
PHYSICAL REVIEW E 106, 034120 (2022)

Transport properties in multilayer adsorption of dimers
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In this paper, we study the transport properties (percolation and conductivity) of a two-dimensional structure
created by depositing dimers on a one-dimensional substrate where multilayer deposition is allowed. Specifically,
we are interested in studying how the mentioned properties vary as a function of the height of the multilayer.
The critical parameters of the percolation transition are calculated using finite-size scaling analysis, obtaining
the scaling laws for the probability of percolation and the conductivity of the system. To calculate the electrical
conductivity of the multilayer, we use the Frank-Lobb algorithm.
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I. INTRODUCTION

A widely known and useful class of irreversible adsorption
models that has attracted much attention in recent decades is
random sequential adsorption (RSA), in which the units to be
adsorbed, one at a time, cannot overlap with the previously
adsorbed units [1]. The nonoverlap constraint can be elimi-
nated and the new particle in the deposition queue becomes
part of a new layer. In this case, we say that the adsorption is
irreversible and multilayer.

Multilayer adsorption models present a greater resem-
blance to reality than monolayer-based models, depending on
the type of interaction between the adsorbate and substrate, for
example, to describe experiments with adhesion and reaction
processes of colloidal particles and proteins at solid surfaces
[2,3]. Correctly modeling multilayer adsorption allows us to
describe the dynamics of various high-tech industrial pro-
cesses such as the fabrication of multifunctional sensors [4–6].
It is also often used to model the dynamics of the formation
of thin film materials [7].

In the last decades, there have been few relevant analyti-
cal results and numerical experiments that contribute to the
understanding of the properties of the multilayer adsorption
model. In general, the focus is on the study of the dynamics
of the process. Analytical results were derived for the depo-
sition of multilayers of dimers on a one-dimensional lattice
within the rate equation approach [8]. However, the results are
limited to the first two layers as the solution rapidly becomes
cumbersome for high-layered structures. A general model of
the irreversible multilayer deposition process that accounts for
both surface screening and surface restructuring is presented
in Ref. [9], but the analytical results are limited to the kinetics
of the particle density in the first layer in one dimension when
surface overhang rules are employed. A variant of the mul-
tilayer RSA process that is inspired by orthogonal resource
sharing in wireless communication networks was developed
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in Ref. [10]. An approximation is presented here, based on the
recursive approach that uses the results of monolayer RSA for
indirect estimation of the density of rods for the multilayer
version.

The study of transport properties in amorphous disordered
systems is of great interest in different domains as those
of theoretical [11] and experimental [12] physics, as well
as in applied physics [13] and technology [14]. The trans-
port properties in single-layer adsorption systems have been
extensively studied with a focus on the dependence of the
phenomenon on the density of adsorbed particles [15], of
defects (sites where the adsorption is not allowed) [16], of
the spatial distribution of the defects [17], and the anisotropy
in the orientation of the adsorbed particles [18]. However,
the applications are not just limited to single-layer systems.
Ordered and disordered systems with a large number of layers
of the order of tens or even hundreds of molecular layers have
immense importance in theoretical and experimental physics
and in current advanced technologies. They provide an op-
portunity to study the surface forces between microscopic
adsorbed particles and between the surfaces of substrates
and particles. They also attract interest that transcends basic
physics, referring to such a diverse spectrum of applications
from large-scale practical problems as flotation, water treat-
ment, dyeing, soil science, microbiology, chemical catalysis to
the interaction between cells, and other biological structures
[19]. On the other hand, nanoconfined systems with tens to
hundred of layers have impacted the commercial applica-
tions of polymeric structures [20]. From a more restricted
physics perspective, the theoretical and experimental study
of structures with many layers is important for understand-
ing the behavior of several mechanical [21] and optical [22]
properties, as well as for the understanding of the emergence
of physical phenomena in semiconductor structures obtained
with the use of molecular beam epitaxy techniques [23]. The
results obtained in this paper show that transport properties
such as percolation and conductivity begin to manifest when
the system has many layers. This is undoubtedly an incentive
to increase the interest of the community in exploring systems
with a large number of layers.
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FIG. 1. (a) A portion of a square lattice filled by dimers with L = 8 and Hmax = 3 and (b) equivalent scheme of resistors. See text for details

Recently [10], there was a resurgence of interest in the
study of multilayer adsorption, although until now there has
been no study of the transport properties, e.g., percolation and
conductivity in two-dimensional structures resulting from the
one-dimensional multilayer packing process. Motivated by
the growing need for the development of systems where trans-
port properties are controlled, in this paper we report results
of extensive numerical simulations of multilayer adsorption
of dimers in a one-dimensional substrate where we calculate
the critical parameters that characterize the aforementioned
transport properties.

The structure of this paper is the following: In Sec. II, we
introduce the numerical details of the simulations. In Sec. III,
the results for percolation and conductivity are presented and
discussed. We conclude in Sec. IV with a summary of the
results and some prospects for future work.

II. DETAILS OF THE SIMULATION

The algorithm for deposition of dimers is incredibly simple
since it does not have restrictions as is the case with the RSA
algorithm, i.e., the dimer is always adsorbed. First, we draw
a horizontal position x0 ∈ [1, L − 1], then the dimer will be
deposited occupying the sites x = [x0, x0 + 1] at the height
y = hmax + 1, where hmax is the maximum height in the col-
umn [x0, x0 + 1]. Summarizing, it is always allowed adhesion
on top of two different dimers and on top of a single dimer,
blocking the dimers that arrive from higher layers to the lower
layers due to overhangs (screening effects [8]).

Here, the calculation of the probability of percolation is
performed using the burning algorithm [24], which is efficient
when we need to know only if a particular configuration is
a percolating one or not. The adsorption algorithm discussed
above is implemented until the multilayer reaches a certain
height, and thereafter we apply the burning algorithm to know
if the configuration percolated or not. By repeating this pro-
cess many times (around 12 000 times), we can build an
approximate version of the percolation probability curve for
each height.

The Frank and Lobb algorithm [25] was used for finding
the conductivity between the left and right borders of the
two-dimensional structure that results in the packing process
of deposition of dimers. This procedure uses the repeated
application of a sequence of transformations [series, parallel,
and star delta (Y − �)] to the bonds of the lattice. The final
result of this sequence of transformations is the reduction of
any finite portion of the lattice to a single bond that has the
same conductance as the entire lattice. Before applying the
algorithm of Frank and Lobb, we prepare the square lattice
as follows. After the adsorption of dimers up to a certain

maximum height [e.g., resulting in the packed structure of
Fig. 1(a), for L = 8 and Hmax = 3], there will be three types
of connections between neighbors. In the horizontal direc-
tion, two neighboring sites can be interconnected by (i) the
same dimer or different dimers—this connection will have
a resistance R1 [black resistor in Fig. 1(b)]—and (ii) one
dimer and one empty site or two empty sites—this connection
would have a resistor R3 [white resistor in Fig. 1(b)]. In the
vertical direction, the connections between neighboring sites
could be between two dimers of adjacent layers—in this case,
the connection would have a resistance R2 [gray resistor in
Fig. 1(b)] or between a dimer and one empty site or two empty
sites—in this case, the connection would have a resistance R3.
The choice of these three parameters (R1, R2, and R3) is not
arbitrary since each one has a different physical meaning. R1

and R2 provide information about the local longitudinal and
transversal components of the conductivity, respectively. The
parameter R3 samples the resistance of the dielectric medium
that fills the empty space between the dimers.

Finite-size scaling analysis was carried out for obtaining
the percolation probability Pp = Pp(Hmax, L) and the con-
ductivity σ (Hmax, L) as L → ∞. For this, we use the curve
collapse method [26,27] to obtain the critical parameters. We
assume that the percolation probability has the form

Pp(Hmax, L) = F [(Hmax − Hc)Lν], (1)

were F [] is the scaling function. The idea of the method is
the minimization of the area between all pairs of the curves
F [(Hmax − Hc)Lν]. We perform the automatic search in the
discrete plane [Hci : �Hc : Hc f ; νi : �ν : ν f ], where Hci (νi )
and Hc f (ν f ) are the lower and upper limits, respectively, of
Hc(ν) in the search, �Hc and �ν are resolutions of the search
and represent the errors of Hc and ν, respectively.

III. RESULTS AND DISCUSSION

In this paper, we are interested in the behavior of the
transport properties (percolation and conductivity) of the two-
dimensional structure resulting from the multilayer packing
process as a function of the height of the multilayer.

A. Percolation

To visualize the amorphous structure formed during the
packing process, in Fig. 2 we have shown typical multilayer
packing configurations for the adsorption of dimers with the
rules defined in Sec. II. We show typical packing configura-
tions for five values of time t = 3000, 5000, 6000, 10 000, and
15 000 from bottom to top, respectively, for a one-dimensional
substrate of L = 800. In this figure, the clusters (set of sites
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FIG. 2. Typical multilayer packing configurations for the adsorp-
tion of dimers for simulation time t = 3000, 5000, 6000, 10 000,
and 15 000 from bottom to top respectively, for a one-dimensional
substrate of L = 800. The different colors in the figure represent the
clusters.

interconnected through their neighboring sites) of adsorbed
dimers are represented with different colors. Note that the
clusters combine to form larger clusters with increasing sim-
ulation time, or what is the same, the height of the multilayer.

As can be verified in Fig. 3, the maximum height of the
multilayer (Hmax) grows linearly with respect to the mean
of simulation time. This can be analytically verified (without
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FIG. 3. Behavior of Hmax with respect to the average simulation
time to reach it, for five values of L. The horizontal bar errors
represent the standard deviation. Inset: Curve collapse analysis for
the data of the main plot.
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FIG. 4. Behavior of Nc as function of Hmax for seven values of L.
Inset: Scaling analysis of the function Nc(L) in the maximum (Nmax

c )
and before reaching the saturation (N sat

c ). See text for more details. In
the main plot and in the inset, the size of the symbols is larger than
the corresponding error bars.

considering screening effects) from the mean-field model in-
troduced by Ref. [8], specifically in Eq. (2.5). Our simulations
report that the screening consideration maintains the linear be-
havior. Using the curve collapse method described in Sec. II,
we find that Hmax scales with the linear size of the substrate
in the form Hmax ∼ L−0.986±0.003, as observed in the inset of
Fig. 3.

In Fig. 4 (main plot), we show the behavior of the average
cluster number Nc as a function of the height of the multi-
layer Hmax. Initially, during the packaging of the first layers
(nucleation), the number of clusters increases until reaching
a maximum value Nmax

c . At this point, no new clusters are
created and a union process of the existing clusters (growth)
hardly occurs, leading to a decrease in the number of clusters.
As expected, for a sufficiently large height there will be only
one cluster connecting the two faces (left and right), that is,
the percolation cluster—this is equivalent to a saturation of
the number of clusters in a value N sat

c .
An anomalous scaling can be identified in the function

Nc(Hmax, L) since it seems to present two types of scaling.
Based on the inset in Fig. 4, it can be identified, using a
linear fit represented by solid lines, that the region of the
maximum of the curves scales in the form Nmax

c ∼ L1.002±0.003

and the region of saturation in the form N sat
c ∼ L0.957±0.036;

the errors represent a 95% confidence bounds. Note that in
Fig. 4, the horizontal axis was multiplied by the scale factor
L−0.1 so the maximum of all the different curves collapse
in the same abscissa. At this point, it is interesting to note
that Nc is a locally convex function in the neighborhood of
Nmax

c , which bears some analogy with entropy, an aspect that
is confirmed by the fact that Nc exhibits linear scaling with
L, that is, manifesting the extensive property of entropy for a
one-dimensional system.
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FIG. 5. Percolation probability as function of the height of the
multilayer. Inset: Collapse of the percolation probability curves for
Hc = −213.2 ± 0.1 and ν = −0.099 ± 0.001.

The most important question here is, What is the probabil-
ity that the system percolates for a given maximum height of
the multilayer? In other words, we must calculate the proba-
bility Pp that, given a value of Hmax, there exists a spanning
cluster of adsorbed dimers. The percolation probability Pp

versus the height of the multilayer was obtained for linear size
L = 200, 400, 600, 800, 1200, 1600, 3200, and 6400 and the
number of runs is 12 000 for each Hmax (Fig. 5).

By applying the method of curve collapse previously de-
scribed (see Sec. II) for the simulation data in the main plot
of Fig. 5, we obtained the corresponding results shown in the
inset. A good collapse of the data occurs for the critical param-
eters Hc = −213.2 ± 0.1 and ν = −0.099 ± 0.001, where the
errors represent the resolution used when applying the curve
collapse method. The percolation threshold Hc for a given
lattice size L can be estimated from the condition Pp(hc, L) =
0.5. With the collapsed curves, it is simple to estimate the

percolation threshold in the thermodynamical limit L → ∞
from the condition Pp[hc = (Hmax − Hc)Lν] = 0.5. So, from
the inset in Fig. 5 we can conclude that hc � 171.5 ± 2.3.
Here, the error was estimated by measuring the width of
the bundle of curves when intersecting the horizontal line
Pp = 0.5 in the inset of Fig. 5.

Note that in this system it is intuitive to think that the
saturation of the number of clusters (see Fig. 4) is a signal that
the system percolates (with probability Pp = 1, see Fig. 5).
In other words, if the number of clusters does not vary, it
means that there is only one percolation cluster obstructing
any passage of dimers to the lower layers, so all dimers that
arrive after saturation will necessarily belong to the perco-
lation cluster. Our results show (see Fig. 4) that the number
of clusters at saturation also increases approximately linearly
with L, this translates into a proportional shift to the right in
the Pp curves.

B. Electrical conductivity

The calculations of the conductivity σ were performed for
each time until the multilayer reaches a given height. For
each given value of Hmax, the computer experiments were
repeated 12 000 times. In Fig. 6(a), we show the behavior of
the conductivity σ as a function of the height of the multilayer.
In Fig. 6(a), for each value of Hmax, all 12 000 replicas values
are plotted without averaging (gray points) and the solid line
represents the mean. The values of the internal resistors are
R1 = R2 = 1 and R3 = 108.

As expected from critical phenomena, the system presents
two states, i.e., high and low conductivity [see Fig. 6(a)].
The jump between these states occurs close to the percolation
threshold (critical height Hc). Below Hc, the probability of
percolation is very low and few replicas contribute to the
conductivity of the lattice. For heights greater than Hc, the
probability of percolation is greater, which implies that many
replicas will contribute to higher conductivity values. Near the
percolation threshold, the fluctuations are large because the
probabilities of percolating or not are very similar [see the sec-
ond frame of Fig. 6(b)] and therefore the system is frustrated.

FIG. 6. (a) Plot of all replicas (12 000) of numerical experiments to determine σ for each value of Hmax. (b) Estimation of the probability
of σ for different values of Hmax. Both results [(a) and, consequently, (b)] are obtained from a substrate with size L = 500.
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FIG. 7. Mean conductivity as a function of Hmax for different
values of L. Inset: Scaling analysis of conductivity σ−(+) before
(after) the percolation transition. In the main plot and in the inset,
the size of the symbols is larger than the corresponding error bars.

This means that many replicas must be taken to guarantee a
smooth behavior of the mean curve of the conductivity [solid
line in Fig. 6(a)].

The existence of two states leads to a bimodal distribu-
tion for the conductivity, whose modes represent the mean
values of each conductivity state for each value of Hmax [see
Fig. 6(b)]. Figure 6 reflects other interesting features of the
system. It can be shown that the width of the gap that separates
the most probable values of the distribution P(σ ) is directly
related to the difference between the values of R = R1 = R2

and R3. Other simulations were made (not shown in the cur-
rent paper) with different values of R and R3 and we verify
that the scaling properties, studied next, do not change signif-
icantly.

In Fig. 7, we show the scaling analysis for the mean con-
ductivity as a function of Hmax for four values of L.

In two-dimensional single-layer systems, it is well-known
that the conductivity σ near the percolation threshold obeys
different scaling relations for σ− (the conductivity before the

percolation transition) and σ+ (the conductivity after the per-
colation transition) [28]. A study of the finite size effects for
our model is presented in the inset of Fig. 7 to discuss the
universality class of the phase transition the system undergoes
[18]. From the linear fit, we can conclude that the pretransi-
tion and post-transition conductivities obey the scaling laws
σ− ∼ L−1.02±0.03 and σ+ ∼ L−1.13±0.25 regardless of the value
of Hmax as long as it is far enough from the transition region.
The errors represent 95% confidence bounds. In the case of
Ref. [18], the scaling exponents for σ+ and σ− are equal in
modulus with a value close to 0.975; being close to the values
found in our paper, i.e., 1.02 (within 5% uncertainties) for
σ−, but they depart from our value 1.13 (within 16% uncer-
tainties) for σ+. Although the values of the exponents found
here and those of Ref. [18] do not necessarily have to be the
same, because the physical processes studied are different, the
proximity between them suggests, in principle, that they can
perhaps be accommodated in the same class of universality.

IV. CONCLUSION

Here we introduced a model of amorphous disordered
matter of theoretical and applied interest obtained with the
random juxtaposition of dimers. The deposition of dimers
is based on an application of the widely known irreversible
RSA algorithm. It occurs along one-dimensional substrates
forming two-dimensional percolating multilayered structures
that are investigated here in detail for the first time. The
model exhibits critical properties for the emergent electrical
conductivity that depends on three parameters able to describe
a plethora of physical behaviors. A number of variants of the
process studied here, such as the existence of competition
between different species to be adsorbed and the inclusion
of temperature effects, leading to the possibility of failures
in the irreversible adsorption, can be introduced to describe
more realistic processes for various specific purposes.
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