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Critical behavior of the three-dimensional random-anisotropy Heisenberg model
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We have studied the critical properties of the three-dimensional random anisotropy Heisenberg model by
means of numerical simulations using the Parallel Tempering method. We have simulated the model with
two different disorder distributions, cubic and isotropic ones, with two different anisotropy strengths for each
disorder class. For the case of the anisotropic disorder, we have found evidence of universality by finding critical
exponents and universal dimensionless ratios independent of the strength of the disorder. In the case of isotropic
disorder distribution the situation is very involved: we have found two phase transitions in the magnetization
channel which are merging for larger lattices remaining a zero magnetization low-temperature phase. Studying
this region using a spin-glass order parameter we have found evidence for a spin-glass phase transition. We have
estimated effective critical exponents for the spin-glass phase transition for the different values of the strength of
the isotropic disorder, discussing the crossover regime.
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I. INTRODUCTION

Structurally disordered systems apart from fundamental
interests are also important for modern technology. For in-
stance, recently developed rare-earth based magnetic glasses
with magnetocaloric effects were considered as good candi-
dates for magnetic refrigerants (see, e.g., [1]). These rare-earth
based systems belong to a wide class of disordered materials
[2,3] known as random-anisotropy magnets.

Magnetic properties of these systems are described by
random anisotropy model (RAM), in which each spin is sub-
jected to a local anisotropy of random orientation with the
Hamiltonian [4]:

H = −J
∑
〈r ,r ′〉

Sr · Sr ′ − D
∑
r

(x̂r · Sr )2. (1)

Here Sr is a classical m-component unit vector on the site r
of a d-dimensional (hyper)cubic lattice, D > 0 is the strength
of the anisotropy, and x̂r is a (quenched) random unit vector
pointing in the direction of the local anisotropy axis. The
interaction J > 0 is assumed to be ferromagnetic. We con-
sider the case of short-range interactions, with 〈·, ·〉 meaning
summation over pairs of nearest neighbors. The strength of
the disorder is controlled by the ratio D/J . For the ordered

crystalline material, the anisotropy has a well-defined direc-
tion along one of the coordinate axes, which in turn may
favor certain types of spin in-plane alignments. Obviously,
the random orientations are present in the model [see Eq. (1)]
only for m > 1. In the case m = 1 the random anisotropy term
becomes constant and leads only to a shift of the Ising system
free energy.

Experimental data from random anisotropy systems are
accessible from reviews; see, e.g., Refs. [5,6]. The RAM
was also an object of extensive theoretical and numerical
studies reviewed in Refs. [7,8]. Despite the efforts made
so far, the problem of the nature of a low-temperature
phase in random anisotropy magnets remains a most con-
troversial issue. In particular, the question of whether the
low-temperature phase is long-range ferromagnetically or-
dered or is it a spin glass. Local anisotropy prevents fully
ferromagnetic state, where all spins align in the same direc-
tion. Therefore the term “asperomagnetic” was proposed for
a magnetically ordered low-temperature state with nonzero
magnetization, while the term “speromagnetic” was coined
for the spin-glass-like state with zero magnetization [9].
Within phenomenological theory the last state is also called
“correlated spin glass” [10]. Another possible candidate for
the low-temperature phase in RAM is a quasi-long-range
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order (QLRO), i.e., the low-temperature ordering typical for
the Berezinskii-Kosterlitz-Thouless transition [11,12], where
the pair correlation function is characterized by a power-law
decay with distance while the magnetization is zero.

Influence of the local anisotropy axis distributions on the
critical behavior of RAM is of particular interest. The stud-
ies performed so far agree on the fact that the form of the
distribution is crucial for the critical behavior of RAM. In
the next section we will review results of previous studies.
We will concentrate mainly on the two mentioned issues:
origin of the low-temperature phase and the role of the local
anisotropy axis distribution. We will leave out of scope several
other challenging topics, such as dynamical aspects of phase
transitions in RAM [13], effects of long-range correlations of
local anisotropy axes [14], or the presence of a surface [15].

We will do this with a purpose to emphasize the main
goal of our paper: In the current situation it is of primary
importance to apply the state-of-the-art numerical techniques
to get a high accuracy quantitative description of the crit-
ical behavior of three-dimensional Heisenberg model with
moderate quenched random anisotropy in order to confront
predictions of the most recent analytic calculations based on
perturbative renormalization group (RG).

To this end, we will use the Parallel Tempering (PT)
method and carefully study low-temperature behavior of
three-dimensional RAM at m = 3 for two different local
anisotropy axis distributions, the discrete and the continuous
one, taking different values of the anisotropy strength for each
distribution.

The outline of the rest of the paper is as follows. We review
theoretical and numerical studies of RAM focusing mainly on
results for the three-dimensional case in Sec. II. Next, we will
describe our numerical simulations (simulating two different
distributions of anisotropy axis) in Sec. III. Our results are
displayed in Sec. IV, and finally we will discuss them and
state the conclusions in Sec. V. Technical details of numerical
simulations and a description of the analysis methods and
the numerical study of the three-dimensional O(3) model, the
two-dimensional O(2) model (as a proxy of a model with
QLRO), and the three-dimensional Edwards-Anderson model
(a classic spin glass) are given in seven Appendixes.

II. REVIEW

A. Theoretical results

First, we will describe the theoretical results regarding the
isotropic disorder distribution.

The earliest theoretical investigations of the RAM were
performed within the mean-field framework. Ferromagnetism
was predicted [4,16], but the possibility of a spin-glass
(SG) phase [17] was not excluded. An exact solution of
the infinite-range interaction limit of the RAM within the
mean-field approach indicates a second-order phase transi-
tion to ferromagnetic (FM) phase [18]. Such a transition was
also corroborated by 1/d expansions [19], as well as within
mean field and RG for the m = 2 case [20]. However, local
mean-field theory [21] predicts the breakdown of long-range
FM order.

Following the arguments of Imry and Ma [22] formulated
for the random-field model it was shown that the d = 3 ran-

dom anisotropy magnet should break into magnetic domains
of size L ∼ (J/D)2 [23] for weak anisotropy, and thus no
ferromagnetism was expected. We will discuss this point in
more detail in Sec. II C.

An account of fluctuations within the field theoretical RG
approach [24] leads to an absence of phase transition. In the
pioneer RG calculations performed for RAM with isotropic
distribution of x̂r [25] no stable accessible fixed point of
the RG transformation was found in the first order of the
ε = 4 − d expansion. Moreover, the effective Hamiltonian for
such a distribution at large D was shown to reduce to one that
is similar to the effective Hamiltonian of the random-bond
Ising spin glass [26], demonstrating a possibility of a SG
phase in this case.

Several arguments were used in order to demonstrate an
absence of the FM order for space dimensions d < 4 in RAM
[27]. Although among these arguments the one for the limit
m → ∞ [27] appeared to be erroneous [28], the lack of
ferromagnetism for the RAM with isotropic distribution of
anisotropy axes for d < 4 was further supported by a Mermin-
Wagner-type proof [29] using the replica trick [30] for the
m = 2 case. The perturbative Migdal-Kadanoff RG studies
[27,28] also suggested dimensional reduction for RAM: criti-
cal behavior of this random system at d > 4 is the same as for
the corresponding pure system with dimension d − 2.

The one-loop result [25] for the absence of the second-
order phase transition into a ferromagnetic state was cor-
roborated by two- [3,8,31,32] and five-loop [33] calculations
within the field-theoretical RG refined by resummation
techniques.

The infinitely strong anisotropy limit of the RAM (which
makes spins to be frozen in directions of local anisotropy
axes and the Hamiltonian to be similar to that of the Ising
random-bond spin-glass model) was investigated with the help
of high-temperature expansions. Results of a Padé analysis
[34] indicated typical spin-glass behavior for space dimension
d = 3, while in Ref. [35] after obtaining non-power-law di-
vergence of the susceptibility of three-dimensional RAM for
m = 2 and no divergence in the case m = 3, it was concluded
that the lower critical dimension for the RAM with m = 2 is
dL = 3.

The series analysis of Ref. [36] of the RAM in the infinitely
strong anisotropy limit on Cayley trees predicted FM order,
occurring for the number of nearest neighbors z̃ > m and
a SG order for z̃ < m. Results obtained in the same study
[36] by Migdal-Kadanoff position space RG corroborate this
outcome: d = 3 FM order for small m, while for large m the
SG phase is obtained in the same universality class as that of
the Ising spin glass with randomly distributed couplings.

Investigations of the RAM in the spherical model limit
m → ∞ were concentrated on the question about the pos-
sibility of a SG phase. This limit was studied by 1/m
expansions [37–40] first. Within the replica method, a SG
phase was found below d = 4 for arbitrary D [37,41]. Later
the spin-glass solution was shown to be unstable [38]. A
stable non-replica-symmetric solution was obtained for SG
phase for d < 4 [39]. However, the study of dynamics of
a SG order parameter avoiding the replica method for the
RAM shows an instability of the SG phase [40]. These results
found their confirmation in the mean-field treatment of the
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m → ∞ limit [42], where the SG phase appeared only as
a feature of this limit and no SG phase was obtained for
finite m. In the spherical limit a FM order was obtained for
d > 2 and for D less than some critical value Dc, while for D
larger than Dc a SG phase was obtained for arbitrary d (Dc =
0 for d � 2) [43].

An equation of state of the RAM showing a zero mag-
netization and an infinite magnetic susceptibility in the
low-temperature phase for any m was obtained perturbatively
[44]. Two-spin correlations in this phase possess a power-
law decay. As mentioned above, such a phase appears to
be QLRO. The estimate of the susceptibility of the low-
temperature phase was corrected using scaling arguments
[45], and it was found to be χ ∼ (D/J )−4 at d = 3. A sim-
ilar dependence of the susceptibility was obtained by other
approaches [10,37]. The power law decay of spin correlations
in the low-temperature phase was obtained in particular for
a harmonic system with random fields [46], which is an ap-
proximation of a model with m = 2 if vortices are neglected.
But the last result is in disagreement with calculations [47] for
a model with random p-fold fields (for two-component fields
and p = 2 it corresponds to the RAM with the two-component
order parameter) where the SG phase was obtained.

The QLRO [48] was found for the RAM with m = 3 by
the functional RG approach in the first order of ε = 4 − d ex-
pansion. The functional RG study of higher rank anisotropies
argued that dimensional reduction breaks down [49]. It was
corroborated within two-loop functional RG [50,51]. These
studies also showed that QLRO exists for RAM at d∗

LC < d <

4 and m < 9, 4412. Estimates based on expansions in ε and
m − m∗ predict d∗

LC > 3; however, results obtained for small
ε and m − m∗ should be extrapolated for large deviations with
caution, as pointed out in Ref. [51]. Conditions for holding
dimensional reduction were studied by 1/m expansions within
the functional RG [52]. In Ref. [53] it was stated that all
previous studies using 1/m expansions are not completely
correct, since they do not take the large m limit of the easy
axes into account. However, only the case of D < 0 was of
main interest in that study. Recent research of the large-m limit
reported a glassy character of the zero-temperature state [54].

The phenomenological theory [10] based on the
continuous-field version of the Hamiltonian [Eq. (1)] and
assuming correlations between randomly oriented anisotropy
axes turned out to be a more appropriate approach for the
interpretation of the field dependence of the experimentally
observed magnetization in the ordered phase. In this approach
the spin correlation function in different regimes of applied
fields was analyzed [10]. In particular, the correlation
length for small and zero fields was found to have the form
ξ ∼ Ra( J

RaD )2, where Ra is the correlation range for random
axes. Such a phase was called a correlated SG phase.

Once we have discussed the isotropic disorder distribution,
we will discuss the anisotropic case.

It was first investigated in a RG study [25] with a distri-
bution of anisotropic axes, restricting directions of the axes
along the hypercube edges (cubic distribution). No accessi-
ble stable fixed point corresponding to a second-order phase
transition point was found. Despite this, the possibility of a
second-order phase transition into a FM phase with critical
exponents of the diluted quenched Ising model for the RAM

with a cubic distribution was pointed out in Ref. [55], where
a more general case was considered. Such peculiarities were
observed for a more general model [56] including the RAM
with cubic distribution of random axes as a particular case.
Subsequently, this result was corroborated within a two-loop
RG calculations with resummation [3,8,32,57] done directly
for the RAM with cubic distribution showing that the critical
behavior belongs to the universality class of the site-diluted
Ising model. This result was further confirmed on the basis
of a five-loop massive RG calculations [33]. While study of
RAM with generic distribution [55,56], including isotropic
and cubic distributions as particular cases, within the RG
approach followed by resummation has predicted continuous
phase transition of a new universality class [58], later it was
demonstrated that this conclusion was based on erroneous
calculations [59].

The RAM in the infinite anisotropy limit with mixed
isotropic and cubic distributions was also investigated by
mean-field theories [60–62]. It was found that the presence
of a random cubic anisotropy stabilizes the FM phase [60].
Study in the limit m → ∞ with finite α ≡ m/N , where N is
number of spins (so called α limit) [62], gives phase diagrams
with FM and SG phases as well as with mixed phase where
both FM and SG order parameters are nonzero.

Summing up, from the analysis of theoretical results one
may conclude that while for an isotropic distribution the ab-
sence of FM ordering is expected, such ordering is possible
for anisotropic distribution of the local anisotropy axis.

B. Numerical results

Most of the performed numerical simulations of the d = 3
RAM study the cases D/J > 1 or more often the infinitely
strong anisotropy (D/J → ∞) limit.

The earliest investigations report inconclusive results: both
stability [63,64] as well as instability [65,66] of the FM
order with respect to the SG phase have been reported. How-
ever, data of later investigations indicated the absence of
ferromagnetism.

The restriction to the infinitely strong anisotropy limit led
to a lack of long-range order in the ground state for m =
3 [67]. In this case, the critical exponents at the transition
to a low-temperature phase were reported to be similar to
those of the three-dimensional short-range Ising spin glass
[68]. Results of Monte Carlo simulations [69] confirmed
an absence of long-range order. Finally the most recent
study of the infinitely strong anisotropy limit of RAM with
m = 3 convincingly shows that the model in this case be-
longs to the class of short-range Ising spin glass with bond
disorder [70,71].

On the other hand, results of a Monte Carlo study of
the infinitely strong anisotropy limit of RAM with m = 2
show a low-temperature phase with extremely large suscep-
tibility, power-law decay of the correlations, and vanishing
magnetization [69], which is consistent with the theoretically
predicted QLRO for arbitrary m and weak anisotropy [44].
That is confirmed by the result of Ref. [72], where a sharp
phase transition into a low-temperature phase with power-law
decay of the correlation function and no true magnetiza-
tion were found. This case was also studied in the infinite
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anisotropy limit [73] of a model with random twofold fields,
where weak FM order was found with power-law correlations.

Numerical simulations of RAM with finite ratio of D/J
reported the phase transition into the SG phase for the model
with random twofold fields at J = D [74]. Another Monte
Carlo study of the RAM (1) with m = 2 and J = D resulted in
critical exponents with values similar to the XY-ferromagnetic
transition, except that the heat capacity critical exponent was
found to be positive [75].

Performing Monte Carlo calculations for the RAM
Hamiltonian (1) with m = 3 and several values of D/J as well
as at D/J → ∞ the phase diagram in the plane (D/J, T/J )
was found [76]. There the regions of existence of magnetic
and SG order were indicated, with the general conclusion that
a random anisotropy Heisenberg model for small D/J has a
QLRO low-temperature phase characterized by frozen power
law spin correlations.

Results of a study of the model with random twofold fields
at several values of D/J suggest that the system is ferromag-
netic in a low-temperature phase at finite values of D/J [77].

Results reviewed above concern cases of continuous sym-
metry of the order parameter. Below we consider cases where
orientations of spins as well as of the local anisotropy axes
are limited only to several directions in m-dimensional space.
In particular, studying RAM with m = 2, where the spins
and anisotropic axes are oriented along the edges of a cube,
the conventional XY second-order phase transition to the FM
phase was found for weak random anisotropy [78], whereas
a first-order transition to a domain-type FM phase was found
for strong random anisotropy. For m = 3 both transitions were
found to be of the first order [78].

The possibility of the existence of a QLRO phase was
also obtained for m = 3 in the case of weak anisotropy but
assuming D/J = ∞ for a part q of sites and D/J = 0 for the
rest of 1 − q sites [79]. There the spins and anisotropic axes
were chosen from the 12 directions. Results indicate that in
addition to paramagnetic (PM) and the FM ordering a QLRO
phase appears as an intermediate phase for some values of q.

The RAM with two-component spins is adopted to de-
scribe six-state clock model, where the direction of spins
belongs to the Z6 group, while the local anisotropy orientation
is taken from the Z3 group. The obtained low-temperature
phase in this model has two-spin correlations decaying
according to a power law, but no long-range magnetic
order [80].

To summarize, the reviewed numerical studies agree, in
general, with the theoretical predictions about the absence of
long-range order for the d = 3 RAM with isotropic random
axis distribution. However, they show the possibility of a FM
order for the cases where orientations of local anisotropy axes
are limited only to several directions.

An exception is given by the study of RAM with
Heisenberg spins (m = 3) [81]. Studying the case D/J=4 for
isotropic distribution and cubic distributions, surprisingly a
second-order phase transition to a ferromagnetically ordered
state (mistakenly identified as QLRO) was found with the
same correlation length critical exponent. To check this out-
come we performed similar computations for larger lattices
and for two values of D/J . But before describing our model
let us go back to the cornerstone of the argumentation of an

absence of long-range order for d = 3 RAM, the Imry-Ma
arguments.

C. Imry-Ma arguments

Imry and Ma introduced domain arguments in order to un-
derstand the low-temperature phase of random field magnets
[22]. Later, similar arguments were directly applied to the
random anisotropy case [6,23,48].

The existence of random directions in the RAM system
can lead to its splitting into domains inside which spins are
directed almost along one direction. If the typical size of
the domains is L, than energy gain for system is ∼DLd/2,
whereas the loss of the surface energy per domain for the
continuous symmetry order parameter can be estimated as
∼JLd−2. Minimizing total energy from these two contribu-
tions with respect to L one gets L ∼ (J/D)2/4−d . That means
that even for very small anisotropy strength RAM always
should split into domain for d < 4. An earlier similar result
was obtained by Larkin [82] in the context of a vortex lattice
in a superconductor. Therefore one can find different names
of the typical size of domains: Larkin length, Imry-Ma length,
or Imry-Ma-Larkin length.

The validity of these arguments was questioned. Berzin,
Morosov, and Sigov [83] pointed out that random-field ar-
guments cannot be directly applied to the random-anisotropy
case since the orientations of x̂r in some direction of the order
parameter space and opposite to it are equivalent in RAM.
Moreover considering a continuous field variant of the RAM
they have shown that the long-range order is possible when
the distribution of x̂r deviates from the isotropic one as well
as the local anisotropy axis is present only on part of the
sites [84].

Fisch [77] pointed out that with the presence of random
vectors x̂r the random anisotropy system is no longer trans-
lationally invariant. Therefore the consideration that the twist
energy at the boundary scales in the same way as in nonran-
dom magnets, i.e., ∼Ld−2, is not correct.

Nevertheless, as can be seen below our results are in agree-
ment with Imry-Ma arguments about the existence of the
Larkin-Imry-Ma length and the absence of ferromagnetism
for RAM with isotropic distribution.

III. THE MODEL AND SIMULATIONS

We have studied the Hamiltonian given by Eq. (1) with
m = 3 on a three-dimensional lattice of linear size L and
volume V = L3 with periodic boundary conditions.

A. Random axis distributions

Two kinds of disorder have been simulated. In the first case,
called hereafter “isotropic disorder,” the random anisotropy
vectors x̂r have an uniform probability distribution on the
sphere of unit radius

p(x̂ ) = 1

4π
. (2)

The results obtained for such disorder will be called in the
figures and tables IRAM.
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In the second case, called cubic or “anisotropic disorder”
and called hereafter ARAM, the vectors x̂r point along the six
semiaxes of the cubic lattice with the same probability 1/6:

p(x̂ ) = 1

6

3∑
i=1

(δ(x̂ , k̂i ) + δ(x̂ ,−k̂i )), (3)

where k̂i (i = 1, 2, 3) are the three unit vectors pointing to the
three principal directions of a cubic lattice and δ(x̂ , k̂i ) are
Kronecker deltas. In our numerical calculations we fix J =
1; therefore anisotropy strength determines the ratio D/J . We
measure temperature T in units of Boltzmann constant kB and
work mainly with the inverse temperature β = 1/T .

We have run Monte Carlo numerical simulations using the
Metropolis (with 10 hits) and parallel tempering algorithms;
see Refs. [85,86]. See Appendix A for more details on the
parameters used in our runs and on the thermalization tests.
In addition to generate the isotropic distribution we have used
the standard rejection method [87].

B. Observables

In this section we will describe the observables we have
simulated. The magnetization is computed as

M = 〈
√
M2〉, (4)

with

M = 1

V

∑
r

Sr , (5)

where, as usual, 〈(· · ·)〉 is the thermal average and (· · ·) de-
notes the average over the disorder.

Calculating powers of M we can get the associated sus-
ceptibility

χ = V 〈M2〉 (6)

and the Binder cumulant

U4 = 1 − 1

3

〈(M2)2〉
〈M2〉2 . (7)

With this definition the Binder cumulant will be asymptot-
ically zero in a paramagnetic phase (Gaussian probability
distribution of the magnetization with zero mean) and equal
to 2/3 in a ferromagnetic phase.

A definition of the correlation length on a finite lattice is
[24,88]

ξ =
(

χ/F − 1

4 sin2(π/L)

) 1
2

, (8)

where F is defined as the Fourier transform of the magnetiza-
tion via

F (k ) = 1

V

∑
r

eik ·rSr (9)

with

F = V

3
〈|F (2π/L, 0, 0)|2 + two permutations〉. (10)

The interpretation of ξ as defined in Eq. (8) is the fol-
lowing (see for more details Sec. 2.3.1 of Ref. [24]): (1) in
the paramagnetic region ξ → ξ∞

2 for large L, where ξ∞
2 is

the second-moment correlation length computed in an infinite
volume which is proportional to the exponential correlation
length, (2) in the critical region ξ ∝ L, and (3) in the ferro-
magnetic phase ξ ∼ Ld/2 since F = O(1) and χ ∼ O(Ld ).

Therefore ξ will converge to the true correlation length
only for T � Tc. In the low-temperature phase it will diverge,
and it is no longer the correlation length of the ferromagnetic
phase. However, this fact is used in numerical studies to char-
acterize the phase transition [24]. The cumulant Rξ = ξ/L
will tend to zero (decreasing with L) in the paramagnetic
region and will diverge (growing with L) in the ferromagnetic
region. Thus, the curves of Rξ for different lattice sizes will
cross near the critical point.

For a finite system of size L, the Binder cumulant obeys

U4(β, L) = f ((β − βc)L1/ν ) + O(L−ω ), (11)

where ν is the correlation length critical exponent, ω is the
leading correction to scaling, and f (·) is a scaling function.
Neglecting scaling corrections, the curves of the Binder cu-
mulant as a function of the temperature for two different
lattice sizes intersect in one point, indicating the approximate
location of critical temperature βc. The same behavior is ex-
pected for the dimensionless cumulant defined as a ratio of the
correlation length to system size, Rξ = ξ/L.

We have also computed the derivatives of the Binder cu-
mulant (∂βU4) and the correlation length (∂βξ ) by computing
connected average values of different moments of the magne-
tization (and F in the case of ξ ). The derivative for quantity
O is calculated with the help of the total energy E defined
by Eq. (1):

∂β〈O〉 = ∂β〈O〉 = 〈OE − 〈O〉〈E〉〉. (12)

We have also corrected the bias of having a relatively small
number of measures per sample: to do that we have applied a
third-order extrapolation as described in Ref. [89].

To measure the lack of self-averaging we have computed
the g2 cumulant, defined as

g2 = 〈M2〉2 − 〈M2〉2

〈M2〉2 . (13)

If g2 goes to zero when system size L increases then suscepti-
bility is a self-averaging quantity. Otherwise the susceptibility
does not self-average (for details, see, e.g., Ref. [90]).

To analyze the spin-glass behavior in the isotropic disorder
we have computed the overlap (see, e.g., Ref. [91])

qαβ
r = S(1),α

r S(2),β
r , (14)

where S(1),α
r and S(2),β

r (α, β = 1, 2, 3) are the components of
two spin replicas S(1)

r and S(2)
r which evolve with the same

disorder.1

1We have checked that the overlap computed as the scalar product
of the spins belonging to different replicas shows the same properties
as the one defined in the text.
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TABLE I. Quotient method results for D = 3 and D = 4 and anisotropic disorder distribution (ARAM) from the crossing points of Rξ for
lattice sizes L1 and L2.

D L1/L2 βcross Rξ νξ νU4 η QU4 Qg2

3 6/12 0.6992(2) 0.5485(6) 0.756(1) 0.747(2) 0.019(3) 0 9975(2) 1.31(4)
3 8/16 0.6993(2) 0.5486(9) 0.757(5) 0.77(1) 0.026(5) 0.9978(3) 1.44(5)
3 12/24 0.69940(8) 0.550(1) 0.740(4) 0.762(7) 0.031(5) 0.9975(3) 1.30(5)
3 16/32 0.69941(7) 0.549(1) 0.726(6) 0.75(1) 0.030(6) 0.9980(4) 1.00(5)
3 24/48 0.69932(7) 0.548(2) 0.737(8) 0.76(2) 0.03(1) 0.9983(6) 1.12(6)
4 6/12 0.7073(2) 0.5383(7) 0.740(2) 0.749(4) 0.027(4) 0.9954(2) 1.17(3)
4 8/16 0.7079(2) 0.540(1) 0.751(7) 0.78(1) 0.035(6) 0.9952(4) 1.38(5)
4 12/24 0.7083(1) 0.545(1) 0.734(5) 0.76(1) 0.033(7) 0.9962(5) 1.17(5)
4 16/32 0.7082(1) 0.542(2) 0.710(8) 0.71(2) 0.036(9) 0.9943(7) 1.20(6)
4 24/48 0.70830(7) 0.545(2) 0.733(9) 0.76(2) 0.04(1) 0.9947(9) 1.26(7)

The Fourier transform of the tensor overlap reads

Fαβ
q (k ) = 1

V

∑
r

eik ·rqαβ
r . (15)

In turn, the spin-glass susceptibility is

χq = V
∑
αβ

〈|Fα,β
q (0)|2〉, (16)

and the correlation length in the spin-glass channel is

ξq =
(

χq/Fq − 1

4 sin2(π/L)

) 1
2

, (17)

where

Fq = V

3

∑
α,β

〈|Fαβ
q (2π/L, 0, 0)|2 + two permutations

〉
. (18)

As for the magnetization, we can define the following dimen-
sionless observable in the spin-glass channel: Rξq = ξq/L.

The behavior of Rξq is analogous to that of Rξ (see above
in the text): it will go to zero in the paramagnetic phase, and it
will diverge in the spin-glass one as L increases. The crossing
of the different lattice size curves will mark the critical point.

FIG. 1. Rξ cumulant vs inverse temperature, β, for the cubic
disorder for several lattice sizes.

IV. RESULTS AND ANALYSIS

We have computed the crossing points of the
Rξ (β, L) or Binder curves of L and 2L lat-
tices: Rξ (βcross(L, 2L), L) = Rξ (βcross(L, 2L), 2L) or
U4(βcross(L, 2L), L) = U4(βcross(L, 2L), 2L). We have used a
fifth-order polynomial-based analysis to compute the crossing
temperatures.

Once we have found the phase transitions in the four
models, we have analyzed quantitatively the behavior of the
different observables using the quotient and the fixed coupling
methods (see Appendix B for a description of these methods).

Furthermore, we have computed the value of Rξ (or Rξq

in the case of a spin-glass phase transition) at βcross and the
value of νξ from the behavior of ∂βξ (the behavior of ∂βU4

will provide an additional estimate of the ν exponent denoted
as νU4 ). Finally, we have also computed η from the behavior
of the susceptibility (χ ) and the ratios QU4 and Qg2 .

In the next two subsections we will discuss in detail our
findings for the two disorder distributions.

A. Analysis of the cubic disorder

In Fig. 1 we show the behavior of Rξ as a function of the
inverse temperature β for the anisotropic disorder and D =
3 and 4. We also show the behavior of the Binder cumulant
in Fig. 2: the signature of a phase transition is really strong
for both observables, Binder cumulant and correlation length.
This is manifested by the crossing of the curves for different
lattice sizes near the critical point.

In addition, we have also plotted in Fig. 3 the g2 cumu-
lant. This cumulant shows clear crossing points (but much
noisier than Rξ and U4), which do not extrapolate to zero (see
below). This is a strong signature that the model with cubic
disorder does not belong to the same universality class as a
pure (nondisordered) model (g2 = 0).

We start describing our findings obtained using the quotient
method.

The Binder cumulant analysis presents strong scaling cor-
rections; therefore, we will present the results of the critical
parameters obtained with the analysis of the crossing temper-
atures of Rξ .

The data presented in Table I show almost negligible (in
our numerical precision) corrections to scaling. Hence, we
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FIG. 2. Binder cumulant vs inverse temperature for the cubic
disorder for several lattice sizes.

take the results for the largest pair (24 and 48) as our final
estimate using the quotient method. We present the critical
temperature, Rξ cumulant at the critical point, and correlation
length and pair correlation function critical exponents, ν and
η, for D = 3 and D = 4 in Table II. The nonmonotonic behav-
ior of the cumulants Qg2 and QU4 (see Table I), for both values
of D, precludes us from computing the ω exponent.

We have also analyzed our numerical data using the fixed
coupling method. We present our estimates in Table III. In this
analysis we have used only the leading term: as in the quotient
method we have been unable to characterize corrections to
scaling (see Appendix B). We would like to stress that the
quotient and fixed coupling extrapolations are fully statistical
compatible for each value of D. In addition, as a check of
universality, it is important to state the statistical compatibil-
ity of all the four sets of extrapolated values (two different
methods and two different values of D). The behavior of Qg2

as a function of the lattice size (see Table I) is a strong hint for
an asymptotic nonzero value of g2 at the critical point, hence,
ruling out that the ARAM belongs to the (pure) Heisenberg
universality class for D = 3 and 4.

FIG. 3. g2 cumulant as a function of the inverse temperature for
the cubic disorder for several lattice sizes.

TABLE II. Inverse critical temperature, exponents, and Rξ for the
cubic disorder (ARAM), D = 3 and 4, obtained with the quotient
method analysis of the Rξ channel. As explained in the text, the
Hamiltonian for D = 3 and 4 shows small corrections to scaling,
and we have quoted the results obtained from the biggest lattices
(24 and 48).

D βc Rξ νξ νU4 η

3 0.69932(7) 0.548(2) 0.737(7) 0.76(2) 0.03(1)
4 0.70830(7) 0.545(2) 0.733(9) 0.76(2) 0.04(1)

Finally we have explored the behavior of the system at very
low temperatures in order to check that the system remains
in the FM phase; see Fig. 4. Notice that in the FM phase Rξ

diverges with the lattice size, as is the case. Moreover, the
magnetization is asymptotic (clearly nonzero), even for small
lattice sizes, in the low-temperature region.

B. Analysis of the isotropic disorder

1. Magnetization channel

Let us start the study of the isotropic disorder simulating
in the region, β ∼ 0.7, where a phase transition was found for
this disorder in the magnetic channel, for D = 4, in Ref. [81].

The results are shown in Fig. 5. As one can see from this
figure, coming from the PM region (from higher to lower
temperatures), all the Rξ cumulant curves cross in the neigh-
borhood of β1

c ∼ 0.7 for all the simulated lattice sizes. This is
evidence of a PM-FM continuous phase transition. A similar
behavior for the Binder cumulant was also found in Ref. [81].

The crossing points of the Rξ curves are very stable as
the lattice size is growing; see Table IV. This fact allows
us to determine the crossing temperatures, further denoted
as β1

c (L, 2L), and to proceed to calculate the critical expo-
nents using different observables. The results are described in
Appendix C. However, these exponents are to be considered
as “effective” ones for reasons we will explain below.

We have extended the numerical simulations, from the
region β ∼ 0.7 to the very low-temperature one, and, surpris-
ingly, we have detected a clear signature of a second phase
transition (marked again by the crossing points of the Rξ

curves; see Fig. 5) between a FM phase and one that we
will denote as the zero magnetization phase (ZM); see below
for the justification of this name. Furthermore, we denote the
crossing points of this phase transition by β2

c (L, 2L), and we
have computed them in Table IV.

A remarkable feature of the curves in Fig. 5 is that whereas
the crossing points β1

c (L, 2L) of the first phase transition
are stable with respect to changes in L, the crossing points

TABLE III. Fixed coupling method results (as described in
Appendix B) for the cubic disorder (ARAM) and D = 3 and 4. We
have used Rξ = 0.544 for both values of D.

D Rξ βc νξ νU4 η

3 0.544 0.69941(5) 0.733(3) 0.76(5) 0.028(1)
4 0.544 0.70827(5) 0.736(3) 0.72(1) 0.035(3)
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FIG. 4. Rξ cumulant (top) and M (bottom) for D = 4 and cubic
disorder vs the inverse temperature for the smallest simulated lat-
tices covering a wide range of temperatures. There are no additional
phase transitions in this wide range of temperatures in the magnetic
channel. The magnetization M is already asymptotic for lower tem-
peratures and small lattice sizes and is clearly nonzero.

FIG. 5. Rξ cumulant as a function of the inverse temperature for
the isotropic disorder for several lattice sizes at D = 3 (top) and D =
4 (bottom).

TABLE IV. Quotient method results for D = 3 and D = 4 and
isotropic disorder distribution (IRAM) from the two crossing points
of Rξ for lattice sizes L1 and L2.

D L1/L2 β1
c β2

c β2
c − β1

c

3 6/12 0.6975(2) 1.188(1) 0.491(1)
3 8/16 0.6977(2) 1.034(2) 0.336(2)
3 12/24 0.6978(2) 0.860(3) 0.162(3)
3 16/32 0.6980(2) 0.805(5) 0.107(5)
4 6/12 0.7060(3) 1.073(1) 0.367(1)
4 8/16 0.7065(3) 0.928(2) 0.222(2)
4 12/24 0.7055(2) 0.831(2) 0.125(2)
4 16/32 0.7052(2) 0.786(4) 0.081(4)

FIG. 6. Difference of the crossing points of the first (PM-FM),
β1

c (L, 2L), and the second (FM-ZM), β2
c (L, 2L), transition as a func-

tion of L for D = 3 (top) and D = 4 (bottom). The continuous lines
are the fits to a pure power law, β2

c − β1
c ∝ L−a.

corresponding to the second phase transition, β2
c (L, 2L), show

a huge drift towards the high-temperature region (i.e., towards
the first phase transition). Moreover, β2

c (L, 2L) converges to
β1

c (L, 2L) as the lattice size L grows, as one can see in Fig. 5.
In Table IV we report the difference between the cross-

ing points computed as a function of the lattice size for the
observed PM-FM and FM-PM transitions. For both values
of D the differences scale to zero following a power law:
β2

c (L, 2L) − β1
c (L, 2L) ∝ L−a, finding very good fits (for L >

6) for both values of D, with the exponent a � 1.5 (D = 4)
and a � 1.7 (D = 3).

In Fig. 6 the difference between the crossing points of the
two transitions is plotted as a function of the lattice size, where
we have also plotted the pure power law.

Rξ behaves in the low-temperature region as in the high-
temperature region: Rξ decreases as L increases (see Fig. 5) in
a completely different way as in a ferromagnetic phase.

The behavior of the Binder cumulant (see Fig. 7) provides
the same information. One can observe the crossing of the
U4 curves corresponding to different lattice sizes and that, for
large lattice sizes and a fixed lower temperature, g4 decreases
with L, just as in a phase with a Gaussian distribution (with
zero mean) of the magnetization.

In order to understand what are the properties of the low-
temperature phase (we have termed ZM) we have computed
the modulus of the magnetization. The behavior of the mod-
ulus of the magnetization is presented in Fig. 8 for the two
values of the disorder strength. Notice that the behavior of
these observables is completely different from the anisotropic
case; see Fig. 4, bottom, In the latter case, one can see that
the magnetization is already nonzero and independent of L
for relatively small lattice sizes. However, in the isotropic
case, we observe that the magnetization is not asymptotic and
decreasing for D = 3 and 4 and for all the range of simulated
temperatures.

To be more quantitative, we have analyzed the behavior of
M as a function of L at β = 1 and we have obtained that M ∼
L−0.16 and L−0.22 for D = 3 and 4, respectively. In addition,
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FIG. 7. Binder cumulant (U4) as a function of the inverse tem-
perature for the isotropic disorder for several lattice sizes at D = 3
(top) and D = 4 (bottom) in the low-temperature region. Notice the
crossing of the different lattice sizes and the nonmonotonic behavior
(decrease with L) for the larger lattices.

Rξ at this β = 1 also decreases as Rξ ∼ L−0.16 and L−0.10 (for
the larger sizes) for D = 3 and 4, respectively. Thus, M and
Rξ seem to go to zero as the lattice size increases.

To support this conclusion, we have explicitly checked in
Appendix D that at β � 2β1

c ∼ 1.4 and for D = 4 the mag-
netization and Rξ decrease with L and are well described by
power laws (with the exponents similar to those obtained at
β = 1), meaning that they will vanish in the thermodynamic
limit. This is a strong hint that this low-temperature phase has
zero magnetization and finite magnetic correlation length (ξ ).

From the above observations, one can describe a strong
crossover in the behavior of the isotropic disorder: for L � Lc

there is no phase transition in the magnetization channel. We
are tempting to interpret this crossover length (Lc) as that pro-
posed by Imry-Ma. Our power law fits suggest that Lc is much
higher than the maximum simulated lattice size (i.e., L = 48)
for both values of the anisotropy strength near β1

c . Finally, in

FIG. 8. Modulus of the magnetization, M, as a function of the
inverse temperature for the isotropic disorder for several lattice sizes
at D = 3 (top) and D = 4 (bottom).

FIG. 9. Rξq cumulant (overlap channel) as a function of the in-
verse temperature for the isotropic disorder for several lattice sizes
for D = 3 (top) and D = 4 (bottom).

the next section we will argue in favor of the appearance of
a phase with spin-glass properties as an additional argument
stating the magnetization channel is not critical. We will use
the word “transition” to refer to one of these two crossing
regions which eventually will merge.

The main conclusion of this subsection and Appendix D
is that the low-temperature phase presents zero magnetization
and finite correlation length.

However, the numerical results presented in this subsection
cannot completely rule out that the difference β1

c (L, 2L) −
β2

c (L, 2L) remains finite or even the magnetization is different
from zero (asymptotically), although we consider this sce-
nario unlikely since it goes against the Imry-Ma argument.

The behavior of Rξ around the first phase “transition” (β1
c )

looks similar to that of a QLRO one due to the overall be-
havior of Rξ : first it grows (due to β1

c ) and then decreases
(due to β2

c ) inducing an apparent merging of the Rξ in the
interval [β1

c , β2
c ], which recalls the behavior in a QLRO phase

transition. In a QLRO phase the curves of Rξ = ξ/L merge
because the correlation length is divergent in the whole low-
temperature phase. See Appendix E for the behavior of Rξ and
the Binder cumulant of the two-dimensional XY model which
undergoes this QLRO phase transition.

2. Overlap channel

In this subsection we will characterize the properties of the
ZM low-temperature phase found in the previous subsection;
the first candidate will be a phase with spin-glass properties:
it presents zero magnetization, and it is not critical in the
magnetic channel. The presence of a low-temperature phase
with spin-glass properties has been previously reported (e.g.,
see Refs. [76,92]).

To this end, we will analyze the behavior of Rξq defined
using the overlap correlation length; see Eq. (17). To pro-
ceed further, we have simulated two real replicas (the same
disorder) of the model and computed the overlap, Eq. (14),
which characterizes a spin-glass phase. Additionally, we have
computed the associated Rξq .
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FIG. 10. Near the PM-SG phase transition: Rξq cumulant (over-
lap channel) as a function of the inverse temperature for the isotropic
disorder for several lattice sizes at D = 4 (top) and D = 3 (bottom).

In Fig. 9 we show the behavior of Rξq in a wide range of
inverse temperatures for the simulated lattice sizes: the curves
cross in the region near β ∼ 0.70.

As we have discussed in the previous subsection (see also
Appendix D), the spontaneous magnetization vanishes in the
very low-temperature region: in this region Rξq = ξq/L di-
verges as corresponds to the spin-glass phase. Notice that ξq

is a true correlation length in the paramagnetic phase. In the
spin-glass phase Rξq diverges as L increases [24,93].

We would like to remark that, for instance, at β = 1.3 (and
for both values of D), Rξ decreases monotonically with L
(magnetic channel) and Rξq increases monotonically with L
(overlap channel), for all the simulated values of L.

In Appendix F we show the behavior of the three-
dimensional Edwards-Anderson model, a spin glass, in both
the magnetic and the overlap channels. In this case, the system
presents a clear crossing of the different Rξq curves and no
signal in the Binder and Rξ in the magnetic channel (in this
case both observables are just compatible with zero, showing
no critical behavior).

Summing up, the results shown in Fig. 9 point to a low-
temperature phase with the properties of a spin glass.2

Hence, the analysis in the overlap channel gives addi-
tional weight to the observations made for the magnetization
channel: the PM-FM and the FM-PM “transitions” merge for
large L and the final outcome is the absence of a FM phase
for all positive temperatures. Notice that the vanishing of Rξ

shows that the magnetic correlation length is finite, and this
phase is not critical in the magnetization channel. In particular
this result ruled out the QLRO scenario.

We have also performed a detailed study of the crossing
region of Rξq for both values of D. In Fig. 10 we show the
behavior of Rξq in the crossing region. The corresponding
crossing points and associated critical exponents (computed
with the quotient method) are presented in Table V.

2The system could present a complicated antiferromagnetic low-
temperature order inducing the reported phenomenology of the
isotropic disorder [94], but, we consider this scenario very unlikely.

TABLE V. Quotient method results for D = 3 and D = 4 and
isotropic disorder distribution (IRAM) from the crossing points of
Rξq (SG channel) for lattice sizes L1 and L2.

D L1/L2 βcross Rξq νξ ηq

3 6/12 0.6955(3) 0.298(1) 0.776(4) 1.03(1)
3 8/16 0.6965(3) 0.302(1) 0.789(4) 1.04(1)
3 12/24 0.6969(2) 0.306(2) 0.797(5) 1.04(2)
3 16/32 0.6962(2) 0.300(2) 0.778(6) 1.06(2)
4 6/12 0.6999(2) 0.2973(8) 0.799(3) 1.02(1)
4 8/16 0.7003(2) 0.299(1) 0.804(4) 1.03(1)
4 12/24 0.7014(2) 0.305(2) 0.822(6) 1.02(2)
4 16/32 0.7020(2) 0.311(2) 0.818(7) 1.00(2)

Our results point to (see Table V) ν ∼ 0.78–0.82 for both
values of D. In addition, we do not see the growing of the
ν exponent with L as seen in the magnetization channel.
In addition, the computed exponent is very different from
that reported for Ising and Heisenberg spin-glass models; see
Table VI.

However, we have for η a big value, near 1. The overlap
q and the magnetization m have different scaling dimen-
sions, dq and dm, correspondingly. Roughly q ∼ m2, so that
dq � 2dm. Substituting in this estimate 2dm = d − 2 + η and
dq = (d − 2 + ηq)/2 one gets for d = 3 and η(d = 3) � 0
(see Table X of Appendix C) ηq = 1 + 2η � 1 in very good
agreement with the ηq values reported in Table V. This is
the consequence of simulating lattice sizes smaller than the
(Imry-Ma) crossover length in the critical region. From previ-
ous discussion, the value of this crossover length at very low
temperatures is small, allowing us to monitor the decreasing
of the magnetization and Rξ for the lattice sizes we have been
able to simulate.

Therefore, the exponents of Table V can be considered only
as effective ones. The simplest explanation is that they first
attain the PM-FM values (in a ferromagnetic phase q ∝ m2),
and eventually they will cross over to the PM-SG ones in
the asymptotic limit (where the magnetization is zero with a
nonvanishing overlap), since we are simulating lattice sizes
below the Imry-Ma length.

V. CONCLUSIONS AND DISCUSSION

We have simulated the RAM with cubic and isotropic dis-
order in three dimensions. To do that, we have run very large
numerical simulations using PT (and Metropolis as the local
update method) simulating large lattice sizes (L = 48).

This model was also studied in Ref. [81] by means nu-
merical simulations and using the PT algorithm for cubic
and isotropic disorder distributions near β ∼ 0.7. The authors

TABLE VI. Critical exponents for two related three-dimensional
models undergoing PM-SG phase transitions.

Model ν ηq

Heisenberg [95] 1.5(2) −0.19(2)
Edwards-Anderson (Ising) [96] 2.56(4) −0.390(4)
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TABLE VII. Critical exponents and cumulants for three three-dimensional related models undergoing PM-FM phase transitions.

Model ν η ω Rξ U4 g2

Heisenberg [97–99] 0.7116(10) 0.0378(3) 0.773 0.5639(2) 0.6202(1) 0
Ising (site-diluted) [93] 0.6837(53) 0.037(4) 0.37(6) 0.598(4) 0.449(6) 0.145(3)
Ising [100,101] 0.629912(86) 0.0362978(20) 0.8303(18) 0.6431(1) 0.46548(5) 0

simulated only D = 4 and L � 24. They found clear crossing
of the different Binder cumulant curves for both distributions.
Despite this, the authors claimed that the low-temperature
phase is in the QLRO class. They computed only the ν expo-
nent by studying the susceptibility, quoting for both disorders
ν = 0.70998 with 0 as a statistical error, hence, claiming
that both disorders belong to the same universality class. In
addition they reported βc = 0.70998(4) for ARAM and βc =
0.70435(2) for IRAM. In this work, we report estimates of βc

and ν for D = 4 not compatible with those of Ref. [81] for
the anisotropic disorder. In addition for isotropic disorder, we
have characterized how the two phase transitions eventually
merge and the low-temperature phase can be consistently de-
scribed by a phase with spin-glass properties.

In the previous section, we have discussed the critical be-
havior for both disorder distributions. Since it is clear that the
critical behavior of these two distributions is different we will
discuss separately our findings for each distribution.

A. Cubic disorder

We have found a phase transition between a PM phase and
a FM one. Both values of the strength of the anisotropy, D,
provide critical exponents and cumulants compatible in the
statistical error, a fact which supports the universality of this
disorder for moderate values of D.

Notice that our estimates for the critical exponents and cu-
mulants are completely different from the Heisenberg model
ones (see Table VII). Moreover, we have simulated the pure
Heisenberg model within the PT method and used the same
procedure of analysis as used in this paper. The obvious
conclusion is that ARAM and Heisenberg models belong to
different universality classes; cf. Table XIII of Appendix G.

Furthermore our results do not agree with the perturba-
tive RG predictions [32,33,55–57,59], which state that the
ARAM should belong to the same universality class as the
three-dimensional site-diluted Ising model, as follows from
comparison of our values for the critical exponents from
Tables II and III with the Monte Carlo results of Table VII for
the three-dimensional site-diluted Ising model. The latter are
corroborated also by RG studies; see, e.g., Refs. [102–104].

The following scenario emerges from our simulations: the
anisotropic disorder, as predicted by RG, is relevant and
changes the universality class of the pure model. We have
checked that this scenario holds for D � 4. We expect this
fixed point should be relevant for 0 < D < Dc. We can try to
conjecture the behavior of the model with anisotropic disor-
der for strong anisotropy. For large D > Dc the anisotropic
disorder will destroy the FM phase and a SG phase will arise.
We know that for D = ∞ the system is described by the Ising
spin-glass universality class [70,71]. Open problems are the
characterization of Dc and to figure out the universality class

for Dc < D < ∞: is that of the Ising spin-glass model in three
dimensions?

B. Isotropic disorder

We have found two different crossing regions of the cu-
mulant Rξ (and of the U4 cumulant). Furthermore, these two
regions seem to merge, a clear indication of a phase with
zero magnetization for all the positive temperatures. We have
checked this scenario by studying the behavior of the mag-
netization and Rξ at very low temperatures. This result is in
full agreement with the Imry-Ma arguments that predict zero
magnetization for T > 0. Note that Imry-Ma domain argu-
ments were also corroborated recently by extensive Monte
Carlo simulations for two-dimensional random anisotropy
magnets [105].

Studying the overlap channel we have found a phase
transition between a paramagnetic phase and a phase with
spin-glass properties, and we have characterized its critical
exponents. However, taking into account that the (Imry-Ma)
crossover length around the transition is much larger than the
largest simulated lattice size, we consider these exponents as
effective ones.

A low-temperature phase with spin-glass properties was
reported in Ref. [92] studying the isotropic disorder model
simulating (out-of-equilibrium) a L = 20 lattice for D = 3.5.
They found that the field-cooled and zero-field-cooled mag-
netization behave, in the low-temperature region, in the same
way as in a spin glass [94].

TABLE VIII. Parameters used in the numerical simulations for
the cubic disorder distribution (ARAM). Nsamples is the number of
disorder realizations, NT is number of temperatures in the par-
allel tempering, and Nsweeps number of Monte Carlo sweeps per
temperature.

D L Nsamples NT Nsweeps

3 6 13 600 14 105

3 8 4800 14 105

3 12 2937 14 105

3 16 2000 14 1.28 × 105

3 24 2091 14 1.28 × 105

3 32 1400 8 2.56 × 105

3 48 392 8 5.12 × 105

4 6 13 600 14 105

4 8 4800 14 105

4 12 2938 14 105

4 16 2000 14 1.28 × 105

4 24 2068 14 2.56 × 105

4 32 1400 8 2.56 × 105

4 48 768 14 5.12 × 105
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TABLE IX. Parameters used in the numerical simulations for the
isotropic disorder distribution (IRAM) near β1

c .

D L Nsamples NT Nsweeps

3 6 13 600 14 105

3 8 4800 14 105

3 12 3000 14 105

3 16 2000 14 1.28 × 105

3 24 2075 14 1.28 × 105

3 32 1400 8 2.56 × 105

3 48 400 8 5.12 × 105

4 6 17 600 14 105

4 8 4800 14 105

4 12 3000 14 105

4 16 2000 14 1.28 × 105

4 24 2000 14 2.56 × 105

4 32 1400 8 2.56 × 105

4 48 400 8 1.024 × 106

Our work provides additional arguments (from equilibrium
numerical simulations) supporting a low-temperature phase
for the isotropic disorder with spin-glass behavior and zero
magnetization.

An important open problem is to try to compute the asymp-
totic exponents of this PM-SG transition and to study how the
model leads to the Ising Edwards-Anderson universality class
for D = ∞ [70,71]. We consider that such study is outside of
the currently available computational resources.
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APPENDIX A: NUMERICAL SIMULATION DETAILS

We have performed extensive Monte Carlo numerical
simulations using the Metropolis (with 10 hits) and PT al-
gorithms; see Refs. [85,86]. We have checked that the PT is
correctly working with our choice of the different parameters.

In order to have an additional test of the thermalization of
our systems, we have studied the behavior of different observ-
ables at all the temperatures as a function of log t (t being
the Monte Carlo time). We consider that we have thermalized
the system, for a given observable, when the last three points
are compatible in the error bars and a plateau can be defined
(the last point is computed with the last half of the Monte

TABLE X. Quotient method results for D = 3 and D = 4 and isotropic disorder distribution (IRAM) from the crossing points of Rξ for
lattice sizes L1 and L2 near β1

c .

D L1/L2 βcross Rξ νξ νU4 η QU4 Qg2

3 6/12 0.6975(2) 0.5540(8) 0.807(2) 0.768(2) 0.012(4) 0.9995(1) 1.64(4)
3 8/16 0.6977(2) 0.554(1) 0.828(6) 0.81(1) 0.015(5) 1.0008(2) 1.69(5)
3 12/24 0.6978(2) 0.556(2) 0.846(6) 0.83(1) 0.013(6) 1.0030(2) 1.40(5)
3 16/32 0.6980(2) 0.557(2) 0.87(1) 0.89(1) 0.00(1) 1.0049(4) 1.18(4)
3 24/48 0.6975(2) 0.552(3) 0.92(2) 0.90(2) 0.01(2) 1.0033(6) 1.4(1)

4 6/12 0.7060(3) 0.551(1) 0.896(4) 0.869(4) −0.004(5) 1.0024(2) 1.36(2)
4 8/16 0.7065(3) 0.553(2) 0.98(1) 0.97(2) −0.012(7) 1.0049(3) 1.31(4)
4 12/24 0.7055(2) 0.548(2) 0.98(1) 1.01(2) −0.007(9) 1.0048(4) 1.28(4)
4 16/32 0.7052(2) 0.542(3) 0.97(2) 0.98(2) −0.00(1) 1.0049(5) 1.14(4)
4 24/48 0.7055(3) 0.549(5) 1.13(5) 1.17(5) −0.04(2) 1.0077(8) 1.04(7)
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FIG. 12. Effective critical behavior in vicinity of β1
c : Binder cu-

mulant as a function of the inverse temperature for the isotropic
disorder for several lattice sizes.

Carlo history). All the results presented in this study fulfill
this thermalization criteria.

We will provide the parameters of the different numerical
simulations for the models with D = 3 and 4 and both types
of disorder, cubic and isotropic:

Anisotropic Disorder:
(1) Near the critical point. See Table VIII.
(2) Extended run. We have simulated L = 6, 8, and 12 for

D = 4 using the PT method: 1000 samples, 40 temperatures,
and 204 800 Monte Carlo steps for each temperature.

Isotropic Disorder:
(1) Near the critical point (Magnetization, first phase tran-

sition). See Table IX.
(2) Extended runs (Magnetization). For D = 3, 1000 sam-

ples and 40 temperatures (PT) have been simulated for L = 6,
8, 12, and 16; 400 samples and 40 temperatures (PT) for
L = 24 and 230 samples and 20 temperatures (PT) for L = 32.
We have performed 409 600 sweeps per temperature in the PT.

FIG. 13. Behavior of the magnetization per spin (top) and Rξ

(bottom) for D = 4 and isotropic disorder as a function of the lat-
tice size at T = 0.709. The data are well described by power laws
(continuous lines in both panels).

FIG. 14. Rξ and U4 cumulants vs inverse temperature for the two-
dimensional O(2) pure model on different lattice sizes. We have also
plotted βc = 1.1199(1), Rξ = 0.7506912, and U4 = 0.660603(12).

For D = 4, 40 temperatures (PT) have been simulated with
2000, 1200, 2000, 658, and 786 samples for L = 6, 8, 12,
16, and 24, respectively; 500 samples and 20 temperatures
(PT) for L = 32. We have performed 409 600 sweeps per
temperature in the PT.

(3) Extended runs (Overlap). 40 temperatures (PT) have
been simulated for L = 6, 8, 12. For D = 3, we have run 1000
samples and for D = 4, 500 samples. We have performed
204 800/409 600 sweeps per temperature in the PT for D = 3
and 4, respectively.

(4) Near the critical point (overlap). For D = 3, we have
simulated eight temperatures (PT) for L = 6, 8, 12, 16, 24
and 32 with 1000, 1000, 1000, 760, 500, and 500 samples
respectively. For D = 4, we have simulated 14 temperatures
(PT) for L = 6, 8, 12, 16, 24 and 32 with 3000, 3000, 1792,
1000, 500 and 495 samples respectively. In all cases we have
performed 204 800 sweeps per temperature in the PT.

APPENDIX B: QUOTIENT AND FIXED COUPLING
METHODS

In this Appendix we briefly describe the quotient and fixed
coupling methods.

First, we describe the quotient method. Let O(β, L) be a
dimensionful quantity scaling in the thermodynamic limit as
ξ xO/ν . For a dimensionless observable the exponent xO = 0.
Thereafter, we will use the symbol g to denote all the dimen-
sionless quantities, such as U4, g2, or Rξ .

TABLE XI. Independent extrapolations of the fixed coupling
method data, using the Binder cumulant U4 = 0.6606, for the two-
dimensional XY model.

U4 νξ νU4 η

0.6606 3.8(2) 3.6(3) 0.246(3)
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TABLE XII. Independent extrapolations of the fixed coupling
method data, using Rξ = 0.75, for the two-dimensional XY model.

Rξ νξ νU4 η

0.75 4.0(1) 7.0(6) 0.236(1)

The behavior of the observable O can be studied by com-
puting, at L and 2L, the quotient

QO = O(βcross(L, 2L), 2L)

O(βcross(L, 2L), L)
, (B1)

where βcross(L, 2L) is defined by

g(L, βcross(L, 2L)) = g(2L, βcross(L, 2L)). (B2)

From the previous discussion, one can write

Q cross
O = 2xO/ν + O(L−ω ) (B3)

and

gcross = g∗ + O(L−ω ), (B4)

where xO/ν, g∗ and the correction-to-scaling exponent ω are
universal quantities. In order to compute the ν and η expo-
nents, one should study dimensionful observables such as the
susceptibility [xχ = ν(2 − η)] and the β derivatives of Rξ and
U4 (x = 1 in both cases).

The crossing point of the inverse temperature
(βcross(L, 2L)) behaves following the equation

βcross(L, 2L) = βc + Aβc,gL−ω−1/ν + · · · . (B5)

The leading correction-to-scaling exponent can be com-
puted via the quotient of a given dimensionless quantity g
(Qg). The behavior of this quotient is

Qcross
g (L) = 1 + AgL−ω + BgL−2ω + · · · . (B6)

Another way to compute critical exponents is to work at
a fixed dimensionless observable. One fixes the value of the
dimensionless observable g = g f near the universal one (for
example, fixing a given value of Rξ ) and then computes β(L)
defined as

g f = g(β(g f , L), L). (B7)

Using these values of the inverse temperature, one can monitor
the scaling. At this value of the inverse temperature we can
study the scaling of different observables (e.g., susceptibility,

FIG. 15. Behavior of the correlation length in units of Rξ the
lattice size Rξ (top) and the Binder cumulant U4 (bottom) in the mag-
netic channel for the three-dimensional Edwards-Anderson model.
For L = 6 and L = 8 both observables are almost compatible with
zero. Notice that in the low-temperature region we have been unable
to compute Rξ , even simulating a huge number of samples, due a
signal-noise problem (the final value is compatible with zero and the
computation of Rξ involves a square root).

derivatives of Rξ and Binder cumulant, etc.) to extract the
critical exponents using

O(β(g f , L), L) = A(g f )LxO/ν

[
1 + O

(
1

Lω

)]
. (B8)

APPENDIX C: THE PM-FM TRANSITION FOR THE
ISOTROPIC DISORDER

We have shown numerical data based on the behavior of Rξ

with temperature and lattice sizes supporting that both phase
transitions (near β1

c and β2
c ) are merging, eventually for lattice

sizes bigger than a crossover length as stated by the Imry-Ma
argument.

In this Appendix we report the values of the critical ex-
ponents of the PM-FM transition observed for IRAM at
temperature T ∼ 1/β1

c . As we have shown in the main text,
this phase transition should disappear for large lattice sizes.
Therefore the reported below values of the exponents char-
acterize the effective critical behavior of the model at least
for L � 48. This behavior is observed before the PM-FM

TABLE XIII. Quotient method results for the pure O(3) model (D = 0) from the crossing points of Rξ for lattice sizes L1 and L2. The
numbers in round brackets are the statistical error of the fit and the number inside the square ones are systematic errors originating from the
uncertainty in the ω exponent used in the fit.

L1/L2 βcross Rξ νξ νU4 η QU4

6/12 0.692577(7) 0.5567(5) 0.727(3) 0.697(7) 0.024(2) 0.9966(3)
8/16 0.69283(3) 0.5587(3) 0.718(3) 0.699(5) 0.029(2) 0.9972(2)
12/24 0.69290(2) 0.5597(5) 0.716(3) 0.705(7) 0.034(2) 0.9982(2)
16/32 0.69293(2) 0.5601(4) 0.714(4) 0.706(7) 0.037(2) 0.9986(2)
24/48 0.69298(1) 0.5617(4) 0.717(6) 0.72(1) 0.036(3) 0.9990(3)
∞ 0.6930(3) 0.5630(5)[6] 0.708(4)[2] 0.717(9)[2] 0.043(2)[2] ω = 0.92(13)
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FIG. 16. Behavior of the overlap correlation length in units of the
lattice size Rξq vs the inverse temperature for the three-dimensional
Edwards-Anderson model for small lattice sizes. Notice that both
curves cross, marking the apparent critical temperature of the model.
The vertical line marks the infinite volume critical inverse tempera-
ture βc = 0.908(2) [96].

transition point β1
c merges with FM-PM transition point β2

c
moving from the low-temperature region.

In Figs. 11 and 12 we show the behavior of Rξ and U4 in
the vicinity of the first phase transition temperature β1

c . We
have analyzed the isotropic disorder in the same way as the
cubic one (see Sec. IV A), focusing on the analysis of the
crossing temperatures of Rξ since the Binder cumulant data
present strong corrections to scaling.

We report in Table X our results. Note that our estimates
of the effective critical exponents and cumulants are different
from the pure Heisenberg ones. Moreover, the ν exponent is
measurably growing with the disorder strength, which is the
right behavior in view of the onset of a second phase transition
merging with this one.

Finally, we recall that the Imry-Ma characteristic lengths
for these values of D is much bigger than L = 48.

APPENDIX D: THE MAGNETIZATION AND Rξ AT VERY
LOW TEMPERATURE FOR ISOTROPIC DISORDER WITH

STRENGTH D = 4

In this Appendix we analyze the behavior of the magneti-
zation at very low temperature.

To compute the magnetization at T � T 1
c /2 = 1/(2β1

c ) �
0.709 we have resorted to the use of a out-equilibrium
dynamical approach consisting in the computation of the mag-
netization and Rξ as a function of time, starting from ordered
and fully disordered configurations, and to extrapolate both
simulations to the same asymptotic value using power laws:
m∞ + O(t−xm ) or Rξ = Rξ∞ + O(t−xRξ ).

We have simulated L = 8 (400 samples and 2 048 000
Monte Carlo steps), L = 16 (300 samples and 2 048 000
Monte Carlo steps), L = 24 (200 samples and 1 638 4000
Monte Carlo steps), and L = 32 (50 samples and 16 384 000
Monte Carlo steps).

We have found that the data (in the range of the lattice
sizes we are able to simulate at this low temperature) are
well described by power laws: the magnetization scales to
zero as L−0.25 and Rξ as L−0.15 (see Fig. 13). Notice that
in a noncritical phase, with the thermodynamic correlation
length greater than L, the behavior of this cumulant should
be proportional to L−1: hence, we are still simulating in the
range of lattice sizes smaller than the asymptotic value of the
correlation length.

Therefore, from this analysis, the behavior of the isotropic
disorder at very low temperatures can be described by a phase
with zero magnetization and finite correlation length in the
magnetic channel. This result supports pretty well the be-
havior of the Rξ cumulant and the magnetization around and
below the second phase transition at β2

c described in Sec. IV B.

APPENDIX E: THE TWO-DIMENSIONAL O(2) MODEL

In order to test the QLRO scenario for the IRAM, we have
simulated the two-dimensional O(2) model.

The most accurate analysis of this model has been
performed in Ref. [106] reporting βc = 1.1199(1), Rξ =
0.7506912, and U4 = 0.660603(12).

We have analyzed this model by studying the Rξ and U4

curves (see Fig. 14) using the fixed coupling method and ne-
glecting scaling corrections. We report the results in Tables XI
and XII. One can see from Fig. 14 that the correlation length
data suffer from larger corrections to scaling than the Binder
cumulant ones. Notice that the U4 analysis provided with a
value of the η exponent compatible with the analytical one
(η = 1/4). Moreover, the ν exponents take very large values,
eventually diverging in the thermodynamic limit, showing the
fact that different curves of Rξ and U4 are merging in the
low-temperature phase, which presents QLRO behavior.

TABLE XIV. Quotient method results for pure O(3) model from the crossing points of U4 for lattice sizes L1 and L2. The numbers between
round brackets are the statistical error of the fit and the number inside the square ones are systematic errors originating from the uncertainty in
the ω exponent used in the fit.

L1/L2 βcross U4 νξ νU4 η QU4

6/12 0.6942(1) 0.6243(2) 0.731(8) 0.728(3) −0.015(3) 1.0168(7)
8/16 0.69368(5) 0.6236(1) 0.720(6) 0.718(2) −0.003(2) 1.0130(6)
12/24 0.69320(3) 0.6223(2) 0.721(8) 0.716(3) 0.017(2) 1.0083(8)
16/32 0.69309(2) 0.6217(1) 0.720(8) 0.714(4) 0.021(2) 1.0064(8)
24/48 0.69305(2) 0.6214(1) 0.72(1) 0.716(6) 0.025(3) 1.005(1)
∞ 0.69300(3) 0.6202(2)[2] 0.707(3)[1] 0.72(1)[1] 0.042(3)[3] ω = 0.98(9)
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FIG. 17. Rξ (top) and U4 (bottom) cumulants against inverse
temperature for the three-dimensional O(3) pure model for several
lattice sizes.

APPENDIX F: THE MAGNETIZATION AND Rξ IN THE
THREE-DIMENSIONAL EDWARDS-ANDERSON MODEL

To illustrate the behavior of some magnetic observables
in a model with a spin-glass low-temperature phase, we
have simulated two small lattices of the three-dimensional
Edwards-Anderson model with binary coupling, which is a
classic spin glass with zero magnetization. See Ref. [96] for
additional details of the model (including Hamiltonian and
observables).

In particular, we have simulated 1600 samples of L =
6 and 8 using the Metropolis and the Parallel Tempering

algorithms with 20 temperatures (204 800 Monte Carlo steps
per temperature) around the infinite volume critical inverse
temperature: βc = 0.908(2) [96].

Figure 15 shows the lack of criticality of this magnetiza-
tion channel: Rξ and U4 are already compatible with zero, as
should be.

However, the overlap channel clearly shows the PM-SG
phase transition; see Fig. 16. In this figure, the curves for the
cumulant Rξq cross for the two different lattice sizes.

APPENDIX G: THE THREE-DIMENSIONAL O(3) MODEL

In this Appendix we present our results on the three-
dimensional O(3) model using the quotient method with
the same methodology as applied throughout the paper for
the RAM.

We have run for this model L = 6, 12, 16, 24, 32, and 48
lattices, using parallel tempering with eight temperatures in
the fixed range [0.686,0.700].

In Tables XIII and XIV we show the results of the quotient
method for the crossing points of Rξ and the Binder cumulant,
respectively (see also Fig. 17). First, we have computed ω

by fitting the last column to Eq. (B6). Once we have got
this value, we perform all the fits of the rest of the columns
using this ω value but for the inverse critical temperature (in
this case, the correction is 1/ν + ω, and we have left com-
pletely free this exponent in the fit). In the last row of these
tables we have reported our extrapolations to infinite volume.
The agreement, despite the small lattice sizes simulated, with
the values reported in Table VII, is pretty good. In addition,
the inverse critical temperature is fully compatible with the
one reported in Ref. [107] [βc = 0.69300(1)].
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