
PHYSICAL REVIEW E 106, 034119 (2022)

Regularized anisotropic motion-by-curvature in phase-field theory: Interface phase separation of
crystal surfaces
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The kinetic equation for anisotropic motion-by-curvature is ill posed when the surface energy is strongly
anisotropic. In this case, corners or edges are present on the Wulff shape, which span a range of missing
orientations. In the sharp-interface problem the surface energy is augmented with a curvature-dependent term
that rounds the corners and regularizes the dynamic equations. This introduces a new length scale in the problem,
the corner size. In phase-field theory, a diffuse description of the interface is adopted. In this context, an
approximation of the Willmore energy can be added to the phase-field energy so as to regularize the model.
In this paper, we discuss the convergence of the Allen-Cahn version of the regularized phase-field model
toward the sharp-interface theory for strongly anisotropic motion-by-curvature in three dimensions. Corners at
equilibrium are also compared to theory for different corner sizes. Then we investigate the dynamics of the
faceting instability, when initially unstable surfaces decompose into stable facets. For crystal surfaces with
trigonal symmetry, we find the following scaling law L ∼ t1/3, for the growth in time t of a characteristic
morphological length scale L, and coarsening is found to proceed by either edge contraction or cube removal, as
in the sharp-interface problem. Finally, we study nucleation of crystal surfaces in a two-phase system, as for a
terrace-and-step surface. We find that, as compared with saddle-point nucleation, ridge crossing is dynamically
favored. However, the induced nucleation mechanism, when a facet induces at its wake formation of additional
facets, is not evidenced with a type-A dynamics.
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I. INTRODUCTION

In material science, motion-by-curvature was introduced
by Mullins [1] in the framework of grain boundary motion.
Following this theory, in the absence of any other driv-
ing force, the normal velocity of isotropic interfaces vn is
given by

vn = Mγ (k1 + k2), (1)

where γ is the surface energy, k1 and k2 are the princi-
pal curvatures of the surface, M is the interfacial mobility,
and γ (k1 + k2) corresponds to the free-energy difference (or
chemical potential in single component systems) between the
energy of the flat surface and that of the curved one. The
formula of the chemical potentials was then extended by Her-
ring for anisotropic surface energy [2,3], which leads to the
following expression for the velocity:

vn/M = γ (k1 + k2) + ∂2γ

∂n1
2

k1 + ∂2γ

∂n2
2

k2, (2)

where γ is now a function of the outwards unit normal to the
interface �n; n1 and n2 denote the orthogonal components of �n
along the tangent vectors �t1 and �t2, taken here in the principal
directions of the surface. One may also express motion-by-
curvature from the interface stiffness tensor [4,5]:

vn/M =
(

γ P + ∂2γ

∂�n2

)
· L, (3)

where P = I − −→n ⊗ −→n is the projection onto the surface and
I the identity matrix. L = −�∇S�n is the curvature tensor, from
which the total curvature K (twice the mean curvature) at a
point of the surface can be evaluated, K = tr(L) = k1 + k2.
�∇S is the surface gradient.

There are situations of interest in which the motion of
an interface is independent of the bulk phases and is only
due to motion-by-curvature. Models to describe such cases
are based on Eq. (2) or equivalently on Eq. (3). However,
the later are ill posed for realistic interfacial energies [6–9].
Indeed, for a crystal, anisotropy of surface energy reflects the
dependence of the surface orientation with respect to the crys-
tallographic axes. This dependence is visible on equilibrium
shapes, for instance. Emergence of facets on the equilibrium
shape of a crystal is due to cusps in the surface energy. In
presence of cusps, Eq. (2) is not defined since the surface
energy is nondifferentiable [10]. Issues may also arise when
the surface energy is differentiable. For moderate anisotropy
strength, the equilibrium shape is smooth, with high-energy
directions occupying a smaller fraction of the surface area
than low-energy directions. However, when the surface energy
is strongly anisotropic, and nonconvex [7], some orientations
are missing on the equilibrium shape, which now contains
sharp corners and edges. At the corner, a phase transition
operates, known as the interfacial phase transition. A surface
initially oriented along missing orientations will decompose
into the stable orientations that are determined by the equi-
librium condition for a corner [7]. This is perfectly analogous
to the phase separation of a homogeneous binary or ternary
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mixture. The corresponding missing orientations may be ei-
ther metastable or unstable by opposition to the orientations
on the equilibrium shape that are stable. In the metastable
case, formation of stable surfaces occurs by nucleation and
growth, whereas unstable surfaces decompose into stable ones
by spinodal decomposition. The later phenomenon is known
as the faceting instability or spinodal of facets. In both cases,
the kinetic equation becomes ill posed (backward parabolic)
in the corner region and needs to be regularized. In this article
we will limit ourselves to this issue: a differentiable surface
energy with nonconvex parts.

In the sharp interface theory, regularization is done by
introducing a new length scale in the problem, the corner
size [5,11,12]. This can be achieved by making the surface
energy dependent on the interface curvature in two or
three dimensions [3–5,11–14]. This curvature dependence
also gives an energy to corners (and edges). In three
dimensions, the regularized version of the kinetic equation is
given by [14]:

vn/M = −�∇S · �ξ − β

(
�SK − 2KG + K3

2

)
, (4)

where β is a parameter that is introduced in the regularized
form of the surface energy: γ (�n) + βK2/2, with as before
K = k1 + k2, k1 and k2 being again the principal curvatures
of the surface. G = k1k2 is the Gaussian curvature and �S

denotes the surface Laplacian. In the above equation, Her-
ring’s result [Eq. (2)] was reformulated using the well-known
Cahn-Hoffman �ξ vector [15,16], defined as �∇[rγ (�n)] with a
position vector �r = r�n [15]. �∇S · �ξ is the surface divergence
of the �ξ vector. We will use Cahn-Hoffman’s formalism in
this article, as we will derive a diffuse-interface version of
the �ξ vector in our phase-field model. At equilibrium, the
interface must therefore satisfy the following condition:

−�∇S · �ξ − β

(
�SK − 2KG + K3

2

)
= 0. (5)

Regularization of models for strongly anisotropic surface
energy has been the subject of intense research in both the
sharp-interface theory [4,5,11–13,17–26] and the diffuse in-
terface description [10,27–38]. For a complete picture, the
reader is invited to read Ref. [13] for more details on reg-
ularization in sharp interface theories and Ref. [30] for the
description of the methods that have been proposed in the
phase-field framework. We also need to mention that another
possibility of regularization is to convexify the surface en-
ergy [39,40]: The energy is modified so that the region that
contains the missing orientations becomes convex, while the
construction preserves the orientations on both sides of the
corners. This method is computationally attractive but cannot
reproduce the decomposition of an unstable surface into facets
since the nonconvex part of the energy is missing. Therefore,
the method that is investigated in the following regularizes
the free energy and preserves the phase transition at the
interface [41]. To our knowledge, no demonstration of the
equivalence between the regularized phase-field model and
sharp-interface theory [Eq. (5)] is currently available in three

dimensions. We establish such an equivalence in the following
work.

In this paper, the energy of the phase-field model relies on
the formulation proposed by Torabi et al. [30] that is regular-
ized using an approximation of the Willmore energy [42–47]
with an additional term in the free energy that approximates
the square of the mean curvature. In the original model [30]
the Cahn-Hilliard equation is employed to mimic the surface
diffusion equation. In our model, the dynamics is given by
the Allen-Cahn equation and there is no other driving force
added to the interface motion. Therefore, the motion is purely
driven by capillarity. Furthermore, contrary to our previous
study on crystal growth [48], the present study is made in
three dimensions. Extending the regularized problem to three
dimensions is known to be nontrivial [4,13], and, therefore,
we choose to present this work in a separate paper. More-
over, the method that is employed to show the convergence
of the phase-field model toward the sharp-interface theory is
also different from that we employed in the two-dimensional
version of the model [48] where we used the classical method
of matched asymptotic expansions in the Allen-Cahn equa-
tion. In the present analysis, we start from the stress tensor
[49], use one of its known properties, the stress tensor be-
ing divergence-free at equilibrium, and then perform the
asymptotics to demonstrate the convergence toward Eq. (5).
It avoids extensive calculations with curvilinear coordinates
[50,51] by using some known properties of differential geom-
etry [4].

Finally, we note that our main goal is to build a phase-field
model that reproduces regularized anisotropic motion-by-
curvature [Eq. (4)] in the limit of small interface thickness.
Indeed, we are interested in a generic model that mimics pure
motion-by-curvature [Eq. (4)], which then can be applied and
extended to many different interfaces and problems. As an
illustration, we investigate the faceting instability [41], whose
sharp-interface properties are well known for the evaporation-
condensation mechanism [17,25]. We also study nucleation
from metastable surfaces, for which little is known, even in
the simplest dynamics settings [21]. In Sec. II we present
the regularized phase-field model and show its convergence
toward Eq. (5) from the stress tensor [29,49,52,53]. We then
investigate, in Sec. III, the effect of the regularization param-
eter on the corner morphology, at equilibrium, and compare
the phase-field results to theory [14,17] for a given anisotropy
function. The dynamics of the faceting instability is investi-
gated in Section IV, as well as nucleation of crystal surfaces.
In Sec. V, we summarize the main results.

II. PHASE-FIELD MODEL

We present here the main equations of the regularized
phase-field model and show its asymptotic convergence, in
three dimensions, toward the sharp-interface theory [Eq. (5)].
For this purpose, we use the stress tensor, which provides
a mechanical interpretation of the phase-field model being,
by definition, divergence-free at equilibrium. Before deriving
the expression for the diffuse stress tensor in the regularized
theory, let us first describe the governing equations of the
phase-field model.
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A. Governing equations

The free energy, for the phase-field u, is given by [30]:

F =
∫

f dV, (6)

where f is the the classical phase-field energy to which a
regularization term is added:

f = �(�n)

ε

[
	(u) + ε2

2

∣∣ �∇u
∣∣2

]
+ α2

2ε

[
	u(u)

ε
− ε�u

]2

, (7)

where ε is the interface width. In this study, u = −1 and u =
+1 in the bulk phases. H	(u) is a double-well energy density,
with H the height of the barrier, here 	(u) = 1

2 (1 − u2)2. The
dimensionless function �(�n) encodes anisotropy, with the nor-
mal vector defined as �n = �∇u/| �∇u|, and sets the magnitude
of the surface energy γ0�(�n) = ãεH�(�n) with ã = 4

3 for our
choice of 	(u) [48]. γ0 is a constant. The last term in Eq. (7)
regularizes the free energy and introduces a new length scale,
the bending length α = √

β/γ0. This term is an approximation
of the Willmore energy and is due to De Giorgi [42–47]. The
Allen-Cahn equation sets the dynamics:

∂t u = − 1

τ ′ ε
δF

δu
, (8)

where

δF

δu
= 1

ε
[�(�n)	u(u) − ε2 �∇ · �m]

+ α2

ε3
[	uu(u)w(u) − ε2�w(u)], (9)

with w(u) = 	u(u) − ε2�u and

�m = �(�n) �∇u + P · �∇n�(�n)

[
	(u)

ε2| �∇| + 1

2

∣∣ �∇u
∣∣]. (10)

P is the projection matrix: P = I − −→n ⊗ −→n ; I is the identity
matrix and

−→∇ n = d
d−→n .

Lengths are then rescaled by a macroscopic distance D
such as ε̃ = ε/D 	 1 and α̃ = α/D 	 1. Time is rescaled
by τ = τ ′/ε2. τ ′ is related to the sharp-interface mobility M
by τ ′ = ε/(̃aHM ), such that τ = D2/(Mγ0). In the following,
tildes are omitted for sake of clarity. The dimensionless evo-
lution equation reads:

ε4∂t u = − ε2[�(�n)	u(u) − ε2 �∇ · (−| �∇u| �
)]

+ α2[ε2�w(u) − 	uu(u)w(u)]. (11)

In Eq. (11), the asymptotic result near the interface at equi-
librium has been used, 	(u) = ε2| �∇u|2/2, to evaluate �m.
Introducing this result makes the model nonvariational. How-
ever, up to third order [48], the asymptotics of the variational
model is identical. Therefore, the following analysis remains
valid for the variational model also. In this approximation,
�m also reads �m = −| �∇u| �
 with �
 = −�(�n)�n − P · �∇n�(�n),
which can be identified to the dimensionless vector �
 intro-
duced by Cahn and Hoffman [16].

B. Stress tensor

Now, inspired by Wheeler and McFadden [29,49], we com-
pute a stress tensor; that is by definition divergence free at
equilibrium, since forces acting on the interface must balance
each other. The stress tensor is of special interest as it provides
a mechanical interpretation of the phase-field model. In this
context it has been shown that the stress tensor is in general
not symmetric. The presence of surface energy anisotropy
induces a body couple throughout the diffuse interface as the
system can reduce its surface energy by curve shortening (as
in the isotropic case) but also by local rotation. Consider the
energy density �(�x, u, �∇u,�u), which has explicit depen-
dence on the scalar u, its gradient �∇u, its Laplacian �u, and
the position vector �x. The Euler-Lagrange equation can be
written as the divergence of a tensor:

0 = �∇ · S, (12)

with

S = �∇u ⊗ ∂�

∂ �∇u
− �I + ∂�

∂�u
�∇ �∇u − �∇u ⊗ �∇ ∂�

∂�u
, (13)

where I is the unit tensor. The calculation, originally made by
Wheeler [29], is given in the Appendix for sake of complete-
ness. Applied to the present formulation of the energy density,
Eq. (7), we obtain for the stress tensor:

S = −ε| �∇u| �∇u ⊗ �
 − �I + α2

ε
( �∇u ⊗ �∇w − w �∇ �∇u),

(14)
and its dimensionless form (S → εS) is given by

S = − ε2| �∇u| �∇u ⊗ �
 − �(�n)

[
	(u) + ε2

2
| �∇u|2

]
I

− α2

2ε2
w2I + α2( �∇u ⊗ �∇w − w �∇ �∇u), (15)

where lengths have been scaled by D, and again tildes are
omitted for sake of clarity. Then, we introduce a distance d
to perform the asymptotics, d being the signed distance from
point x of region � to the front ζ , defined as the zero-level
set of the phase-field u. In the region denoted �+, d > 0 and
d < 0 in �−. Using the asymptotic result near the interface
	(u) ∼ ε2| �∇u|2/2, we get for the dimensionless stress tensor:

S = ε2ud
2[−�n ⊗ �
 − �(�n)I]

− α2

2ε2
w2I + α2( �∇u ⊗ �∇w − w �∇ �∇u), (16)

with ud the first derivative of u with respect to the signed dis-
tance d . We see that the presence of surface energy anisotropy
leads to a body couple distribution given by �
 × �n. The latter
vanishes in the isotropic case, as �
 is parallel to �n. Therefore,
anisotropy induces a body couple throughout the interface
indicating that the interface can reduce its surface energy by
local rotation and curve shortening [49]. Then, we expand the
functions u and w far from the front ζ :

u(x) ∼ u0 + εu1 + ε2u2 + ..., (17)

w(x) ∼ w0 + εw1 + ε2w2 + .... (18)

034119-3



PHILIPPE, HENRY, AND PLAPP PHYSICAL REVIEW E 106, 034119 (2022)

In a small neighborhood of ζ , we define the stretched normal
distance to the front z = d/ε, and look for inner expansions
valid for a point near the front:

u(x) = U (z, x) ∼ U0 + εU1 + ε2U2 + ..., (19)

w(x) = W (z, x) ∼ W0 + εW1 + ε2W2 + .... (20)

Classically, the quantities depending on (z, x) are assumed to
not change when x varies normal to the front ζ with z held
fixed [54]. Then, the inner and outer expansions are related by
matching conditions such that [42]:

(u0 + εu1 + ...)(x + εz�n) = (U0 + εU1 + ...)(z, x). (21)

The left-hand side is expanded in powers of ε as εz → 0
and z → ±∞, the following conditions are obtained for the
function u and U , and analogous conditions are obtained for
w and W [42]:

u±
0 = lim

z→±∞U0, (22)

lim
z→±∞

(
u±

1 + z�n · �∇u±
0

) = lim
z→±∞U1, (23)

lim
z→±∞

(
u±

2 + z�n · �∇u±
1 + z2

2
D2

�nu±
0

)
= lim

z→±∞U2, (24)

where u±
k denotes limεz→0±uk and D�n is the directional deriva-

tive along the normal to the interface �n. Moreover, in this
coordinate system, we have:

�∇u = �∇xU + 1

ε
Uz�n. (25)

Using the classical method of matched asymptotic expan-
sions [55], and substituting the expansions for U and W in
Eq. (11), it can be shown from the matching conditions that,
up to second order in ε, the functions U and W can be
written as:

U = U0 = tanh z, (26)

W = εW1 = −KεU0,z, (27)

as U1 = 0 and W0 = 0 [42,48]. K is the total curvature of the
front at the projection of x on ζ . The calculation has been
made by Loreti and March in the isotropic case for the Will-
more energy [42], and we performed a similar analysis in two
dimensions for the anisotropic case [48]. When the surface
presents a corner, the derivation requires ε 	 α [48,56]. As
in the two-dimensional case, we find that anisotropy does
not intervene in the calculation of the functions U0, U1, W0,
and W1 in three dimensions. The functions U2 and W2 have
also been calculated in Ref. [48] but are not needed in the
calculation that follows. As we have derived the expression
for the stress tensor and since the functions U and W are
known, we can use a pillbox argument and the property �∇ ·
S = 0 to establish the equilibrium condition, at leading order
in ε.

Consider a pillbox enclosing a portion of the surface such
as the top and bottom parts of the pillbox are above the surface
at height −h and below it at height +h (Fig. 1). The pillbox

FIG. 1. Schematic of the surface, with the pillbox enclosing a
portion of it, the top and bottom parts of the pillbox are above the
surface at height −h and below it at height +h. The pillbox intersects
perpendicularly the contours of u. Its volume is negligible on the
outer scales but the variations of the phase field u are fully contained
within the pillbox, i.e., ε 	 h.

intersects perpendicularly the contours of u. Its volume is
negligible on the outer scales but the variations of the phase
field u are fully contained within the pillbox, i.e., ε 	 h. The
results of the asymptotic analysis [Eq. (26) and Eq. (27)],
used in the following calculation, also need ε 	 α [48,56].
Thus, we require ε 	 h 	 α. We first apply the divergence
theorem: ∫

Sp

S · �npdA = 0, (28)

where Sp is the surface of the pillbox and �np the normal to
the surface of the pillbox. The contributions from the top and
bottom surfaces vanish as the phase field u is constant far from
the interfacial region. Only remain the contributions from the
side surface. We denote �ns the normal on the side surface of
the pillbox, Ss. Thus,∫

Sp

S · �npdA =
∫

Ss

S · �nsdA. (29)

The surface integral over the side of the pillbox is written as
a double integral in terms of a line integral on the physical
surface and an integral in the normal direction [52,57]:∫

Ss

S · �nsdA =
∮

C

∫ h

−h
S · �nsdldy, (30)

where y is the signed distance between a point of the side
surface and the physical surface (and plays the same role as
d) and dl is the increment of arclength along the contour C,
which is defined by the intersection of the physical surface
and the surface of the pillbox. We now evaluate this integral
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for the first two terms of the stress tensor, as given by Eq. (16),∮
C

∫ +h

−h
ε2Uy

2[−�n ⊗ �
 − �I] · �nsdldy

=
∫ +∞

−∞
εU0,z

2dz
∮

C
[−�n ⊗ �
 − �I] · �nsdl

= 4

3
ε

∮
C

[−�n ⊗ �
 − �I] · �nsdl. (31)

By application of the surface divergence [4,52,58], we have∮
C

[−�n ⊗ �
] · �nsdl

=
∫

S

�∇S · [−�n ⊗ �
]dS −
∫

S
[−�n ⊗ �
] · K�ndS (32)

with K = �∇S · �n. Moreover, by definition of the vector �
, we
have [−�n ⊗ �
] · �n = −( �
 · �n)�n = ��n. Similarly,

−
∮

C
�I · �nsdl = −

∫
S

�∇S�dS +
∫

S
�K�ndS, (33)

where �∇S� is the surface gradient of �. Then we use the
identity �∇ · (�u ⊗ �v) = ( �∇�u) · �v + ( �∇ · �v)�u and applied it to
−�n ⊗ �
:

�∇S · (−�n ⊗ �
) = −�n �∇S · �
 − L · �
, (34)

where L = �∇S�n is the curvature tensor [4], the opposite signs
in the expressions for both K and L, as compared to classical
ones, comes from the definition of the normal vector in our
model, which points toward �+. Thus, we obtain∮

C

∫ +h

−h
ε2Uy

2[−�n ⊗ �
 − �I] · �nsdldy

= 4

3
ε

∫
S

(−�n �∇S · �
 − L · �
 − �∇S�)dS. (35)

Then, we evaluate the contribution of the third term of the
stress tensor [Eq. (16)] in the integral defined by Eq. (30). At
leading order in ε, we find

α2

2ε2
W 2 = α2

2
W1

2 = α2

2
K2U0,z

2, (36)

and we are now able to calculate the following integral:

−
∮

C

∫ +h

−h

α2

2ε2
W 2I · �nsdldy

= −α2

2

∫ +∞

−∞
εU0,z

2dz
∮

C
K2�nsdl

= −2

3
εα2

∮
C

K2�nsdl. (37)

The surface divergence theorem gives∮
C

K2 �nsdl =
∫

S

�∇SK2dS −
∫

S
K3�ndS, (38)

and, therefore, Eq. (37) can be written, at leading order in ε,
as

2

3
εα2

∫
S

(K3�n − �∇SK2)dS. (39)

Now we evaluate the next term of the stress tensor, �∇u ⊗ �∇w,
and find

�∇u ⊗ �∇w =
(

�∇xU + 1

ε
Uz�n

)
⊗

(
�∇xW + 1

ε
Wz�n

)
= −U0,z

2�n ⊗ �∇SK + 1

ε2
WzUz�n ⊗ �n, (40)

where we have used that �∇xU0 = 0 and �∇xK = �∇SK at lead-
ing order [42,59]. The term in �n ⊗ �n does not contribute to the
integral, Eq. (30), since (�n ⊗ �n) · �ns = (�n · �ns)�n = 0. There-
fore, we have

−
∮

C

∫ +h

−h
α2U0,z

2[�n ⊗ �∇SK] · �nsdldy

= −4

3
εα2

∮
C

[�n ⊗ �∇SK] · �nsdl. (41)

Still in applying the surface divergence theorem, we obtain∮
C

[�n ⊗ �∇SK] · �nsdl

=
∫

S

�∇S · [�n ⊗ �∇SK]dS −
∫

S
[�n ⊗ �∇SK] · K�ndS

=
∫

S
[�n �∇S · �∇SK + L · �∇SK]dS −

∫
S

[�n · �∇SK]�nKdS.

(42)

The last term of the right-hand side vanishes since, by defini-
tion, the surface gradient of any quantity is perpendicular to
the normal vector. Thus, we obtain

−
∮

C

∫ +h

−h
α2U0,z

2[�n ⊗ �∇SK] · �nsdldy

= −4

3
εα2

∫
S

[�n�SK + L · �∇SK]dS. (43)

Finally, we evaluate the last term of the stress tensor, in
w �∇ �∇u, and we find at leading order,

w �∇ �∇u = −KU0,z
2 �∇x�n − K

ε
U0,zU0,zz�n ⊗ �n, (44)

where we have used �∇xU0,z = 0. Once again, the term in �n ⊗ �n
does not contribute to the integral, Eq. (30), since (�n ⊗ �n) ·
�ns = 0. Moreover, as �∇x�n = �∇S�n = L at leading order, we
have

−
∮

C

∫ +h

−h
α2(−KU0,z

2L
) · �nsdldy

= 4

3
εα2

∫
S

[K �∇S · L + L · �∇SK − K2L · �n]dS. (45)

Since the curvature tensor is tangential, L · �n = 0 (and L =
LTan, its tangential component) [4]. Moreover, �∇S · L =
�∇SK − |L|2�n [4]. Considering that the surface of integration
S is arbitrary, the equilibrium condition �∇. S = 0 is derived
from Eq. (35), Eq. (39), Eq. (43), and Eq. (45), projected on
�n:

−�∇S · �
 − α2

(
�SK + K|L|2 − K3

2

)
= 0, (46)
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since �∇S�, �∇SK , and �∇SK2 are tangent to the physical surface.
We have also used the fact that L · �
, with �
 = −�(�n)�n −
P · �∇n�(�n), is tangent to the surface. Indeed, L · �
 = −L ·
(P · �∇n�) = −L · �∇n� since L · �n and L · (�n ⊗ �n · �∇n�) =
(�n · �∇n�)L · �n = 0. As the curvature tensor is tangential, one
can show that P · L · P = LTan = L [4]. It follows that L ·
�
 = P · (L · �
), the projection of the vector L · �
 onto the
physical surface returns the vector, i.e., the latter is tangent to
the surface.

Furthermore, it can be shown that �SK + K|L|2 − K3

2 =
�SK − 2KG + K3

2 [14]. Therefore,

−�∇S · �
 − α2

(
�SK − 2KG + K3

2

)
= 0. (47)

The above equilibrium condition is the main result of this
work. It shows that the phase-field model converges formally
toward the regularized sharp-interface theory [Eq. (5)], in the
limit ε 	 α. In two dimensions we have shown that, in the
limit ε 	 α, the normal interfacial velocity vn is proportional
to the energy difference between the flat and curved surfaces
and converges to the sharp-interface result for motion-by-
curvature [48],

vn = �̂(θ )κ − α2

(
κss + κ3

2

)
, (48)

where �̂(θ ) = �(θ ) + �θθ (θ ) is the dimensionless interface
stiffness and θ the surface orientation (measured anticlock-
wise from a fixed direction). �(θ ) is the dimensionless surface
energy, κ is the interface curvature, and s the arclength. In
the direction of increasing s the region �+ is on the right.
In two dimensions, −�∇S · �
 = �̂κ with negative κ = θs when
�+ forms a bump. Assuming that, in three dimensions, the
interfacial velocity remains proportional to the energy differ-
ence between the flat and curved surfaces [Eq. (47)], extension
of Eq. (48) gives:

vn = −�∇S · �
 − α2

(
�SK − 2KG + K3

2

)
, (49)

which is the dimensionless form of the sharp-interface veloc-
ity for regularized anisotropic motion-by-curvature [Eq. (4)].
In the present analysis, we have formally demonstrated, in the
limit ε 	 α, the convergence of the phase-field model toward
the sharp-interface equilibrium condition in three dimensions
[Eq. (5)]. As mentioned earlier, in the dynamic settings, we
had previously shown that the model converges toward the
sharp-interface theory for anisotropic motion-by-curvature in
two dimensions [48]. Moreover, in three dimensions, the reg-
ularized but isotropic model was shown to converge toward
motion-by-curvature by Loreti and March [42]. Therefore,
in light of the present analysis, it is reasonable to consider
that the phase-field model mimics anisotropic motion-by-
curvature in three dimensions, despite the fact that its formal
convergence toward Eq. (49) is not yet proved. In the other
limit, α < ε, the presence of corners with high curvatures
(small corner size) is expected to modify the tanh profile for
the phase-field u in the corner region. In turn, both the equi-
librium condition and the normal velocity may deviate from
the sharp-interface results. Corners, in this limit, were studied

in two dimensions [56] and, indeed, we found that the model
does not converge toward sharp-interface theory; however, the
phase transition at the interface is preserved and presents the
same properties as the classical problem. Therefore, the model
can also be used in the limit of small corner size, as compared
with interface thickness, since regularization still operates.
However, asymptotic convergence toward sharp-interface cor-
ners is lost. Now that we have discussed the convergence of
the phase-field model toward the sharp-interface theory, we
investigate, in the next section, the effect of the regularization
parameter on corner’s morphology at equilibrium.

III. CORNERS

In the nonregularized sharp-interface picture, Cahn and
Hoffman have shown that [16]

−�∇S · �
 = μ (50)

at equilibrium, where μ is the dimensionless free-energy
difference between the two coexisting phases. The simplest
solution to the above equation arises for an isolated particle
such that its radius vector from the origin to a point of the
particle surface satisfies [16]:

�r = − 2

μ
�
. (51)

Since �∇S · �r = 2, the equilibrium condition is thereby satis-
fied. Therefore, the equilibrium shape is geometrically similar
to the �
 plot [16] and inversely proportional to μ. Using
the spherical polar angles θ and ϕ, the �
 vector is given
by �
 = ��er + �θ �eθ + �ϕ�eϕ/ sin θ , where �er = −�n, with our
definition of the normal vector. Converting to Cartesian coor-
dinates (x, y, z) yields:

x = � sin θ cos ϕ + �θ cos θ cos ϕ − �ϕ sin ϕ/ sin θ, (52)

y = � sin θ sin ϕ + �θ cos θ sin ϕ + �ϕ cos ϕ/ sin θ, (53)

z = � cos θ − �θ sin θ. (54)

As an illustration, the �
 plot is shown in Fig. 2 for the
following anisotropy function:

�(�n) = 1 + p

(
4

∑
i=x,y,z

ni
4 − 3

)
(55)

for p = 0.05 [Fig. 2(a)]. One can see that the equilibrium
shape is nonspherical but it remains smooth. The regions
of high curvature correspond to directions of high surface
energies. When p is further increased the surface energy is
strongly anisotropic and nonconvex, “ears” appear on the �

plot. Some orientations are missing on the equilibrium shape,
which now presents sharp corners and edges [Fig. 2(b), p =
0.15]. For p = 0.15, four orientations coexist at equilibrium in
the corner region (four-face pyramids). For p = −0.15 the �
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FIG. 2. The �
 plot for � = 1 + p(4
∑

i=x,y,z ni
4 − 3) with p = 0.05 (a) and p = 0.15 (b). The orientations for which the �
 vectors form

the exterior flaps and ears of the �
 plot (b) are excluded from the equilibrium shape. These are the so-called missing orientations. (c) The �

plot for p = −0.05. (d) The �
 plot for p = −0.15.

function presents trigonal symmetry, three orientations coexist
at the corner [Fig. 2(d)]. In three dimensions, the criterion for
the onset of missing orientations has been derived by Sekerka
[60]. In two dimensions, � reduces to � = 1 + p cos 4θ with θ

the surface orientation. Corners are visible on the equilibrium
shape when the surface stiffness, �̂(θ ) = �(θ ) + �θθ (θ ), is
negative for some orientations, i.e., when p � 1/15.

For a sufficiently large value of the parameter p, say,
p = 0.5, corners in the sharp-interface theory are sharp [as
in Fig. 2(b)]. In the present phase-field model, corners are
rounded since regularization penalizes the interfacial regions
of high curvatures. In the energy [Eq. (7)], the bending length
α prescribes the corner size. Let us examine the effect of
regularization on the morphology of the corners in the phase-
field model. In the phase-field simulations, for which periodic
boundary conditions are used, the initial configuration is pre-
pared such as a corner is present, of random size and shape,
and the system relaxes toward equilibrium [via the Allen-
Cahn equation, Eq. (11)]. The interface width ε is 0.2 and
the cubic anisotropy function [Eq. (55)] is used for p = 0.5.
Corners are shown in Fig. 3 for configurations near equilib-
rium. The isosurface of the phase field u = 0 is shown for two
corner sizes α = 0.2 and α = 0.5. As expected, corners size
scales in α. For α > ε corners formally satisfy Eq. (47). For
α = ε the shape of corners resembles sharp-interface corners
even if the strict convergence is lost [56]. To our knowledge,
the analytical solution for a regularized corner at equilibrium

[solution of Eq. (47)] is not known in the sharp-interface
problem in three dimensions. The two-dimensional problem
has been solved by Spencer [13]. However, in three dimen-
sions, it is possible to derive the far-field solutions when a
small slope approximation is employed [17]. We will make
this assumption in order to derive the far-field solution for a
corner at equilibrium and compare it to simulations. In the
sharp-interface model, the total dimensionless energy of a
surface S is

E =
∫

S
�∗

√
1 + | �∇h|2dxdy, (56)

where h(x, y) gives the surface location, and �∗ = �(�n) +
α2K2/2 is the dimensionless regularized surface energy with
as before α the corner size and K the total curvature of the
interface. We then employ the small slope approximation
|hx| 	 1 and |hy| 	 1 and expand the weighted surface en-

ergy �∗
√

1 + | �∇h|2:

�∗
√

1 + | �∇h|2

∼ ε0 + ε1(hx
2 + hy

2) + ε2
(
hx

4 + hy
4
)

+ ε3
(
hx

2hy
2
) + · · · + α2

2
(hxx

2 + 2hxxhyy + hyy
2)

(57)

034119-7



PHILIPPE, HENRY, AND PLAPP PHYSICAL REVIEW E 106, 034119 (2022)

FIG. 3. Corners near equilibrium (as defined by the isosurface
u = 0) for the anisotropic surface energy � of Eq. (55) with p = 0.5
and for two corner sizes α = 0.2 (a) and α = 0.5 (b).

with ε0 = 1 + p, ε1 = 1/2 − 15p/2, ε2 = −1/8 + 95p/8,
and ε3 = −1/4 + 63p/4 for the cubic surface energy �

defined by Eq. (55). At equilibrium, the Euler-Lagrange con-
dition δE/δh = 0 up to fourth order leads to a nonlinear
partial differential equation for the crystal shape [17]:

− m �∇2h + (
ahx

2 + bhy
2
)
hxx

+ (
bhx

2 + ahy
2)hyy + chxhyhxy − α2 �∇4h = 0, (58)

where m = −2ε1, a = 12ε2, b = 2ε3, and c = 8ε3. We can
now determine the far-field solution. As in Golovin et al. [17],
the solution along an edge is supposed to have the following
asymptotic behavior:

h ∼ Ay + f (x), (59)

as y → −∞. A is the far-field slope and f (x) a function to
be determined. For x → −∞, we have h ∼ Ax + f (y). This
implies f ′(±∞) = ∓A. Taking the ansatz f ′ = Q tanh kx,
and substituting into the equilibrium condition yields Q2 =
3(m − bA2)/a and k2 = aQ2/6α2. As Q2 = A2 (compatibility

FIG. 4. (a) A corner near equilibrium (as defined by the isosur-
face u = 0) for the anisotropic surface energy � of Eq. (55) with
p = 0.07. (b) The phase-field profile (black squares) along an edge
far from the corner is compared to the analytical far-field solution in
the small slope approximation (solid line). For clarity, the z axis is
stretched as the far-field slope is small ∼0.1.

condition), we have for the far-field slope:

A =
√

3m

a + 3b
. (60)

This allows us to determine the crystal shape for y → −∞:

h ∼ Ay −
√

6α2

a
ln

[
cosh

(√
a

6α2
Ax

)]
. (61)

This coincides with the solution derived in Ref. [14], but
the coefficients are quantitatively different in our analysis as
we use another function for the anisotropic surface energy.
We can now compare this solution along an edge to phase-
field simulations for a corner at equilibrium (Fig. 4). The
phase-field profile (defined by the isosurface u = 0) along an
edge and the analytical solution in the small slope approx-
imation are shown Fig. 4(b). This comparison is made for
p = 0.07, and α = ε = 0.2. The agreement is very good. Here
we restrict ourselves to low values of p. In practice, we find
that the far-field slopes A, in the small slopes approximation,
may rapidly depart from their expected thermodynamic values
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[13], as given by the common tangent construction for the
weighted surface energy, as soon as p > 0.1.

IV. PHASE SEPARATION OF CRYSTAL SURFACES

In this section, we apply the regularized phase-field model
to the interfacial phase separation. As it is well known, a crys-
tal surface will phase separate if its orientation is a missing
orientation. In two dimensions, there is an analytical crite-
ria, missing orientations intervene as soon as the stiffness
(� + �θθ ) is negative for some orientations. The equivalent
analytical criteria in three dimensions was recently formu-
lated by Sekerka [60] and used in the following to determine
the presence of the missing orientations, and, therefore, the
presence of the interfacial phase separation. In this case, the
surface may be metastable, which corresponds to the nucle-
ation regime, or unstable. The latter regime is known as the
spinodal of facets, and unstable interfaces will decompose into
stable facets [7]. This instability is also known as the faceting
instability or as the Herring instability. The thermodynamics
origin of this process is theoretically well understood. The
analogy with spinodal decomposition is often made as the
phase separation is similar to spinodal decomposition in alloys
since the role played by the surface orientation is close to that
of composition in alloys.

A. Faceting instability

The spinodal decomposition of a thermodynamically un-
stable surface into facets has been commonly observed in
metals, ceramics, and semiconductors [61–65]. In principle,
stepped surfaces, i.e., a misoriented singular surfaces (or
facets) may also phase separate. Thermodynamics predicts the
nature of the stable surfaces resulting from the decomposition
of a stepped surface, which may be either facets (singular sur-
faces) or a mixture of facets and rough surfaces [41]. However,
more complex interactions are responsible for phase separa-
tion between a facet and a stepped surface or between two
surfaces of different stepped density, as for the reconstruction
of a misoriented Si(111) surface [41,65]. There are many areas
where the interfacial phase separation is at stake. For example,
the phase separation at the interface has been evidenced dur-
ing thermal grain boundary grooving [66,67] with grooving
profiles of tungsten in vacuum exhibiting a faceted morphol-
ogy at high temperature. Moreover, grain boundaries may also
facet [68]. The latter example also underlines the importance
of elastic effects on the faceting kinetics of some surfaces [37].
In fact, Stewart and Goldenfield [19] have shown, following
Marchenko’s work [69], that the interface stress may alter the
dynamics of spinodal decomposition of a crystal surface at
long times. Elastic effects are ignored in the present approach
since our aim is to illustrate the interfacial phase separation
with the classical motion-by-curvature kinetics [Eq. (4)] that
does not contain the elastic contribution. Let us mention an-
other type of surface for which the interfacial phase separation
operates. Indeed, an initially stable surface may facet as oxy-
gen exposure modifies the surface energy anisotropy [70,71].
This process is known as adsorbate-induced faceting and can
be used as nanotemplates, for instance, to synthesize metal-
lic nanoparticles [72]. This makes the faceting problem of

practical interest also. In our paper, when we refer to the
faceting instability, it means that an unstable surface will
decompose into stable surfaces, but such surfaces are rough
as the surface energy is differentiable in our model. We may
also refer to facets in the following when describing the nearly
faceted morphology, but it shall be kept in mind that it is a
misnomer.

We first investigate the dynamics of the faceting in-
stability in the context of pure motion-by-curvature for
crystal surfaces with trigonal symmetry leading to the for-
mation of triangular pyramids. The dissipative evolution
equation (i.e., the Allen-Cahn equation in phase-field theory)
mimics attachment-kinetics limited growth. Trigonal symme-
try is reproduced for negative p in the � function given by
Eq. (55), see Fig. 2(c) and Fig. 2(d). We set p = −0.7 in
the following and study the faceting instability around one
of the four corners of the Wulff plot [Fig. 2(d)] as they are
all identical. At t = 0 the initial flat surface is randomly per-
turbed so that to initiate the decomposition with fluctuations
of all possible wavelengths. Phase separation will then lead
to the formation of triangular pyramids of which orientations
correspond to that of the three stable surfaces near the corner
of the Wulff shape [Fig. 2(d)]. Figure 5 shows two snapshots
of the simulation at different times. The top views shows
the crystalline surface as defined by the isosurface of the
phase field (u = 0). In the simulations we have used ε = 0.1
and α = 0.2, as well as periodic boundary conditions. As
expected, the surface is made of triangular pyramids. In this
illustration, the facets have the same surface energy, the only
way for the system to decrease its energy is to decrease the
length of the network made by corners and edges. The bending
energy is the driving force for the coarsening process, and
concomitantly the mean facet size increases and the number
of pyramids decreases. We define the following characteristic
morphological length scale L, as (Lx + Ly)/2 with Lx and Ly

the mean distances between corners (or edges) in, respec-
tively, the x and y directions. L is plotted versus time t in
Fig. 6. A t1/3 scaling law is found after an initial transient, as
predicted by sharp-interface theory and simulations [25]. The
topological events that we observe are identical to that found
by Watson and Norris in the sharp-interface formulation [25],
see Fig. 7, coarsening proceeds by edge contraction, which
leads to the disappearing of one facet as the two adjacent
facets merge, or by cube removal, for which the three facets
simultaneously disappear to form one corner.

The exponent 1/3 was also found in the coarsening dy-
namics of triangular pyramids [73,74] resulting from the
Ehrlich-Schwoebel instability [75,76]. This is not surpris-
ing as the free-energy formulation of the continuum model
resembles Eq. (56). It involves a potential that favors partic-
ular orientations (the so-called magic slopes) of the pyramid
surfaces and that is regularized with a bending energy. The
dynamics is also of type-A, as for thermodynamic faceting
kinetically controlled by the condensation-evaporation mech-
anism, i.e., by motion-by-curvature. Therefore, the present
phase-field model is a suitable formulation of this sharp-
interface problem also.

Coarsening of triangular pyramids (e.g., 111 surfaces, trig-
onal symmetry) was also investigated by Golovin et al. [17]
in the sharp-interface model, also with type-A dynamics, and
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FIG. 5. (a) Top view of the crystal surface at t = 0.8 (as defined
by the isosurface u = 0) for the anisotropic surface energy � of
Eq. (55) with p = −0.7. In the simulation, we have used ε = 0.1
and α = 0.2. (b) Top view of the crystal surface at t = 10 and (c) at
t = 50. The gray scale gives the height of the surface.

in the small slope approximation. Their numerical simula-
tions give a coarsening exponent close to 1/2. They also
observed a value close to 1/2 for square pyramids (e.g., 001
surfaces, quadratic symmetry). This is close to the theoretical
prediction (1/2) made by Mullins [77] when dynamics of
surface reconstruction is governed by the condensation-
evaporation mechanism, but considerably larger than that

FIG. 6. Characteristic domain size L versus time t measured in
the phase-field simulation during coarsening of triangular pyramids
(black squares). The solid gray line shows a ∼t1/3 trend for sake of
comparison. L is defined as (Lx + Ly )/2 with Lx and Ly the mean
distances between corners (or edges) in, respectively, the x and y
directions.

obtained by direct power counting in the motion equation,
which predicts the estimate 1/4 [18,78]. In any case, coars-
ening is faster in Golovin’s study [17] as his model includes
a driving force for growth and therefore convective effects
are present, which are known to contribute to fast coarsening
[11,12,20,48]. The coarsening dynamics of square pyramids
was also thoroughly studied by Moldovan and Golubovic [74],
if most realizations can be described by an exponent 1/4,
as also observed by Siegert [73] and Liu and Metiu [18], it
presents in reality a more subtle behavior, see Ref. [74] for
more details.

B. Nucleation of crystal surfaces

Another interesting problem that may be addressed with
the present phase-field model is nucleation of crystal surfaces.
This time, the initial orientation of the surface is metastable,
which implies for the system to overcome a nucleation barrier
before entering into the growth regime (for the new formed
facet). We will investigate the early stages of this interfacial
phase separation in the nucleation-growth regime. We are
aware of only a few theoretical studies on this phenomena
[18,79], as most of the efforts were dedicated to understand
the dynamics of spinodal of facets. Those studies were limited
to two dimensions but the problem is fully three dimen-
sional, even when the phase separation only presents two
stable facets (such as terrace-and-step structures). Thus, in
the present work, we study nucleation of crystal surfaces in
three dimensions. We restrict ourselves to type-A dynamics
(motion-by-curvature). For this purpose we now set p = −0.5
in the anisotropy function [Eq. (55)] and use ε = 0.2 and
α = 0.2 in our phase-field simulations with periodic boundary
conditions. We choose the initial orientation around one of the
edge regions of the Wulff plot [Fig. 2(d)] and in the metastable
regime of the phase separation but close to the spinodal limit
(i.e., low nucleation barrier). One has to introduce noise in the
simulations to enhance nucleation of the stable orientation,
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FIG. 7. Top view of the crystal surface at various times for a small region of the simulations shown in Fig. 5. Coarsening proceeds by edge
contraction, which leads to the disappearing of one facet (marked by arrows on the figures) or by cube removal (dotted circle).

which is a thermally activated rare event. The noise is intro-
duced in the same spirit than in the sharp-interface theory [21],
and a term proportional to AX pu(u) is added to the Allen-
Cahn equation [Eq. (11)] with p(u) = (1 + u)2(2 − u)/4 and
X is uniformly distributed on the interval [−1, 1]. The same
value of X is used for all points in the direction normal to
the interface. A is a constant, independent of time, that sets
the amplitude of the noise and is related to temperature, but
we are not interested here in a precise relationship between
parameters and temperature. However, we need to work in
the small noise regime in order for the calculation of critical
shapes without noise to remain a good approximation [21].
According to the analysis performed in Ref. [48], the addition
of such a term in the Allen-Cahn equation will modify the nor-
mal velocity of the interface with a term proportional to AX .
In other words, noise is not added to the phase field u itself, as
done in classical phase-field simulations with noise, but this
is the interface location that is perturbed. Indeed, the model
presents two types of phase transition involving the phase
field u and also its gradient

−→∇ u (the interface orientation).
The noise addition is designed to perturb

−→∇ u, so that to ini-
tiate the corresponding interfacial phase transition. With our
choice of parameters for the � function and the orientation of
the initial surface, the final state is expected to be a “mixture”
of two phases as there are two stable orientations, one of
each side of the edge [Fig. 2(d)], which share a common
direction, say, y. At long times, the system can be reduced
to two dimensions (x, z), considering that the time needed for
a facet to shrink in the parallel direction is negligible in front
of the coarsening time. This is not true at the early stages since
nucleation requires also growth of the newly formed facet in
the y direction. The shape of the critical nucleus (the newly
formed facet) is known for such a system, and must satisfy in
two dimensions Eq. (48) for vn = 0, since the critical shape
corresponds to an unstable equilibrium, i.e., a saddle point
[21]. The three-dimensional saddle-point solution is given by
the 2D solution translated in the y direction, as this construc-
tion indeed satisfies Eq. (47).

The results of the phase-field simulations are given in
Fig. 8, Fig. 9, and Fig. 10. Figure 8 shows the early stages
of the nucleation process. The newly formed facets, resulting
from thermal fluctuations, enter into the growth regime once
they reach a given size (and shape). Those supercritical crystal
surfaces are found to correspond to a local deformation of the
initial surface, which indicates that ridge-crossing nucleation
is dynamically favored. In the sharp-interface theory, it was
shown by two-dimensional simulations of the equation of
motion that ridge-crossing is preferred over saddle-point nu-
cleation since the latter would require a nonlocal deformation
of the initial surface [21]. We find that ridge crossing is also
dynamically favored in our three-dimensional phase-field sim-
ulations. The phase-field simulations also show nucleation at
random locations. Nucleation of crystal surfaces is known to
present a very specific feature, called induced nucleation (or
enhanced nucleation) [18,61,79,80], when a facet nucleates
nearby a growing facet. Induced nucleation is expected to
affect the dynamics of the phase separation, as compared
to classical thermally activated nucleation. Furthermore, the
induced facet shows characteristics that are different from
that of the first critical facet. Nevertheless, such a process
is not observed in our simulations where the dynamics is of
type-A (condensation-evaporation). The induced nucleation
mechanism, when a facet induces at its wake formation of
additional facets, is therefore not evidenced in our phase-field
simulations. Actually, the regions near the new facet are found
to remain in the metastable regime and with a lower driving
force as compared to that of the initial orientation of the
crystalline surface. Therefore, nucleation near a facet is still
possible but less probable. This suggests that induced nucle-
ation is peculiar to the surface diffusion mechanism [18], as
the formation of the first facet is very local in this regime and
would lead to the appearance of unstable orientations in the
regions adjacent to the newly formed facet, where one or more
induced facets are then formed. Figure 9 shows that nucleation
and growth of the formed facets lead to a two phases system,
very similar to “step-and-terrace” surfaces. Concomitantly,
some facets are found to shrink, and coarsening operates. As
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FIG. 8. Snapshots of the phase-field simulations during the first stages of nucleation of crystal surfaces at various times. Only the
isosurfaces u = 0 are shown. For clarity, the z axis is stretched.

expected, the system reduces to two dimensions (x, z) at long
times (t ≈ 20), as the facets are infinite in the y direction
(Fig. 10).

V. SUMMARY

From the divergence-free diffuse stress tensor, we have
shown that the present phase-field model converges toward
the equilibrium condition of the regularized sharp-interface
theory in the limit of small interface thickness. In the dynamic
setting, this result suggests the convergence of the Allen-Cahn

FIG. 9. The isosurface u = 0 at t = 2, as given by the phase-field
simulation. The system is a “mixture of two phases” (or orientations)
similar to “step-and-terrace” surfaces and resulting from nucleation
and growth of crystal surfaces, which then enters into the coarsening
regime.

version of the regularized phase-field model toward the sharp-
interface theory for strongly anisotropic motion-by-curvature,
even if the formal convergence remains to be established in
three dimensions. We have also compared the shape of the
corners at equilibrium, as given by the phase-field simula-
tions, to theory, and we found a good agreement between
simulations and theory for the far-field solutions in the small
slope approximation. Then we have investigated the dynamics
of the coarsening regime for crystal surfaces with trigonal
symmetry resulting from the faceting instability, and we re-
covered the following scaling law L ∼ t1/3 for the growth in
time t of a characteristic morphological length scale L. The
topological events arising during coarsening were found to
be identical to those of the sharp-interface problem. Finally,
we have studied nucleation of crystal surfaces for a two-phase
system. We found that ridge crossing is dynamically favored
as nucleation operates via a local deformation of the initial
surface. Moreover, we found no evidence of induced nucle-
ation. This work demonstrates that the regularized phase-field
model is a suitable formulation of the sharp-interface problem
for phase separation of crystal surfaces. It could be used to
study crystal surfaces with other symmetry, the influence of
growth on the coarsening dynamics, as well as the effect of
interface stress on the phase separation [19,37,69]. There-
fore, the present phase-field model shall allow one to model
faceting of realistic crystalline surfaces. Our generic model
mimics pure motion-by-curvature, which can be applied and
extended to many different interfaces and problems, such as
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FIG. 10. Top view of the crystal surface, as defined by the isosurface u = 0, at various times.

anisotropic grain boundary motion [81], for instance. One
could also use the model with a type-B dynamics (Cahn-
Hilliard) to mimic surface diffusion in three dimensions, as
proposed by Torabi et al. [30]. They showed using a matched
asymptotic expansion method [30] that the model converges
toward the equation for surface diffusion in two dimensions.
This shall remain valid in three dimensions as well, whereas a
formal analysis of the surface diffusion problem may be rather
difficult.
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APPENDIX

For the derivation of the regularized stress tensor
in the phase-field theory, consider the energy density
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�(�x, u, �∇u,�u); which has explicit dependence on the scalar
u, its gradient �∇u, its Laplacian �u and the position vector �x.
We have

d� = ∂�

∂x j
dx j + ∂�

∂u
du + ∂�

∂u j
du j + ∂�

∂�u
d�u, (A1)

where we use the Einstein summation convention. x j are the
components of the position vector, and uj = ∂u

∂x j
. Differentiat-

ing with respect to xk gives

d�

dxk
= ∂�

∂xk
+ ∂�

∂u
uk + ∂�

∂u j
u jk + ∂�

∂�u

∂�u

∂xk
. (A2)

We then use the Euler-Lagrange equation:

∂�

∂u
− �∇ · ∂�

∂ �∇u
+ �

(
∂�

∂�u

)
= 0 (A3)

in Eq. (A2) and obtain

d�

dxk
= ∂�

∂xk
+ d

dx j

(
uk

∂�

∂u j

)
+ ∂�

∂�u

∂�u

∂xk
− uk

∂2

∂x j∂x j

(
∂�

∂�u

)
. (A4)

We set X = ∂�
∂�u and Y = uk and use the identity X�Y − Y �X = −�∇ · (Y �∇X ) + �∇ · (X �∇Y ). Thus,

d�

dxk
− ∂�

∂xk
= �∇ ·

(
uk

∂�

∂ �∇u

)
+ �∇ ·

(
∂�

∂�u
�∇uk

)
− �∇ ·

(
uk �∇ ∂�

∂�u

)
. (A5)

For energy density � that is not explicitly dependent of the position, as in the present model, we have ∂�
∂xk

= 0. Equation (A5)
holds for the three components of the vector position and therefore can be written as the divergence of a tensor:

0 = �∇ · S, (A6)

with

S = �∇u ⊗ ∂�

∂ �∇u
− �I + ∂�

∂�u
�∇ �∇u − �∇u ⊗ �∇ ∂�

∂�u
. (A7)

I is the unit tensor.
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