(�) ∼ 1/�α+1. This choice for p(�)
was motivated by the fact that the search dynamics is dif-
fusive (Brownian-like) for α � 2 but displays superdiffusive
(Lévy-like) properties for 0 < α < 2. Indeed, superdiffusivity
driven by Lévy statistics has shown to be key to the under-
standing of several systems, from random lasers [43–45] to
particle kinetics [4,46]. According to the generalized central
limit theorem (GCLT) [47,48], the family of Lévy α-stable
distributions with stability index α ∈ (0, 2] is the statistical
attractor of the asymptotic sum of independent and identically
distributed random variables drawn from the power-law PDF
of exponent α + 1, for 0 < α < 2, with the borderline value
α = 2 converging to the Gaussian distribution driven by the
CLT.

An early heuristic argument [1,7] suggested that the sta-
tistical behavior of the optimal efficiency η with respect to
the Lévy index α for fixed density of targets should not
depend strongly on the dimensionality of the search space.
Conceivably, if the random search model defines each step as
rectilinear irrespective of the landscape dimension, then the
two-dimensional (2D) search path can be in principle built as a
concatenation of 1D segments delimited by turning points. As
shown, e.g., in Refs. [7–12], in both 1D and 2D low-density
regimes the efficiency η as a function of α displays a max-
imum around α = 1 for searches starting quite close to the
last visited target (small x0) and in the ballistic limit α → 0
when targets are initially very distant to the searcher (large
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x0). Conversely, the dependence of η on the targets density
changes with dimension [12–14], as also does the average
number of steps between consecutive target encounters [12].

Nevertheless, apart from the search efficiency, a systematic
study addressing the dependence on the landscape dimension-
ality of other quantities relevant to random searches still lacks.
In this work, we show that the probabilities of the searcher to
return to the last target found (P0) and to encounter faraway
targets (PL ) behave quite differently in 1D and 2D, a some-
what surprising result that, to our knowledge, has not been
foreseen so far. Here we obtain that, while in 1D one always
has P0 � PL for any x0 and α, an interesting crossover takes
place in 2D that distinguishes the search regime with P0 > PL

for higher α from the one with P0 < PL for lower α, depending
on the initial distance x0 to the last target found.

To further characterize such differences, we investigate the
Shannon entropy associated with the probabilities P0(x0) and
PL(x0),

S(x0) = −P0 log2 P0 − PL log2 PL, (1)

with P0 + PL = 1 for any x0 and α. We find that this function
is maximized in a 2D landscape for x0-dependent values of α

in the interval 0 < α � 2. In contrast, no maximum S is seen
in 1D, apart from the trivial α → 0 ballistic limit.

This work is organized as follows. In Sec. II we set the
details of the random search model and present the results for
the search efficiency η, probabilities P0 and PL, and Shannon
entropy S with Lévy and power-law PDFs of step lengths in
1D and 2D search landscapes. Whenever possible, we com-
pare numerical results with exact analytical expressions, as
in the case of P0, PL, and S in 1D, with nice agreement.
The relevant effect of the dimensionality of the search space
on these quantities is discussed. Last, conclusions and final
remarks are left to Sec. III.

II. THE MODEL: RESULTS AND DISCUSSION

We begin by setting the search landscape in 1D and 2D.
Assuming that the searcher cannot jump over a target without
detection, it is sufficient to define in 1D a finite search interval
of length L, with target sites at the border positions x = 0 and
x = L, see Fig. 1(a). A relevant quantity is the initial distance
x0 to the last target found. Due to the 1D left-right symmetry,
here we choose x0 � L/2 without loss of generality. This
means that in 1D we define x0 as the distance to the closest
target (the left one at x = 0) at the search start (except in the
fully symmetric case, x0 = L/2, when both targets are initially
equidistant from the searcher).

We set d as the searcher’s detection distance, so that a
target is spotted when the searcher is at a distance d from it.
In 1D this implies a search that effectively takes place while
the searcher’s position lies in the interval d < x < L − d .
Since the searcher cannot jump over a target, it is clear that
d plays no significant role in 1D other than redefining the
search spatial range, and so here we fix d = 0 for 1D random
searches in a finite interval (in 2D, however, the searcher’s
detection distance d is in fact a key quantity, see below).

For random searches in 2D, an L × L arena is set with
periodic boundary conditions, see Fig. 1(b). In this case N

FIG. 1. Schematic random searches in 1D and 2D. (a) In 1D the
searcher starts at a distance x0 � L/2 from the closest (last visited)
target in a finite interval of length L and keeps looking for a target
with step lengths drawn from a probability distribution p(�) until
finding either boundary sites at x = 0 or x = L. (b) The searcher
sweeps a circle of radius d (detection distance) around it along
each search step in a 2D landscape of area L × L, with randomly
distributed targets and periodic boundary conditions.

target sites are randomly (uniformly) distributed in the 2D
landscape, with targets density N/L2.

As for the search dynamics, we consider both in 1D and
2D that the searcher takes steps of length � > 0 from a PDF
p(�). We analyze below results for power-law and Lévy α-
stable p(�) distributions, since these PDFs have long figured
as efficient choices for 1D and 2D random searches [1,2].
Regarding the step direction, we assume in 1D that steps to
the right and to the left are equiprobable, whereas in 2D the
step direction is drawn from a uniform angle distribution in
the range [0, 2π ).

During the search process, the searcher sweeps a distance d
around it along each step. If a target is detected, then the step is
truncated and the search resumes with the searcher restarting
at a distance x0 > d from the last visited target. Here we are
interested in the low-density regime of target sites (L � d in
1D and N/L2 � 1/d2 in 2D), in which it is likely that a step
ends up without finding a target.

We focus on the calculation of the search efficiency η,
probability P0 of re-encountering the last target found (and
its complementary probability PL = 1 − P0), and Shannon en-
tropy associated with P0 and PL, Eq. (1), as functions of α and
x0 for fixed density of targets. Most results are obtained from
Monte Carlo simulations with averages over 105 search walks
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(up to 106 in some runs). Additionally, in 1D we also provide
comparisons with results from the integral operator method
[49,50],

η−1(x0) = [(11 − L)−1〈|�|〉](x0), (2)

PL(x0) = [(11 − L)−1 pL](x0), (3)

where the integral operator L is defined as [L f (x′)](x) =∫ L
0 p(x − x′) f (x′)dx′, with the kernel given by the PDF of

step lengths p(�), 11 as the identity operator, and 〈|�|〉(x0) and
pL(x0) denoting, respectively, the mean step length to find a
target in 1D and the probability of encountering the target at
x = L in a single step starting from x = x0. For the mean step
length, we explicitly write

〈|�|〉(x0) =
∫ 0

−x0

|�|p(�)d� +
∫ L−x0

0
�p(�)

+ x0

∫ −x0

−∞
p(�)d� + (L − x0)

∫ ∞

L−x0

p(�)d�, (4)

where in the first (last) two integrals a boundary target is
not (is) found. Since for power law and Lévy p(�) the in-
verse operator (11 − L)−1 in Eqs. (2) and (3) is not known
analytically in continuous space, then we express it in matrix
form on discretization [51] of the 1D search interval through
x = j�x, with integer j and �x/L � 1 (here we set �x/L =
2 × 10−4).

In 1D our results are also compared with exact analytical
expressions for P0, PL, and S. To our knowledge, so far no
exact analytical results for such quantities are available in 2D.

A. Power-law distribution

We consider initially the power-law (Pareto) PDF of step
lengths in the form

p(�) = α�α
0

�α+1
, � � �0, (5)

and p(�) = 0 otherwise, where �0 sets the minimum step
length and the parameter α > 0 controls the tail shape and
fluctuations magnitude (α � 0 does not yield a normalizable
distribution). Indeed, for α > 2 the variance of the PDF (5) is
finite, so that the sum of a large number of independent power-
law random variables displays Gaussian statistics driven by
the CLT. Conversely, in the heavy-tailed case with 0 < α < 2
the diverging variance implies much stronger fluctuations and
Lévy statistics of the variables sum governed by the GCLT
(the borderline case α = 2 is also driven by the CLT) [47,48].
So, by varying only the single parameter α, both diffusive
Gaussian-like and superdiffusive Lévy-like search dynamics
can be accessed with the power-law PDF of step lengths. The
minimum step length �0 is in principle a free parameter to
choose. However, in the present search context a preferable
choice in numerical simulations should be �0 not larger than
the initial distance x0 to the closest target. We also remark that
Eq. (5) with a proper expression [47,48] for �0 and 0 < α < 2
represents the large-� limit of the Lévy α-stable distribution
(see next subsection).

1. Results for 1D landscape

We start with the discussion of the 1D results. Figure 2(a)
presents the search efficiency η as a function of α. A nice
agreement is noticed between the Monte Carlo (circles) and
integral operator [squares, Eq. (2)] results for L = 103 (targets
density L−1 = 10−3), �0 = 0.2, d = 0, and several values of
x0 [lines in Fig. 2(a) are a guide to the eye]. In particular, the
so-called asymmetric nondestructive and symmetric destruc-
tive regimes [1,2] correspond, respectively, to the searcher
starting very close to the last target found (x0/L � 1) and
very far from it (x0/L = 1/2). In the latter, the maximum
efficiency is achieved in the large-step ballistic limit α → 0,
which favors the encounter of faraway targets in just one
single step. Indeed, for x0/L = 1/2 we obtain the maximum
efficiency ηmax → 1/x0 = 0.002 when α → 0, in agreement
with Fig. 2(a) (black symbols).

On the other hand, in the asymmetric nondestructive
regime with x0/L � 1 a compromise balance between large
(α → 0) and small (α � 2) steps to find, respectively, far and
nearby targets leads to a maximum efficiency for α ≈ 1, as
depicted in blue symbols in Fig. 2(a) for x0 = 0.4. Figure 2(a)
also shows for intermediate x0/L that the efficiency is max-
imized at values α = ᾱ(x0) that decrease with x0 and are
restricted to the interval 0 < ᾱ(x0) � 1. These findings on the
search efficiency η have been reported in the literature [1,2].

We next turn to investigate the probability P0 of finding
the last visited target after starting at a distance x0 from it
and the complementary probability PL (in 1D PL concerns the
encounter of the target at the initial distance L − x0 from the
searcher). Figure 2(b) displays a nice agreement between the
Monte Carlo results (circles) and exact analytical expressions
[49,50] for P0 and PL (solid lines), where

PL(x0, α) = f (x0, α)
(x0

L

)α/2
, (6)

for �0 → 0, with

f (x0, α) = 2 2F1(α/2, 1 − α/2; 1 + α/2; x0/L)

αB(α/2, α/2)
, (7)

in which 2F1 and B denote, respectively, hypergeometric and
beta functions. As noticed in Fig. 2(b), these results also
compare nicely with those obtained from the integral operator
method [squares, Eq. (3)].

When the searcher starts symmetrically from the middle
of the 1D interval, x0/L = 1/2, Fig. 2(b) shows in black
symbols that the finding of any of the two boundary targets
is equiprobable, i.e., P0 = PL = 1/2 for any α, as expected.
However, as x0 decreases, that is, as the searcher begins closer
to the last visited target, P0 increases monotonically for any
given value of α. We also observe in Fig. 2(b) that P0 > PL for
all x0/L < 1/2 and α > 0. This indicates that in 1D the last
target found is always encountered with higher probability if
compared to the finding of the faraway target. As we shall
see below, this result does not hold in 2D, and an interesting
crossover regarding the probabilities P0 and PL emerges as a
function of x0 and α in 2D random searches.

The 1D results for P0 and PL in Fig. 2(b) can be also
read off from Fig. 2(c) in terms of the Shannon entropy S,
Eq. (1). A nice agreement between exact (solid lines), Monte
Carlo (circles), and integral operator method (squares) results
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FIG. 2. One-dimensional random searches. (a) Efficiency η,
(b) probabilities to find the closest (P0) and distant (PL ) targets, and
(c) associated Shannon entropy S as a function of the exponent α

of the power law p(�), Eq. (5), for L = 103, �0 = 0.2, d = 0, and
various x0 [colors in (b) and (c) are the same as in (a)]. Monte
Carlo and integral operator [Eqs. (2) and (3)] results are shown
in circles and squares, respectively. Solid lines depict exact results
[Eqs. (6) and (7)] in (b) and (c) and are a guide to the eye in (a).
P0 (PL ) in (b) corresponds to the curves above (below) the line P0 =
PL = 1/2, since P0 � PL for any x0 and α in 1D. Nice agreement is
noticed between Monte Carlo, integral operator, and exact results.

FIG. 3. Two-dimensional random searches. Efficiency η as a
function of the exponent α of the power law p(�) for 106 randomly
distributed targets, L × L = 1010, �0 = 0.1, d = 1, and various x0.
Monte Carlo results are shown in symbols and solid lines are a guide
to the eye. As in 1D searches, the maximum η is achieved for α ≈ 1
when x0 → d . Notice also the plateau in η for α � 0.5 and x0 � 5,
which is not seen in 1D searches [compare with Fig. 2(a)].

for S is seen in Fig. 2(c). The equiprobability to find either
targets when x0/L = 1/2 (fully symmetric regime) is depicted
in Fig. 2(c) by the maximum value S = 1 observed for all α

(black symbols). Also, the 1D monotonic behavior of P0 and
PL as functions of x0 and α implies that S always decreases
with α for fixed x0, and always increases with x0 for fixed α.
To understand this behavior, we first observe that the large-
step ballistic limit α → 0 makes both boundary targets to be
likely found in the very first step, irrespective of the searcher’s
starting distance x0. In this case, since steps to the right and to
the left are equiprobable in 1D, we notice that P0 = PL = 1/2,
leading to the maximum entropy value S = 1 in Fig. 2(c) for
any x0 and α → 0.

On the other hand, the maximum entropy S = 1 is not
observed in Fig. 2(c) for x0/L < 1/2 and α > 0, consistent
with the fact that, apart from the 1D fully symmetric regime,
P0 is always greater than PL. The difference between P0 and PL

becomes monotonically larger, and so S decreases monotoni-
cally, either when the searcher starts closer to the last visited
target (smaller x0) or when the probability of large steps is
lower (higher α). The absence of a maximum in S for α > 0 in
1D random searches notably contrasts with the quite distinct
S behavior in 2D searches discussed below.

2. Results for 2D landscape

We now study random searches in a 2D landscape with
power-law distribution p(�). Monte Carlo simulations were
performed with N = 106 targets, L = 105 (targets density
N/L2 = 10−4), �0 = 0.1, d = 1, and several values of x0.

We first notice in Fig. 3 that the search efficiency η in 2D
behaves as a function of α and x0 in a way similar to the
1D case [compare with Fig. 2(a)]. This includes both nonde-
structive (x0/L � 1) and destructive (x0/L ∼ 1/2) regimes,
in which the maximum efficiency for low targets density
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is achieved as in 1D for α ≈ 1 and α → 0, respectively.
Nevertheless, it is also worth noticing that a sort of plateau
establishes [9] in η for α � 0.5 and x0 � 5, indicating that,
differently from 1D searches, no significant gain in the 2D
search efficiency takes place over this range of parameters.
Moreover, as well as in 1D, we observe for intermediate
x0/L in 2D that the value α = ᾱ(x0) ∈ (0, 1] at which η is
maximum generally decreases with x0.

However, a remarkable change in the probabilities P0 and
PL and Shannon entropy S can be observed in 2D searches
in Figs. 4 and 5, respectively. For x0 � 1.01 a crossover not
reported so far takes place in P0 and PL in 2D, which is not
present in 1D [compare Figs. 2(b) and 4]. This crossover
separates the 2D search regime with P0 < PL for lower α

from the one with P0 > PL for higher α (recall that P0 � PL

for any x0 and α in 1D). For instance, we note in Fig. 4(a)
that when x0 = 1.1 (blue symbols) P0 < PL for α � 0.3. This
range widens for larger x0 values [e.g., P0 < PL for α � 1.8
when x0 = 5, brown symbols in Fig. 4(c)].

The 2D crossover in P0 and PL also manifests itself in
the Shannon entropy through the emergence of a maximum
S = 1 at values α > 0, which is not seen for non-null α in 1D
[compare Figs. 2(c) and 5]. This maximum takes place at the
α value for which P0 = PL = 1/2. Consistent with Fig. 4, the
maximum S occurs at higher α values for larger x0.

The physical origin of this crossover lies in the fact that in
2D the searcher can actually pass very close to a target (at a
distance �d) without detecting it. Take, for instance, the very
first step of a searcher starting at a small distance x0 � d from
the last visited target. If in 2D the searcher does not take the
step direction within the correct angle range, then it will miss
the detection circle of radius d around the closest target and,
in the large-� limit of small α, will be likely head to a great
distance from the starting point already in the first step. (Note
that the probability of missing the closest target in 2D tends to
one as the searcher’s detection distance d → 0; this highlights
the relevance of the parameter d in 2D, in contrast with the 1D
case.)

It is thus clear that, depending on the values of x0 and α,
the probability of finding the last visited target in a 2D search
path can be actually lower than the one of encountering any
other target, P0 < PL. A maximum S then arises in 2D when
P0 = PL for specific values of x0 and α > 0.

This reasoning clearly does not apply in 1D, since in this
case the searcher cannot miss a target by jumping over it with-
out detection. Thus, in 1D one always ends up with P0 � PL

for any x0 � L/2 and α, as discussed, with the maximum
entropy S achieved only in the ballistic limit α → 0.

B. Lévy distribution

A random variable u ∈ (−∞,∞) is distributed according
to the family of Lévy α-stable distributions if its PDF is given
by [47,48]

p(u) = 1

2π

∫ ∞

−∞
dk e−|ck|α [1−βsgn(k)�(k)]−ik(u−ν). (8)

The Lévy stability index α ∈ (0, 2] is the most important
parameter since it drives the main statistical properties of u.

FIG. 4. Two-dimensional random searches. Probabilities to find
the closest (P0) and distant (PL ) targets as a function of the exponent
α of the power law p(�). Monte Carlo results are shown in symbols
and solid lines are a guide to the eye (parameters as in Fig. 3).
P0 and PL depicted by circles and squares, respectively, display an
interesting crossover not present in 1D [compare with Fig. 2(b)].
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FIG. 5. Two-dimensional random searches. Shannon entropy S
as a function of the exponent α of the power law p(�). Monte Carlo
results are shown in symbols and solid lines are a guide to the eye
(parameters and colors as in Figs. 3 and 4). The maxima in S, not
observed in 1D apart from trivial α → 0 ballistic limit, take place at
the α value where P0 = PL = 1/2 for each x0 in Fig. 4.

Indeed, whereas the borderline value α = 2 corresponds to the
Gaussian distribution governed by the CLT, the GCLT sets the
fluctuation dynamics of the variable u when 0 < α < 2. In
addition, β ∈ [−1, 1] is the asymmetry (skewness) parame-
ter, c > 0 is a scale factor, ν is a shift (location) parameter,
sgn is the sign function, and � = tan(πα/2) if α �= 1 and
�(k) = (−2/π ) log |k| if α = 1. For nonskewed distributions
centered at u = 0, one sets β = 0 and ν = 0 in Eq. (8). In
this work, with positive-defined step lengths, we consider
Lévy PDFs p(�) = p(|u|) + p(−|u|) = 2p(|u|), in the � > 0
domain.

We remark as well that, by expanding the Lévy p(�) in
Taylor series in the large-� limit for 0 < α < 2, one obtains
[47,48] the power-law PDF (5), but with α�α

0 replaced by
2cα
(α + 1) sin(πα/2)/π .

The fact that the power-law PDF actually represents the
large-� limit of the Lévy distribution for 0 < α < 2 renders
the results of the efficiency η, probabilities P0 and PL, and
Shannon entropy S to be qualitatively similar for these dis-
tributions of step lengths. So, in order to avoid unnecessary
repetition of akin results for η, P0, PL, and S as functions of
α and x0, and to focus on previously undiscussed issues, in
Fig. 6(a) we present for several x0 the value α = α∗ at which
the Shannon entropy has the maximum S = 1 in 2D, for both
Lévy (black circles) and power-law (red squares) PDFs. In
particular, we mention that our 2D Monte Carlo results for
the Lévy p(�) were obtained using McCulloch’s algorithm for
sampling Lévy distributed random numbers [52], with N =
106, L = 105 (targets density N/L2 = 10−4), c = 1, d = 1,
and various x0.

By comparing Fig. 3 and Fig. 6(a) we notice that the values
of α that maximize the Shannon entropy S in 2D for each
x0 and fixed targets density do not coincide with those at
which the 2D search efficiency η is maximum with the same
parameters. Indeed, while we observe in Fig. 3 that the ᾱ

values of maximum η decrease for larger x0 and are restricted

FIG. 6. Two-dimensional random searches. (a) Loci of the points
of maximum in the Shannon entropy S. The maxima S take place at
the value α = α∗ where P0 = PL = 1/2 for each x0, with the other
parameters as in Figs. 3–5. Black circles and red squares depict,
respectively, results with Lévy and power-law distributions p(�) of
step lengths. Dashed lines are best fits to the logarithmic growth of
α∗ with x0, Eq. (9). (b) Ratio P0/PL in which the 2D efficiency η is
maximum for various x0. Dashed lines are a guide to the eye.

to the interval ᾱ ∈ (0, 1], a quite opposite trend is seen in
Fig. 6(a), with α∗ increasing with x0 in the broader range
α∗ ∈ (0, 2]. Since S only regards the probabilities of find-
ing targets, and does not account for the traversed distances
relevant to determine η, then it is actually conceivable that
the mentioned mechanism of compromise balance that leads
to the maximum η does not correspond to the one discussed
above for the maximization of S.

We further observe in Fig. 6(a) that the curves for the
Lévy and power-law PDFs nearly coincide for 0 < α � 1,
since this range favors larger � values corresponding to the
Taylor expansion of the Lévy distribution in power-law form.
On the other hand, in the interval 1 � α < 2 the maximum
S for a given x0 is obtained with a slightly higher α in the
power law p(�). In fact, as the borderline value α = 2 of
Gaussian-like dynamics approaches, small steps with � < �0

are forbidden in the power-law PDF, Eq. (5), but not in
the Lévy distribution. In this case, and for x0 not too small
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FIG. 7. Two-dimensional random searches. Shannon entropy S
versus probability P0 to find the last visited target with Lévy PDF
of step lengths. Each point in (a)–(e) corresponds to specific values
of x0 and α. Solid lines are a guide to the eye. The superposition of
the curves in (a)–(e) is displayed in (f), with the standard profile of
the Shannon entropy. Results of 1D random searches for any x0 are
similar to those in (a). The S behavior in (b)–(e) is not found in 1D
random searches.

[e.g., x0 ≈ 5 in Fig. 6(a)], the condition P0 = PL = 1/2 for the
maximum S = 1 is fulfilled for a little higher α in the power
law p(�).

Regarding the form of the curves in Fig. 6(a), we first
remark that P0, PL, and S should in fact be functions of the
dimensionless reduced variable x̄0 = (x0 − d )/L, with x0 − d
expressing the effective initial distance to the last visited target
in 2D. The ballistic limit α∗ → 0 in Fig. 6(a) corresponds to
x0 → d (or x̄0 → 0), indicating in this case that the findings
of the initially very close and faraway targets occur with
same probability in the 2D landscape, see also Fig. 5. In the
regime with x̄0 → 0 the motion of the random searcher near
the border of the detection circle of radius d around the closest
target is essentially one dimensional, and so one expects [12]
the 1D scaling form PL ∼ x̄α/2

0 still to hold, see Eq. (6). By
differentiating S with respect to α in the limit α → 0, we
find α∗ ∼ ln(1 + γ x̄0), with some constant γ so to concur
with the ballistic limit α∗ → 0 as x̄0 → 0 for fixed L � x0.
Actually, even for α∗ not too close to zero a nice fit to the
logarithmic growth of α∗ with x0 is observed for both PDFs in
Fig. 6,

α∗ = 1

b
ln[1 + (x0 − d )/a], (9)

with best fit values a = 0.13 and b = 1.88 for the power law
p(�) and a = 0.06 and b = 2.50 for the Lévy, consistent with
the faster increase of the latter.

A complementary view of these findings can be seen in
Fig. 6(b), with the plot of the ratio P0/PL in which the ef-
ficiency η is maximum for various x0. With both Lévy and
power-law PDFs, we notice that the values of P0/PL that
optimize η vary over a broad range and are generally different
from P0/PL = 1, the ratio at which S is maximum.

Finally, we investigate in Fig. 7 the behavior of the Shan-
non entropy S with the probability P0 for several values of
x0 in 2D Lévy searches. Each point in Figs. 7(a)–7(e) corre-
sponds to specific values of x0 and α. We start by noticing for
a quite small x0 = 1.001 in Fig. 7(a) that S is fully asymmet-
ric regarding P0 = 1/2, with the maximum S = 1 occurring
at P0 = 1/2 for α → 0 ballistic searches, as discussed. For
x0 = 1.001 and larger α the probability PL to reach faraway
targets gets lower, and so the probability P0 to re-encounter
the closest target increases, P0 > 1/2 in Fig. 7(a), causing S
to decrease. As x0 grows, the asymmetry regarding P0 = 1/2
reduces and one actually finds P0 < 1/2 (i.e., P0 < PL) for
a range of α, see Fig. 7(b) and Fig. 7(c) for x0 = 1.5 and
x0 = 2, respectively. Progressively larger x0 values invert the
trend of Fig. 7(a), yielding P0 < PL for most α, as shown in
Fig. 7(d) for x0 = 4. Last, for large-enough x0, e.g., x0 = 20
in Fig. 7(e), we obtain P0 < PL for any α ∈ (0, 2] in 2D Lévy
searches. Figure 7(f) presents the superposition of the curves
of S for the various x0, Figs. 7(a)–7(e), displaying the standard
profile of the Shannon entropy.

Regarding the comparison with 1D searches, since in this
case P0 � PL (i.e., P0 � 1/2) for any x0 and α, then S as
a function of P0 in 1D is qualitatively similar to Fig. 7(a).
Actually, the 2D results of Figs. 7(b)–7(e) do not have a
counterpart in 1D random searches.

III. CONCLUSIONS

In conclusion, in this work we have investigated the effect
of the landscape dimensionality on a number of quantities
statistically relevant to random searches. By considering Lévy
α-stable and power-law distributions of step lengths, we have
obtained that the probabilities to return to the last target found
and to encounter faraway targets, as well as the associated
Shannon entropy, are importantly affected by the search space
dimension.

The parameters space of 2D random searches in the low
targets density regime was found to be bipartite, with P0 > PL

for higher α and P0 < PL for lower α, depending on the dis-
tance x0 to the last target found. This finding contrasts with
the 1D case, in which P0 � PL for any x0 and α. Further,
for each value of x0 the associated Shannon entropy in 2D
searches presents a maximum in the range 0 < α � 2, which
does not occur in 1D landscapes. In particular, entropy is a
fundamental quantity to understand landscape ecology (see,
e.g., Ref. [53]), and here we have shown that dimensionality
is central to the entropy behavior associated with the finding of
near and faraway targets as a function of α. On the other hand,
the mechanisms of search optimization cannot be explained
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only in terms of an entropy solely relying on the encounter
probabilities P0 and PL. These results thus pose the important
question of what should be a suitable definition of entropy to
characterize random search processes.

Random searchers have many applications in several sys-
tems in which the dimensionality of the search space is
key, as in the foraging problem in biology and ecology, in
which encounter rates play a major role. Thus, addressing
the question of how statistically relevant quantities behave
with dimension can be of paramount importance. We hope our
findings can stimulate further theoretical and experimental re-
search to advance the overall understanding of random search
processes.
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