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Recent works have established universal entanglement properties and demonstrated validity of single-particle
eigenstate thermalization in quantum-chaotic quadratic Hamiltonians. However, a common property of all
quantum-chaotic quadratic Hamiltonians studied in this context so far is the presence of random terms that
act as a source of disorder. Here we introduce tight-binding billiards in two dimensions, which are described by
noninteracting spinless fermions on a disorder-free square lattice subject to curved open (hard-wall) boundaries.
We show that many properties of tight-binding billiards match those of quantum-chaotic quadratic Hamiltonians:
The average entanglement entropy of many-body eigenstates approaches the random matrix theory predic-
tions and one-body observables in single-particle eigenstates obey the single-particle eigenstate thermalization
hypothesis. On the other hand, a degenerate subset of single-particle eigenstates at zero energy (i.e., the zero
modes) can be described as chiral particles whose wave functions are confined to one of the sublattices.
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I. INTRODUCTION

The past three decades have established new perspec-
tives in studies of condensed-matter lattice systems, inspired
by concepts from other fields of physics such as statistical
physics, random matrix theory (RMT), and quantum infor-
mation. For example, the question of whether observables in
isolated many-body systems in a lattice, driven away from
equilibrium, agree with predictions of statistical physics en-
sembles after long times, has been in many ways triggered by
insights in RMT [1–3]. As one of the nontrivial extensions
of RMT one usually considers the eigenstate thermalization
hypothesis (ETH) [3–6], which explains the mechanism of
thermalization in generic nonintegrable systems. In a sim-
ilar way, the distinction between ground states of lattice
Hamiltonians and highly excited states has benefited from
results of quantum information theory. A well-known example
represents bipartite entanglement entropies that may scale
with the area or volume of a subsystem, thereby providing
in many cases an efficient distinction between ground states
of local Hamiltonians [7] and excited eigenstates [8], respec-
tively.

An important class of Hamiltonians that are the fo-
cus of this paper is quadratic Hamiltonians, which can
be expressed by bilinear forms in creation and annihi-
lation operators. Several quadratic Hamiltonians, such as
the three-dimensional Anderson model below the localiza-
tion transition and the quadratic Sachdev-Ye-Kitaev (SYK2)
model, exhibit statistical properties of single-particle energy
spectrum, as well as entanglement properties of many-
body energy eigenstates, that are consistent with predictions
of RMT [9–17]. Moreover, properties of observables in
single-particle energy eigenstates comply with the single-
particle ETH [18]. One may hence argue that they ex-

hibit single-particle quantum chaos. We refer to quadratic
Hamiltonians with these properties as quantum-chaotic
quadratic Hamiltonians [17]. However, a common feature of
the latter Hamiltonians studied so far is the presence of ran-

FIG. 1. Tight-binding billiards studied in this paper. (a), (b)
Billiard 1 (B1). (c), (d) Billiard 2 (B2). Left column shows the
boundaries in continuum given by Eqs. (2) and (3), while the right
column shows examples of the lattices used in actual calculations
(a lattice site is in a center of a square). The center of mass is denoted
by i∗.
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dom terms that act as a source of disorder. Here we study
noninteracting spinless fermions in square lattices with open
(hard-wall) boundaries that are shaped such that in the ther-
modynamic limit they represent walls of a billiard, see Fig. 1.
We dub these systems tight-binding billiards. Since nonin-
teracting fermions in square lattices with regular boundaries
(e.g., a rectangle) do not exhibit any signatures of quan-
tum chaos, the chaotic behavior emerges due to a particular
shape of the open boundaries. Understanding to what extent
the tight-binding billiards of noninteracting fermions comply
with single-particle quantum chaos is the main motivation of
our paper.

Our work is in part also motivated by experimental activ-
ities in quantum nanostructures [19]. Applying laser-induced
quenches to a TaS2 material, the authors of Ref. [19] recently
managed to create geometrical confinement with atomically
precise shapes that resemble lattice billiards. While our study
does not attempt to mimic the actual experimental conditions,
it aims to shed some light onto the statistical properties and
the entanglement content in these systems, and paves the way
toward further applications. Other lattice systems that carry
certain similarities to the tight-binding billiards studied here
include, e.g., free particles on square and cubic lattices with
disorder on the boundaries [20,21], graphene lattices with
confinement [22–27], and interacting two-particle systems
[28,29].

We note that the tight-binding billiards studied here may be
seen as a lattice version of quantum billiards in continuum, for
which the dynamics is expected to be fully chaotic and their
spectral properties comply with the RMT predictions [30,31].
Studies of quantum billiards in continuum such as those in
stadium [32,33] or Sinai [30,34] billiards played a major role
in early works of single-particle quantum chaos [35,36] and
introduced several important concepts such as the quantum
chaos conjecture [30]. However, when the lattice constant a is
sent to zero, tight-binding billiards correspond to an ultrahigh
energy regime of continuous billiards, and have therefore not
received much attention in previous studies. Consider, e.g., a
typical energy E ∼ k2 in a continuum, where k is a wave num-
ber. If one then introduces a typical energy scale of the system
in a lattice, where ka = O(1), this results in E ∼ (ka)2/a2,
i.e., the typical energy scale of tight-binding billiards diverges
as ∝ 1/a2. This is a much larger scale than the semiclassical
scale ∝ 1/l2 in continuous billiards, where l is the smallest
length scale describing the continuous boundary geometry.
The lattice discretization hence prohibits a straightforward
connection of our results to billiards in continuum, and we
refrain from making any quantitative comparison between
these two regimes.

We study three main properties of tight-binding billiards of
noninteracting fermions from Fig. 1: (a) statistics of nearest
level spacings of single-particle energy spectrum, (b) von
Neumann and second Rényi bipartite eigenstate entangle-
ment entropies, averaged over many-body eigenstates, and
(c) properties of matrix elements of local observables in
single-particle eigenstates. Our main result is that these prop-
erties indeed appear to be consistent with the emergence of
quantum chaos in tight-binding billiards. This statement nev-
ertheless needs to be taken with some care since there exist
a subextensive (in lattice volume) set of single-particle eigen-

states that are degenerate in the middle of the spectrum at zero
energy (i.e., zero modes), for which the agreement with RMT
predictions may not be established. We describe several key
properties of zero modes and argue that they are eigenstates
of a chiral operator, which gives rise to a confinement of their
wave-function amplitudes to one of the sublattices.

Focusing on energy eigenstates away from zero modes,
we find that the level-spacing statistics agree with RMT
predictions to extremely high accuracy, while the average
volume-law eigenstate entanglement entropies exhibit more
pronounced finite-size effects. Still, the volume-law contribu-
tion to the entanglement entropy appears to be well described
with recent predictions for quantum-chaotic quadratic systems
based on the RMT analysis [16,17]. As a side result, we extend
the latter predictions to derive a closed form expression for
the second Rényi entanglement entropy. Finally, we find that
local observables in single-particle eigenstates comply with
the single-particle ETH and show that the distributions of both
diagonal and off-diagonal matrix elements are in general not
Gaussian, as recently argued in Ref. [18].

The paper is organized as follows. In Sec. II A, we intro-
duce the model and lattice geometries under consideration,
and in Sec. II B we discuss some properties of zero modes. We
study statistical properties of the single-particle spectrum in
Sec. III, while in Sec. IV we turn our attention to entanglement
properties of many-body eigenstates. In Sec. V, we study
statistical properties on matrix elements of local observables
in single-particle eigenstates. We conclude in Sec. VI.

II. GENERAL CONSIDERATIONS

A. Models and geometry of tight-binding billiards

We study the tight-binding Hamiltonian on a square lattice,

Ĥ = −t
∑

〈i, j〉∈�

(ĉ†
i ĉ j + ĉ†

j ĉi ), (1)

where ĉ†
i and ĉi are creation and annihilation operators of

spinless fermions on site i, respectively, and the sum runs
over nearest neighbors. We set t ≡ 1 further on. The lattice
consists of V sites, also referred to as the lattice volume. The
lattice sites belong to a closed region denoted by �, which
represents a discretized representation of the continuous
billiards introduced below (for simplicity, we use the label �

in both discrete and continuous space). We use open (hard-
wall) boundary conditions, i.e., hopping on sites outside the
region � is forbidden.

The definition of � proceeds in four steps. (i) We define
a large square of size L × L and a coordinate system (x, y)
whose origin is in the bottom left corner of a square, as
sketched in Figs. 1(a) and 1(c). (ii) We split the large square
into L2 equal squares with unit sides. We introduce a square
lattice for which the sites are located in the center of each
unit square. A site labeled i has then spatial coordinates ix, iy.
(iii) We define boundaries of a continuous billiard. The bound-
aries of specific billiards studied in this paper are introduced
in the next paragraph. (iv) At a given L, the sites of a lattice
whose coordinates are inside the boundaries of a continuous
billiard belong to the region � on which the Hamiltonian in
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Eq. (1) is defined. We verify that each lattice site in � is
connected to at least one neighboring site.

We consider two billiards, which are in the literature usu-
ally referred to as variants of Sinai billiards. The first, referred
to as billiard 1 (shortly, B1), is an isosceles orthogonal triangle
with legs of size L and a circular cut at one of the corners with
angle π/4, as shown in Fig. 1(a). The radius of the circle is
R = rL. By default, we only consider r = 1/2 as in Fig. 1(a),
while in some cases we complement the results at r = 1/2
with those at r = 1/3 (in general, we do not observe any
qualitative differences between these two realizations of the
billiard B1). The region of the billiard is defined as

�1 =
{

(x, y)
∣∣∣ 0 � y � x � L ∧ x2 + y2 � R2

}
. (2)

The second, referred to as billiard 2 (shortly, B2), consists of
a square that is cut by two circular arcs, as shown in Fig. 1(c).
The arcs intercept in the upper right corner of the square, the
first arc forming an angle θh = 0.4 with the horizontal axis and
the second arc an angle θv = 0.7 with the vertical axis. The
circular arcs are formed by circles with the radii Rh ≈ 2.57L
and Rv ≈ 1.55L, and the centers (xh, yh ) ≈ (0, 3.37L) and
(xv, yv) ≈ (2.19L, 0), respectively. The region of the billiard
is defined as

�2 =
{

(x, y)
∣∣∣ 0 � x � L ∧ 0 � y � L ∧ x2

+ (y − yh )2 � R2
h ∧ (x − xv)2 + y2 � R2

v

}
. (3)

Regions �1 and �2 from Eqs. (2) and (3) are then used to
define the tight-binding billiards in a lattice, as described in
the previous paragraph. Figures 1(b) and 1(d) show the tight-
binding billiards B1 and B2 at L = 14 with the total number of
lattice sites V1 = 74 and V2 = 119, respectively. Blue arrows
show examples of the allowed hoppings from selected lattice
sites (bases of the arrows) to their neighboring sites (tips of
the arrows).

The billiards that we study do not exhibit any spatial sym-
metries, apart from the chiral (sublattice) symmetry that is
discussed in Sec. II B. The single-particle energy spectrum
of the Hamiltonian Ĥ from Eq. (1) consists of two types
of eigenstates. The first are eigenstates with nonzero energy,
|Eα| > 0. These always occur in pairs of positive and nega-
tive energy, i.e., for a nonzero energy Eα there exist another
eigenstate with energy Eβ , such that Eβ = −Eα . The origin of
this reflection symmetry of the single-particle energy spec-
trum is explained below. The second subset of eigenstates
are those with energy Eα = 0, denoted as zero modes. We
study the latter in more detail in Sec. II B, where we also
show that the number of zero modes increases with V , how-
ever, the fraction of zero modes relative to all single-particle
eigenstates vanishes in the thermodynamic limit V → ∞.

The reflection symmetry of the energy levels is a conse-
quence of the bipartite nature of the Hamiltonian Ĥ from
Eq. (1). With the latter, we have in mind a division of the
lattice into sublattices A and B, see Fig. 2(a), such that the
action of Ĥ on a particle in sublattice A moves the particle
into sublattice B and vice versa. Then, one can introduce an
operator �̂, whose action on an arbitrary superposition of

FIG. 2. (a) A segment of a lattice of tight-binding billiards, far
away from the boundaries. The Hamiltonian Ĥ in Eq. (1) acts such
that a particle from sublattice A hops into sublattice B, and vise versa.
However, due to curved boundaries, tight-binding billiards need not
contain the same number of lattice sites in sublattices A and B. (b) A
sketch of the Hamiltonian matrix in the case when the number NA of
sites in sublattice A is larger than the number NB of sites in sublattice
B. Red stripes denote the region of the matrix where the matrix
elements may be nonzero.

single-particle states from both sublattices is of the form

�̂(ĉ†
iA
|∅〉 + ĉ†

iB
|∅〉) = c†

iA
|∅〉 − ĉ†

iB
|∅〉, (4)

where ĉ†
iA

and ĉ†
iB

create spinless fermions in sublattices A
and B, respectively. (One may equivalently consider the op-
erator −�̂, with identical conclusions.) Equation (4) suggests
that �̂2 = Î , and hence its eigenvalues are ±1. The reflection
symmetry of the energy levels originates from the anticom-
mutation relation

{�̂, Ĥ} = �̂Ĥ + Ĥ �̂ = 0. (5)

Consequently, �̂ does not represent a true symmetry of the
model, however, we show in Sec. II B that zero modes can be
made eigenstates of �̂. Operators with properties similar to
those of �̂ are commonly associated with chiral or sublattice
symmetry [37–39], and we refer to it as a chiral operator fur-
ther on. In terms of spinless fermion creation and annihilation
operators, �̂ acts as

�̂ĉ†
i �̂ = θiĉ

†
i , �̂ĉi�̂ = θiĉi, (6)

where θi = +1 for site i in sublattice A and θ = −1 for site i
in sublattice B.

Several simple properties follow from Eq. (5). Let us ex-
press a single-particle eigenstate |α〉 of Ĥ as

|α〉 =
∑
i∈A

u(α)
i |i〉 +

∑
j∈B

v
(α)
j | j〉, (7)

where the wave-function coefficients u(α)
i and v

(α)
j correspond

to single-particle states in sublattices A and B, respectively,
and |i〉 ≡ ĉ†

i |∅〉, | j〉 ≡ ĉ†
j |∅〉. As a consequence of Eq. (5),

there exists a state �̂|α〉 that is also an eigenstate of Ĥ , with
the property

Ĥ (�̂|α〉) = −Eα (�̂|α〉). (8)

Defining |ᾱ〉 ≡ �̂|α〉, one observes that the wave function of
|ᾱ〉 can be expressed using identical weights as the one of |α〉,
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however, with alternating signs:

|ᾱ〉 =
∑
i∈A

u(α)
i |i〉 −

∑
j∈B

v
(α)
j | j〉. (9)

This result suggests that it may be sufficient for certain prop-
erties to consider only the lower part of the spectrum, Eα � 0.
Moreover, due to orthogonality of the wave functions |α〉 and
|ᾱ〉, it follows that∑

i∈A

(
u(α)

i

)2 =
∑
j∈B

(
v

(α)
j

)2 = 1

2
(10)

for any eigenstate with Eα �= 0, which can be seen as an
additional sum rule defined for each of the sublattices.

We complement our analysis by considering tight-binding
billiards with additional on-site potentials, which break the
bipartite nature of the Hamiltonian Ĥ from Eq. (1). To this
end, we introduce two types of Hamiltonians. In the first case,
we add a harmonic potential,

Ĥk = Ĥ + k
∑
i∈�

(
(ix − i∗x )2 + (iy − i∗y )2

kmax

)
ĉ†

i ĉi, (11)

where k is the strength of the potential, ix, iy are the x, y spatial
coordinates of site i, and i∗x , i∗y are the coordinates of i∗ that is
close to the lattice center of mass, as depicted in Figs. 1(b)
and 1(d). In our implementation, we also use a normalization
number kmax, which is set such that the largest potential (i.e.,
the potential at the site that is most distant from the center of
mass) equals k. In the second case, we add random potentials
on each lattice site,

Ĥrand = Ĥ + W

2

∑
i∈�

hiĉ
†
i ĉi, (12)

where hi are independent and identically distributed ran-
dom variables with a uniform probability in the interval hi ∈
[−1, 1]. For conventional boundary conditions, this model
is referred to as the two-dimensional Anderson model. The
single-particle energy spectra of the Hamiltonians in Eqs. (12)
and (11) are not reflection symmetric and do not exhibit zero
modes, i.e., they are nondegenerate.

B. Zero modes and chiral symmetry

Both tight-binding billiards under considerations, de-
scribed by Ĥ from Eq. (1), exhibit a large number of zero
modes. Below we show that a sufficient condition for the
emergence of zero modes requires two properties: existence of
a chiral operator from Eq. (4) that anticommutes with Ĥ , and a
nonzero sublattice imbalance δN between sites on sublattices
A and B, see Eq. (13).

The Hamiltonian Ĥ from Eq. (1) can be represented by
a matrix whose indices first run over sites in one sublattice
and then over its complement. Such a matrix consists of
four blocks, two diagonal and two off-diagonal blocks, as
sketched in Fig. 2(b). The dimensions of the diagonal blocks
are NA × NA and NB × NB, where NA and NB denote the num-
ber of lattice sites in sublattices A and B, respectively, and
NA + NB = V . As a consequence of anticommutation of �̂

with Ĥ , Eq. (5), the diagonal blocks are zero. In contrast,
the off-diagonal blocks of dimensions NA × NB and NB × NA

FIG. 3. (a) Fraction of zero modes M/V versus V . Solid lines
are fits of the function aV −ζ to the results. We obtain ζ = 0.51 in
billiard B1 at R = L/2 and R = L/3, and ζ = 0.57 in billiard B2.
(b) The number of zero modes M (open symbols) and the sublattice
imbalance δN from Eq. (13) (filled symbols) versus V , for the same
systems as in panel (a). (c), (d) Absolute values of single-particle
eigenenergies |Eα| versus the eigenstate index α in billiard B1 at
V = 30 078 (R = L/2) and B2 at V = 29 982, respectively. We show
results for α around the middle of the spectrum where the zero
modes emerge. We define zero modes numerically as eigenstates
with energy |Eα| � 10−14.

may include nonzero elements. We assume that NA � NB, as
in Fig. 2(b), and we define the sublattice imbalance δN as

δN = NA − NB. (13)

In what follows, we show that the total number of zero modes,
denoted as M, is at least δN .

Let us assume that the number of linearly independent
columns in the left block of H in Fig. 2(b) (i.e., column in-
dices l = 1, ..., NB) is NB − m, where m � 0 is a non-negative
integer. Then, the number of linearly independent rows (and
therefore columns) in the right block of H (i.e., column
indices l = NB + 1, ..., NB + NA) is also NB − m since H is
Hermitian. The rank of the full Hamiltonian matrix H is
therefore

rank(H ) = NB − m + NB − m = V − (δN + 2m) (14)

and the number of zero modes is

M = δN + 2m. (15)

Since m cannot be negative, Eq. (15) suggests that the lower
bound on M is δN .

The above arguments are corroborated by a numerical
analysis in the tight-binding billiards B1 and B2 in Fig. 3.
Figure 3(a) shows the scaling of the total number of zero
modes M relative to the total number of states V . We ob-
serve in all cases that M/V ∝ V −ζ , where 0 < ζ < 1. This
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suggests that the fraction of zero modes vanishes in the ther-
modynamic limit V → ∞. On the other hand, M appears to
increase with V , as shown in Fig. 3(b). We note that in finite
systems there is a clear separation in energy scale between
zero modes and other eigenenergies, as shown in Figs. 3(c)
and 3(d). In particular, while the latter are roughly bounded
by |Eα| � V −1 ≈ 10−4, we detect the former by setting the
condition |Eα| < 10−14.

The results in Fig. 3 also show certain differences between
billiards B1 and B2. An important observation is that in
billiard B1, the sublattice imbalance δN is not only nonzero,
but it appears to systematically increase with V . In fact, we
observe an exact relation M = δN , which is shown by the
agreement between open and filled symbols (circles and tri-
angles) in Fig. 3(b). In general, the number of zero modes M
(and hence δN) is much larger in billiard B1 than in B2, and
Fig. 3(a) suggests that the fraction M/V in B1 (and hence
δN/V ) is well described by a power-law fit ∝ V −ζ with an
exponent ζ ≈ 0.5.

As a consequence of the relation M = δN in billiard B1,
its number of zero modes is exactly given by the sublattice
imbalance and hence m = 0 in Eq. (15). The origin of the non-
trivial dependence of δN on V in billiard B1 (δN ≈ V 1/2) is
geometric: It is the boundary cut along the diagonal that yields
an excess of the number of sites in one sublattice relative to the
other sublattice. This, in turn, unveils a generic mechanism for
the emergence of zero modes in tight-binding billiards: If the
boundaries of the lattice are shaped such that the number of
sites in one sublattice is systematically larger than in another
sublattice, hence δN � 1, then, as per Eq. (15), it gives rise to
a massive number of zero modes M.

We stress, however, that a large sublattice imbalance δN �
1 may not be a necessary requirement for the emergence of a
large number of zero modes. In Fig. 3(b), we show that in
billiard B2 the sublattice imbalance fluctuates around zero,
δN ≈ 0, while the number of zero modes M is much larger
than δN and it appears to increase with V , at least for the
system sizes under investigation. Understanding the origin
of these differences between billiards B1 and B2 is an open
question for future work.

In passing, we note that recent work [40] identified suffi-
cient conditions for the emergence of a large number of zero
modes in a certain class of quantum many-body Hamiltonians
in a lattice: They require existence of an operator �̂′ that
anticommutes with the Hamiltonian, and a lattice inversion
symmetry that commutes with �̂′. While the explicit expres-
sions for the corresponding operators in quantum many-body
Hamiltonians are different from those in the tight-binding
billiards studied here, the outcomes of their action (i.e., emer-
gence of zero modes) appear to be very similar.

One can also make further statements about the structure
of the wave functions of zero modes. Let us assume that one
finds a zero mode |α〉 that is of the form given by Eq. (7), i.e., it
is a superposition of particle occupations on both sublattices.
As a consequence of Eq. (8), if |α〉 is a zero mode, the same
holds true for �̂|α〉. One can then construct the symmetrized
zero modes as

|αA〉 ∝ (|α〉 + �̂|α〉), |αB〉 ∝ (|α〉 − �̂|α〉), (16)

where |αA〉 only includes occupations in sublattice A and |αB〉
only in sublattice B. These states are also eigenstates of the
chiral operator �̂ with eigenvalues γA = 1 and γB = −1,

�̂|αA〉 = γA|αA〉 = |αA〉, �̂|αB〉 = γB|αB〉 = −|αB〉. (17)

We hence refer to the single-particle states |αA〉 and |αB〉 at
zero energy as chiral particles. Note that at nonzero energy,
|αA〉 and |αB〉 are not eigenstates of Ĥ .

In Appendix A, we show that for a given number of zero
modes M as given by Eq. (15), there are δN + m zero modes
that are confined into the sublattice A and m zero modes
confined into sublattice B (see also Ref. [41]). In terms of
the eigenvalues γA, γB of the chiral operator �̂, see Eq. (17),
one hence obtains the sum rule for all eigenvalues of the zero
modes as

δN+m∑
i=1

γA,i +
m∑

j=1

γB, j = δN. (18)

Figures 16 and 17 of Appendix A show examples of the
wave-function amplitudes of some zero modes and contrast
them to wave-function amplitudes of Hamiltonian eigenstates
at nonzero energies.

III. SINGLE-PARTICLE ENERGY SPECTRUM

We now turn our attention to the properties of the single-
particle energy spectrum of tight-binding billiards. Some of its
properties share similarities with spectra of free fermions on
square lattices with regular boundaries such as those formed
by a box. For example, the spectrum is bounded to the interval
Eα ∈ [−4, 4] and the density of states (not shown here) is also
very similar in both cases.

Here we study statistical properties of the energy spectrum
of tight-binding billiards that may be fundamentally different
from those in systems with regular boundaries. We focus on
the nearest level spacings δα = Eα − Eα−1, and we consider
the ratio rα = min(δα+1, δα )/ max(δα+1, δα ) [42]. While rα

denotes the ratio for a particular target energy level α, we
denote r̄ as the ratio after the averaging over different levels
within the same system and after the averaging over different
system sizes.

We first consider the probability density function (PDF)
P(r) of 80% of levels around the middle of the spectrum. We
exclude information from zero modes, for which the ratio is
not well defined, and average the results over 20 system sizes
spanning from approximately V = 25 000 to V = 30 000 (the
average volume is 27829.45 in billiard B1 at R = L/2 and
27485.95 in billiard B2). The purpose of the latter averaging
is to minimize discretization effects when designing tight-
binding billiards from continuous billiards, as described in
Sec. II A. Results in both billiards are shown as histograms
in Fig. 4. The red solid line is an exact prediction within a
Gaussian orthogonal ensemble (GOE) for 3 × 3 matrices [43]:

P(r) = 27

4

r + r2

(1 + r + r2)5/2 . (19)

The agreement between the numerical results and the predic-
tion from Eq. (19) is very good. Moreover, the average value
that we obtain in billiard B2 in Fig. 4(b) is r̄ = 0.5309, which
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FIG. 4. Probability density functions P(r) of level-spacing ratios
in billiards (a) B1 and (b) B2. Results are obtained from 80% of
energy levels in the middle of the spectrum (excluding zero modes)
and further averaged over 20 system sizes for V ∈ [25 000, 30 000].
Red solid line is the result from Eq. (19). Vertical dashed lines are the
mean values of r, which yield (a) r̄ = 0.5287 and (b) r̄ = 0.5309.

is remarkably close to the numerical predictions within the
GOE for asymptotically large matrices, r̄GOE = 0.5307 [43].
In billiard B1 in Fig. 4(a), we get r̄ = 0.5287, which is also
close to r̄GOE, but still not as close as the results in billiard B2.

Next we focus on the energy dependence of the level-
spacing ratio r, plotted as a function of normalized energy
ε = (E − Emin)/(Emax − Emin). Results are shown as points
connected by blue lines in Figs. 5 and 6. We plot 39 points
and each point is an average over 500 neighboring energies.
We set r = 0 for zero modes that belong to the point ε = 0.5
in Figs. 5(a) and 6(a), while other points do not contain
contributions from zero modes. These results are compared
to two energy independent values: r̄GOE (red dashed lines)
and r̄80 (black solid lines), which is the average over 80%
of all levels around the middle of the spectrum, excluding
contributions from zero modes. All numerical results, un-
less stated otherwise, are also averaged over 20 system sizes
within V = 25 000 and V = 30 000 as in Fig. 4.

Results in billiard B1 and Hamiltonian Ĥ from Eq. (1),
shown in Fig. 5(a), exhibit a reasonably good agreement with
the GOE prediction r̄GOE in a wide interval of normalized
energies ε. However, the average values of r exhibit a small
difference compared to r̄GOE that appears to be insensitive to
the fraction of levels included in the average. In all panels of
Figs. 5 and 6, we provide the averages r̄90, r̄80, and r̄60, which,
respectively, correspond to 90%, 80%, and 60% of all levels
around the middle of the spectrum, excluding zero modes.

We complement these results by performing an identical
analysis of the Hamiltonians Ĥk and Ĥrand from Eqs. (11)
and (12), respectively, which do not exhibit any degeneracy
and reflection symmetry of the energy spectrum. As a con-
sequence, r̄ ceases to be symmetric around ε = 0.5 [as it is
in Fig. 5(a)]. Results for Ĥk at k = 0.001 and k = 0.01 are
shown in Figs. 5(b) and 5(c), respectively. The chosen values
of harmonic potentials k are small such that their main con-
tribution is to remove degeneracies and reflection symmetry
of the spectrum. Nevertheless, we do not observe any signif-
icant quantitative impact of this contribution to the averaged
level-spacing ratios, and results at larger k (not shown) exhibit
even larger deviation from the GOE predictions. On the other
hand, adding a weak random disorder W = 0.5, see Fig. 5(d),

FIG. 5. Level spacing r̄ versus the normalized energy ε in billiard
B1. Points connected by blue lines are the values of r̄ at the given ε,
averaged over 500 neighboring energies. Red dashed line is the GOE
prediction r̄GOE = 0.5307 [43]. In the legends, we list the average
values r̄90, r̄80, and r̄60, which, respectively, correspond to 90%, 80%,
and 60% of all levels around the middle of the spectrum, excluding
zero modes. The black solid line represents r̄80. Results are shown
for the following Hamiltonians: (a) Ĥ from Eq. (1), (b) Ĥk from
Eq. (11) at k = 0.001, (c) Ĥk from Eq. (11) at k = 0.01, (d) Ĥrand

from Eq. (12) at W = 0.5. Numerical results in (a)–(c) are averaged
over 20 system sizes within V = 25 000 and 30 000, while in (d) the
averaging is performed over 20 different disorder realizations at the
fixed system size V = 27918.

brings the averages closer to the GOE prediction r̄GOE. In fact,
they almost perfectly agree with r̄GOE as the agreement is on
the fourth digit. We note that the agreement with the GOE
predictions for the 2D Anderson model is likely an effect of
the localization length being much larger than the lattice size,
since in the thermodynamic limit the system is expected to be
localized for any nonzero W [44].

Results in billiard B2 in Fig. 6 appear to be consistent
with the results in billiard B1 in Fig. 5, at least in the sense

FIG. 6. Level spacing r̄ versus the normalized energy ε in billiard
B2. Results are analogous to those in Fig. 5, and shown for (a) Ĥ
from Eq. (1), and (b) Ĥrand from Eq. (12) at W = 0.5, for V = 27600.
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that the energy dependence of r̄ is rather insignificant in both
cases, and the fluctuations about the average are comparable.
However, the quantitative agreement of the averages with the
GOE prediction is clearly better in billiard B2. Figure 6(a)
shows that the agreement is nearly perfect (on four digits) for
the Hamiltonian Ĥ that does not contain any on-site potentials,
and the high level of agreement persists upon addition of a
weak disorder; see Fig. 6(b).

These results suggest that the statistical properties of an
overwhelming majority of energy levels complies with the
GOE predictions. They also offer two further insights. First,
there exists a small but persistent difference between the av-
erage level spacing ratios of both billiards, since, at least for
the system sizes under considerations, the results in billiard
B2 are always closer to the GOE prediction. Second, the pres-
ence of degeneracies (zero modes) and reflection symmetry in
the energy spectrum does not appear to crucially impact the
degree of agreement (of nondegenerate levels) with the GOE
predictions.

IV. BIPARTITE ENTANGLEMENT ENTROPIES OF
MANY-BODY EIGENSTATES

We next study the structure of Hamiltonian eigenstates. In
contrast to other sections of this paper that are devoted to
single-particle properties, here we study properties of many-
body eigenstates. In particular, we study the entanglement
content of these states as measured by the bipartite entangle-
ment entropies.

We define the von Neumann entanglement entropy of a
many-body eigenstate |m〉 as

Sm = −Tr{ρ̂A ln ρ̂A}, (20)

where ρ̂A = TrB{ρ̂m} is the reduced density matrix of |m〉 in a
subsystem A, and ρ̂m = |m〉〈m|. The second Rényi entangle-
ment entropy of a many-body eigenstate |m〉 is then defined as

S(2)
m = − ln

[
Tr

{
ρ̂2
A
}]

. (21)

In the tight-binding billiards considered here, there is no obvi-
ous preferential way how to chose a lattice bipartition. In what
follows, we focus on bipartitions for which the number VA of
lattice sites in subsystem A is identical to the number VB =
V − VA of lattice sites in subsystem B. (If V is odd, we set VA
as the integer part of V/2.) In each tight-binding billiard, we
consider four bipartitions that are sketched in Fig. 7. A proper
scaling analysis of entanglement entropies requires definitions
of bipartitions that can be applied to an arbitrary large system,
and we explain particular protocols to achieve this goal in
Appendix B. We note that the lattice bipartitions used in the
context of entanglement studies in this section are unrelated
to the discussion of sublattices with checkerboard patterns
in Sec. II and Fig. 2(a), even though entanglement studies
of the latter bipartitions may also represent an interesting
subject [41].

The general motivation for studying the eigenstate en-
tanglement entropies stems from a recent conjecture [45]
(see also Refs. [8,16,46,47]) that the entanglement entropies
of typical excited eigenstates represent an efficient tool to
distinguish quantum-chaotic interacting Hamiltonians from
quadratic and integrable interacting Hamiltonians. A particu-

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

FIG. 7. Lattice bipartitions applied in the study of entanglement
entropies in Sec. IV. Upper row (a1)–(a4): Four different bipartitions
of billiard B1. Lower row (b1)–(b4): Four different bipartitions of
billiard B2. Protocols for designing these bipartitions are explained
in Appendix B.

lar motivation for studies of tight-binding billiards is whether
the volume-law contribution to the entanglement entropy is
quantitatively described by the analytical expressions that
we introduce in Eqs. (23) and (24), which were conjec-
tured to describe the results in quantum-chaotic quadratic
Hamiltonians. Recently, several works have started to explore
entanglement properties of excited eigenstates of quadratic
and integrable interacting Hamiltonians [15–17,46–65].

We are interested in the average bipartite entanglement en-
tropies over all many-body eigenstates. However, the number
of the latter increases exponentially as ∝ 2V , which poses
serious numerical difficulties for systems of size V ≈ 40 or
larger. We therefore approximate this average by an average
over M randomly selected many-body eigenstates, and we
define

S = 1

M

M∑
m=1

Sm, S(2) = 1

M

M∑
m=1

S(2)
m . (22)

We choose M = 1000 in our studies, and allow for both
nonzero energy single-particle eigenstates as well as the zero
modes to form a many-body eigenstate. In addition to the
average over randomly selected eigenstates within the same
system, as given by Eq. (22), we also average the results
over five systems with similar numbers of lattice sites, us-
ing the same labels S and S(2). This procedure is analogous
to the one performed for the average level-spacing ratio in
Sec. III and it is used to smoothen fluctuations that emerge due
to discretization effects in the construction of tight-binding
billiards. Throughout the paper, we refer to the averages intro-
duced above as the average eigenstate entanglement entropies.

We note that in the actual numerical calculations of Sm and
S(2)

m , one does not need to calculate the reduced density matrix
of a many-body eigenstate |m〉, as indicated in Eqs. (20) and
(21). For quadratic Hamiltonians as considered in this paper, it
suffices to calculate the so-called one-body correlation matrix,
which includes matrix elements of one-body observables only
[66,67]. This procedure for calculating the bipartite entangle-
ment entropies is well established (see, e.g., Refs. [8,16,17]),
and we summarize it for convenience in Appendix C.

We compare results to the analytical predictions for the
volume-law contribution to the entanglement entropies. For
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the von Neumann entanglement entropy, the prediction is

S =
(

1 − 1 + f −1(1 − f ) ln (1 − f )

ln 2

)
VA ln 2, (23)

where f = VA/V is the fraction of the subsystem volume rela-
tive to the total volume. [Eq. (23) is valid at f � 1/2, while for
1/2 < f � 1 one needs to replace VA → V − VA and f →
(1 − f ).] This result was first derived in Ref. [16], using the
assumption that the coefficients of single-particle eigenstates
are normally distributed random numbers. An identical result
was obtained in an ensemble of pure fermionic Gaussian states

[8,68]. For the second Rényi entanglement entropy, there is
to our knowledge no simple closed-form expression S (2)( f ),
apart from the f = 1/2 point [17,69]. Recently, by using the
distribution of eigenvalues of the restricted one-body correla-
tion matrix [15], S (2)( f ) was expressed as an infinite series
of hypergeometric functions, see Eq. (28) in Ref. [17], and as
part of a general expression for the nth Rényi ground-state
entanglement entropy in the SYK2 model, see Eq. (41) in
Ref. [69]. Here we argue that both expressions are equivalent
and we use the result from Ref. [69] to obtain a closed-form
expression. The latter is

S (2) =
⎛
⎝1 −

log2

(√
1+4 f (1− f )+1

2

) − (1 − 2 f ) log2

(
1 +

√
1+4 f (1− f )−1

2(1− f )

)
f

⎞
⎠VA ln 2, (24)

and its derivation is carried out in Appendix D. Moreover,
it was shown in Ref. [17] that S (2) accurately describes
the volume-law contribution to the average eigenstate entan-
glement entropy in quantum-chaotic quadratic Hamiltonians
such as the 3D Anderson model and the SYK2 models. We
hence use the result from Eq. (24) as a reference point for
the average eigenstate entanglement entropy in tight-binding
billiards.

A. Scaling of the volume-law coefficients

In Figs. 8 and 9, we compare the numerical results from
Eq. (22) to the predictions from Eqs. (23) and (24). Since our
main interest is in the leading contribution to the entanglement
entropy, which scales with the volume VA of subsystem A,
we define the average entanglement entropy density (i.e., the
volume-law coefficient) as

s = S

VA ln 2
, s(2) = S(2)

VA ln 2
(25)

for the entanglement entropies from Eq. (22), and

σ = S
VA ln 2

, σ (2) = S (2)

VA ln 2
(26)

for the entanglement entropies from Eqs. (23) and (24), re-
spectively. The comparison in Figs. 8 and 9 is carried out
for the bipartitions (a1) and (b1) from Fig. 7, while other
bipartitions are studied in Sec. IV B. This choice of biparti-
tions correspond to f = 1/2 in Eqs. (23) and (24) if V is even
and f = 1/2 − 1/(2V ) if V is odd. At f = 1/2, the result is
σ = 0.5573 and σ (2) = 0.4569.

Figures 8(a) and 8(b) show the scaling of the differences
of volume-law coefficients σ − s and σ (2) − s(2), respectively,
with the inverse volume. We observe that the differences are
well described by a function

g(V ) = a0 + a1V
−1/η; (27)

see the lines in Fig. 8, where a0 and a1 are fitting parameters
and we fix η = 2. The most important result of the fitting
analysis is that the offset a0 is very small for all cases un-
der consideration. In particular, the values of a0 are of the

order 10−3, which is a strong indication of the relevance of
predictions in Eqs. (23) and (24) for the average eigenstate
entanglement entropies of our tight-binding billiards. The
scaling ∝ V −1/2 of the entanglement entropy density suggests

FIG. 8. Differences of the volume-law coefficients, see Eqs. (25)
and (26), versus V −1/2, in billiards B1 at R = L/2 and R = L/3,
and B2. The billiard bipartitions from Fig. 7 are a1 in B1 and b1 in
B2. Results are shown (a) for the von Neumann entropy, σ − s, and
(b) for the second Rényi entropy, σ (2) − s(2). Each symbol represents
the average over five successive system sizes, as explained in the
main text, and volume V is then the corresponding average. Solid
lines are two parameter fits of g(V ) from Eq. (27) at η = 2 to the
results at V � 11 000. The value of the off-set parameter a0 in g(V )
is in all cases a0 < 0.003. Horizontal dashed lines represent the
differences between the volume-law coefficients σ = 0.5573 and
σ (2) = 0.4569 from Eq. (26) at f = 1/2, and the corresponding
results for translationally invariant (TI) free fermions in lattices with
regular boundaries, sTI = 0.5378 [46] and s(2)

TI = 0.4713 [17]; see
also Appendix E.

034118-8



TIGHT-BINDING BILLIARDS PHYSICAL REVIEW E 106, 034118 (2022)

FIG. 9. Quality of the fits to the numerical results (symbols) in
Fig. 8 in billiards B1 at R = L/2, and B2. We plot log10 δ of the
von Neumann entropy, see Eq. (28), in billiards (a) B1 and (b) B2,
and log10 δ(2) of the second Rényi entropy, see Eq. (29), in billiards
(c) B1 and (d) B2. We first fix the parameter a0 in the fitting function
g(V ) in Eq. (27) and then calculate δ and δ(2) using results for the
best fit of the parameter a1 at V � 11 000. Solid lines are obtained
by fixing η = 2 in Eq. (27), while the thin dashed lines correspond to
considering η as a fitting parameter within the interval η ∈ [0.5, 5].
Vertical dashed lines are identical to the horizontal dashed lines
in Fig. 8. They represent the differences between analytical results
from Eq. (26) at f = 1/2 and the corresponding results for TI free
fermions in lattices with regular boundaries.

that the dominant subleading term to the entanglement en-
tropy scales with the linear dimension, ∝ V 1/2 ≈ L. We note,
however, that a similar scaling ∝ V −1/2 of the entanglement
entropy density was also observed in 3D Anderson models
[17], as well as in 1D systems of interacting hard-core bosons
in the integrable regime [45] and in the quantum-chaotic
regime away from half-filling [70].

A more precise analysis of the differences between nu-
merical results in tight-binding billiards and the predictions
from Eqs. (23) and (24) is carried out in Fig. 9. We define the
function

δ2 = 1

N

N∑
j=1

[σ − s(Vj ) − g(Vj )]
2 (28)

for the von Neumann entropy and the function

(δ(2) )2 = 1

N

N∑
j=1

[σ (2) − s(2)(Vj ) − g(Vj )]
2 (29)

for the second Rényi entropy, where N is the number of fitting
points. They both quantify the quality of the fitting function
g(V ) from Eq. (27).

Figure 9 shows the quality of the fits δ and δ(2) for the
numerical results in Fig. 8. Results are plotted as a function

of the offset a0 in the fitting function g(V ) from Eq. (27).
This implies that the optimal value of a0 corresponds to the
minimum of δ and δ(2). We observe a0 ≈ 0 in all cases under
consideration, which suggests that the volume-law coefficient
of the average eigenstate entanglement entropies is to high
accuracy provided by the predictions from Eqs. (26). The
accuracy is of the order of 10−3.

Recent studies have shown that the volume-law coefficients
of the average eigenstate entanglement entropies of transla-
tionally invariant (TI) free fermions in lattices with regular
boundaries [16,17,46,47,53] do not comply with predictions
from Eqs. (23) and (24). Instead, their entanglement entropies
STI and S(2)

TI appear to follow another universal function of
subsystem fraction f , whose closed-form analytical form is
still unknown (see Ref. [53] for some attempts in this direc-
tion). For example, the volume-law coefficients at f = 1/2
are sTI = 0.5378 [46] and s(2)

TI = 0.4713 [17]. We note that
while Refs. [16,17,46,47,53] only considered TI free fermions
in one- or three-dimensional lattices, we show in Appendix E
that their results are consistent with those for square lattices.

The deviations between the results for TI free fermions in
lattices with regular boundaries and predictions from Eqs. (23)
and (24) are shown with dashed horizontal lines (vertical
lines) in Fig. 8 (Fig. 9). In all cases under consideration,
results for TI free fermions in lattices with regular boundaries
do not appear to apply to the results for tight-binding billiards.

B. Impact of bipartitions

We complement previous results with those for other lat-
tice bipartitions from Fig. 7. Figure 10 shows the finite-size
scaling of the deviations of the volume-law coefficients (25)
from the analytical predictions (26). In general we observe
that in all cases the volume-law coefficients do approach
values that are close to the analytical predictions, with com-
parable accuracy as in the analysis in Fig. 9. We also make
two additional observations. The first is that the finite-size
deviations are in principle smaller in billiard B2. This may
be consistent with a smaller number of zero modes in this
billiard, as discussed in the context of Fig. 3. The second is
that there exist a bipartition in billiard B1 (referred to as a2

in Fig. 7), for which the numerical results for the average
eigenstate entanglement entropy almost precisely follow the
analytical predictions from Eq. (26) already in rather small
systems, see Figs. 10(a) and 10(c). While we are not able to
provide a detailed explanation of this observation, we also
note that the difference of the sublattice imbalance δN (13)
between subsystems A and B is in general the smallest for
bipartition a2, which is the only bipartition for billiard B1
that contains a vertical cut. Whether this effect is related (or
not) to a suppression of certain subleading terms in the aver-
age eigenstate entanglement entropy is an open question for
future work.

Summarizing the analysis of the average eigenstate en-
tanglement entropies, we interpret the results for both
tight-binding billiards as being consistent with the volume-
law contributions given by Eqs. (23) and (24). The choice of
a billiard bipartition, however, may influence the subleading
terms. The ∝ V −1/2 scaling of the volume-law coefficients in
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FIG. 10. Differences of the volume-law coefficients, see
Eqs. (25) and (26), versus V −1/2, in billiards (a), (c) B1 and (b),
(d) B2, and different billiard bipartitions from Fig. 7. Results are
shown (a), (b) for the von Neumann entropy, σ − s, and (c), (d) for
the second Rényi entropy, σ (2) − s(2). Each symbol represents the
average over five successive system sizes, as explained in the main
text, and the volume V is then the corresponding average. Solid lines
are two parameter fits of g(V ) from Eq. (27) at η = 2 to the results at
V � 11 000. The value of the offset parameter a0 in g(V ) is in
all cases a0 < 3 × 10−3. In billiard B1 and bipartition a2, we get
a0 � 3 × 10−4.

Fig. 10 suggest that the first subleading term scales as v1V 1/2,
where the coefficient v1 depends on a particular bipartition.

V. SINGLE-PARTICLE EIGENSTATE THERMALIZATION

We now complement the analysis of single-particle spectral
statistics from Sec. III and the entanglement content of many-
body eigenstates from Sec. IV with the analysis of matrix
elements of observables. We focus on the matrix elements in
single-particle eigenstates of the Hamiltonian in Eq. (1). Re-
cently, Ref. [18] studied the matrix elements in single-particle
eigenstates of the two quantum-chaotic quadratic Hamilto-
nians, the Dirac SYK2 Hamiltonian and the 3D Anderson
Hamiltonian at weak disorder. It was observed that the matrix
elements can be described by an ansatz that shares similari-
ties with the well-known ansatz of ETH [3–6,71]. The latter
was predominantly studied in many-body eigenstates of in-
teracting systems (see, e.g., Refs. [6,45,72–88]). To highlight
the single-particle nature of the studied matrix elements in
quantum-chaotic quadratic Hamiltonians, Ref. [18] dubbed
this phenomenon as single-particle ETH.

The ansatz for the matrix elements of observables in the
single-particle ETH can be expressed as [18]

〈α|Ô|β〉 = O(Ē )δαβ + ρ(Ē )−1/2F (Ē , ω)Rαβ, (30)

where Ē = (Eα + Eβ )/2 is the mean energy, ω = Eβ − Eα is
the energy difference, and O(Ē ), F (Ē , ω) are smooth func-

tions of their arguments. The single-particle density of states
at energy Ē is defined as ρ(Ē ) = δN/δE |Ē , and Rαβ is a
random number with zero mean and unit variance.

The main goal of this section is to explore to which extent
Eq. (30) describes the matrix elements of observables in tight-
binding billiards. Equation (30) was introduced with having
in mind systems without degeneracies in the single-particle
spectrum and divergences in the density of states ρ(Ē ). In the
tight-binding billiards studied here, we only study the validity
of Eq. (30) away from zero modes and interpret ρ(Ē ) as a
quantity that increases as ∝ V , as in other quantum-chaotic
quadratic Hamiltonians studied so far.

Due to the confinement of zero modes to one of the
sublattices, see Sec. II B, they are expected to exhibit some
degree of nonergodicity. A related question not addressed
here is whether zero modes in tight-binding billiards may
be referred to as quantum single-particle scars, i.e., states
that violate the single-particle ETH. Drawing the analo-
gies between the wave-function amplitudes of tight-binding
billiards (see Figs. 16 and 17) and continuum billiards (see,
e.g., recent results for scars in triangular billiards in Ref. [89]),
one observes that they are all spatially confined to a certain
fraction of the space (or lattice). Hence one is indeed tempted
to associate the zero modes of tight-binding billiards with
quantum scars. On the other hand, recent work in the context
of quantum many-body scars in interacting lattice models
(see, e.g., Refs. [90,91] for reviews on quantum many-body
scars) have established a view that while zero modes may
represent an important ingredient for the emergence of scars,
only a small portion of zero modes may actually represent
true scars (as defined by the absence of volume-law entangle-
ment) [92–95]. Moreover, there is in general no unique way
to chose eigenfunctions in the degenerate subspace. Since the
focus of this work is to test validity of Eq. (30) for single-
particle eigenstates at nonzero energies, we leave the analysis
of statistical properties of matrix elements of zero modes to
future work.

We study two local one-body observables in single-particle
eigenstates. The first is the site occupation

n̂i = 1√
V − 1

(V ĉ†
i ĉi − 1), (31)

where we fix i = (i∗x , i∗y ) to the center of the lattice and we
simplify the notation n̂i → n̂ further on. The second is the
next-nearest-neighbor correlation

ĥi j =
√

V

2

(
ĉ†

i ĉ j + ĉ†
j ĉi

)
, (32)

where we fix i = (i∗x , i∗y ), j = (i∗x + 1, i∗y + 1) and we simplify

the notation ĥi j → ĥ further on. Both observables are traceless
and normalized, i.e., their Hilbert-Schmidt norm in the single-
particle space is ||Ô||2 ≡ 1

V Tr{Ô2} = 1 [18].
In what follows, we explore two key properties of

the single-particle ETH: fluctuations of matrix elements in
Sec. V A and distributions of matrix elements in Sec. V B.

A. Fluctuations of matrix elements

We first study the eigenstate-to-eigenstate fluctuations
of the diagonal matrix elements of observables. Using the
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FIG. 11. Eigenstate-to-eigenstate fluctuations 〈δOav〉 (filled sym-
bols) and 〈δOmax〉 (open symbols), see Eqs. (33) and (34) and the
text below, as a function of V in billiards (a) B1 and (b) B2. Results
are shown from the observables Ô = n̂ (blue circles) and Ô = ĥ
(black squares) from Eqs. (31) and (32), respectively. The red line
is proportional to V −1/2 and is a guide to the eye. A fitting analysis
of the results is carried out in Fig. 12.

notation Oαβ ≡ 〈α|Ô|β〉, the observable fluctuations between
two consecutive eigenstates are δOα = Oαα − Oα−1,α−1. We
then study the mean eigenstate-to-eigenstate fluctuations,

δOav = ||�||−1
∑

|α〉∈�

|δOα|, (33)

where � is a set of states |α〉 that comprise 80% of eigenstates
in the middle of the spectrum excluding zero modes, i.e.,
||�|| is slightly smaller than 0.8V . We also calculate the
maximal eigenstate-to-eigenstate fluctuations over the same
set of eigenstates defined as

δOmax = max|α〉∈�|δOα|. (34)

In the actual numerical calculations, we average δOav and
δOmax over five billiards with a similar number of lattice sites
and plot them versus the mean number of lattice sites of these
billiards. We denote the corresponding averages as 〈δOav〉 and
〈δOmax〉.

The measures from Eqs. (33) and (34) were first introduced
in studies of ETH in interacting systems [77]. In particular,
vanishing of the maximal differences δOmax (34) with in-
creasing the system size has now become one of the defining
measures of the validity of the ETH. It was shown for vari-
ous interacting (nonintegrable) models that in the bulk of the
spectrum, δOmax vanishes exponentially fast with the number
of lattice sites [78,81,96]. The exponential dependence stems
from the scaling of the density of states in the ETH ansatz, i.e.,
by replacing ρ(Ē ) in Eq. (30) with the many-body density of
states. Recently, it was argued that the corresponding scaling
of δOav and δOmax for the single-particle ETH is polynomial
in V , namely, ∝ V −ζ , with ζ � 0.5 [18].

Figure 11 shows the scalings of 〈δOav〉 and 〈δOmax〉 with
V for the observables from Eqs. (31) and (32). Both mea-
sures appear to decrease to zero in the thermodynamic limit
V → ∞. The average fluctuations 〈δOav〉 are rather small
for the system sizes under investigation and their decrease
is consistent with the functional form ∝ V −1/2, as expected
from the single-particle ETH. While the values of maximal
fluctuations 〈δOmax〉 are roughly an order of magnitude larger

FIG. 12. Exponents ζ of the power-law fits aV −ζ to the results
in Fig. 11. We show ζ as a function of Vmin, where the latter
denotes the smallest V of the results included in the fit (the largest
V always corresponds to the largest system that we studied). Filled
symbols denote fits to the results for 〈δOav〉 versus V and open
symbols to those for 〈δOmax〉 versus V . Results are shown for the
observables Ô = n̂ (blue circles) and Ô = ĥ (black squares) from
Eqs. (31) and (32), respectively, in billiards (a) B1 and (b) B2.

than those for 〈δOav〉, they also appear to exhibit a slower
decrease with V than those for 〈δOav〉.

A quantitative analysis of the decay of fluctuations with
V is carried out in Fig. 12. Specifically, we first perform a
power-law fit aV −ζ to the results in Fig. 11, and then show
the exponent ζ as a function of Vmin in Fig. 12, where Vmin

denotes the smallest system size included in the fit. Results
confirm that ζ ≈ 0.50 for the average fluctuations 〈δOav〉. On
the other hand, we observe approximately ζ ∈ [0.3, 0.4] for
the maximal fluctuations 〈δOmax〉, which is consistent with the
results in the 3D Anderson model at weak disorder [18]. The
question of whether ζ approaches 1/2 in the limit Vmin → ∞
(as it does for the Dirac SYK2 model [18]) is an interesting
question, however, it is beyond the scope of this paper.

Another measure of fluctuations is related to the variances
of matrix elements in certain energy windows. The variance
of the diagonal matrix elements is

σ 2
diag = ||�||−1

∑
|α〉∈�

O2
αα −

(
||�||−1

∑
|α〉∈�

Oαα

)2

, (35)

where � is a set of 201 eigenstates (||�|| = 201) around the
target energy E . Analogously, the variance of the off-diagonal
matrix elements is

σ 2
off = ||�′||−1

∑
|α〉,|β〉∈�
|α〉�=|β〉

O2
αβ −

⎛
⎜⎜⎝||�′||−1

∑
|α〉,|β〉∈�
|α〉�=|β〉

Oαβ

⎞
⎟⎟⎠

2

,

(36)

where ||�′|| = ||�||2 − ||�|| = 40 200. A hallmark of the
ETH is that σ 2

diag decays as the inverse of the Hilbert-
space dimension. In the case of the single-particle ETH,
one expects σ 2

diag = a1/V [18], where a1 is a constant and
V is the dimension of the single-particle Hilbert space.
This is consistent with the scaling 〈δOav〉 ∝ V −1/2 found
in Figs. 11 and 12. On the other hand, the decay of
the variance σ 2

off = a2/V (or, more generally, the decay
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FIG. 13. Ratio of variances �2 from Eq. (37) versus normal-
ized energy ε = (E − Emin )/(Emax − Emin ). Results are shown for
the observables (a), (b) ĥ and (c), (d) n̂, in billiards (a), (c) B1 and
(b), (d) B2. Blue dots are results for �2(ε), where the variances in
Eqs. (35) and (36) are calculated at the target eigenenergies that
are closest to the corresponding ε. The values of �2(ε) are further
averaged over 20 system sizes spanning from approximately V =
25 000 to V = 30 000. We plot �2 for 39 equally spaced values of
ε and leave out the middle point at ε = 0.5, which is the only point
containing zero modes. The red dashed line represents the GOE value
�2

GOE = 2. In the legends, we list the average values �2
90, �2

80, and
�2

60. They are obtained by first calculating �2 at all eigenenergies
(except for 100 states at the spectral edges), and then averaging the
results over 90%, 80%, and 60% eigenenergies, respectively, in the
middle of the spectrum (excluding zero modes), and over 20 system
sizes. The black solid line represents �2

80.

with the inverse Hilbert space dimension), where a2 is a
constant, may not be unique to systems complying with
ETH, but could also be found in other systems such as
integrable interacting models [45,97]. In the Dirac SYK2
model, one has a1 = 2 and a2 = 1 [3,18]. In other quantum-
chaotic systems a1 and a2 may take arbitrary values, however,
their ratio is expected to obey predictions from the GOE of the
RMT, a1/a2 = 2 [79,81,88]. We hence test this prediction by
defining the ratio of variances as

�2 = σ 2
diag

σ 2
off

, (37)

for which the GOE result is �2
GOE = 2 [3].

In Fig. 13, we show the ratio �2 of the observables ĥ and
n̂ in billiards B1 and B2. We plot the results as a function
of normalized energy ε = (E − Emin)/(Emax − Emin), thereby
exploring the entire energy range from the vicinity of a ground
state to highly excited states (excluding zero modes). Due to
the reflection symmetry of the energy spectrum, and hence
similarity of the coefficients of the eigenstates |α〉 and |β〉 for
which Eβ = −Eα , see Eqs. (7) and (9), the variances of the

observables ĥ and n̂ are symmetric with respect to the middle
of the spectrum at ε = 0.5. While this is an exact statement
for σ 2

diag in Eq. (35) and the mean of O2
αβ in Eq. (36), we note

that the values of Oαβ [contributing to the second term on
the right-hand side of Eq. (36)] may be subject to a random
global change of sign of the wave functions. However, since
the contribution of the mean of Oαβ to σ 2

off in Eq. (36) is
vanishingly small, the ratio of variances �2 in Fig. 13 appears
to be perfectly symmetric around ε = 0.5.

Numerical results for the averages in Fig. 13 are consistent
with the GOE prediction �2

GOE = 2. The absolute differences
are small; they are O(10−2), while in the case for observable ĥ
and billiard B2 the difference is O(10−3). This level of agree-
ment is comparable to the most accurate studies of the ETH
in quantum-chaotic interacting systems [79,81,88]. Results in
Fig. 13 also show some fluctuations above the average, and in
some cases also a trend to lower values of �2 at the spectral
edges.

B. Distributions of matrix elements

Finally, we study the distributions of matrix elements
of the observables ĥ and n̂. We ask whether these distri-
butions in the tight-binding billiards share properties with
the distributions in other quantum-chaotic quadratic models.
Reference [18] observed that the distribution of local ob-
servables in single-particle eigenstates of quantum-chaotic
quadratic models such as the 3D Anderson model and the
Dirac SYK2 model may not be Gaussian. This property for
local observables appears to be unique to quantum-chaotic
quadratic models, since in quantum-chaotic interacting mod-
els the distributions were always found to be Gaussian
[45,83,84,86,98–103]. We note that non-Gaussian distribu-
tions in quantum-chaotic interacting models were reported
for nonlocal operators with diverging Hilbert-Schmidt norm,
dubbed behemoths in Ref. [100].

Numerical results for the PDFs of the matrix elements of
ĥ (and n̂) are shown as symbols in Fig. 14 (and Fig. 15). The
PDF, P, of a variable x in an interval [x, x + �x] is defined as

P(x) = 1

N
�N
�x

, (38)

where N is the total number of elements. The numerical PDFs
shown in Figs. 14 and 15 are calculated for matrix elements
in the entire spectrum (excluding zero modes) and are further
averaged over five systems with volumes close to the mean
volume V . The PDFs are shown in Figs. 14 and 15 for two
mean volumes V . The width of the PDFs shrinks with V ,
which is a consequence of the vanishing matrix elements
fluctuations, as discussed in Sec. V A. Most importantly, all
the PDFs appear to be non-Gaussian.

We contrast the numerical results to the analytical predic-
tions. The latter are obtained assuming that the coefficients
{u(α)

i }, {v(α)
j } in single-particle eigenstates {|α〉}, see Eq. (7),

behave as random variables drawn from a normal distribution
with zero mean and variance 1/V . This assumption carries
similarities with the Berry conjecture about the structure of
chaotic wave functions [104]. Below we list the resulting
analytical expressions of the distributions for the observables
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FIG. 14. Probability density function P of the matrix elements
of ĥ. Results are shown for (a), (b) diagonal matrix elements and
(c), (d) off-diagonal matrix elements in billiards (a), (c) B1 and
(b), (d) B2. We consider matrix elements from the entire spectrum
(excluding zero modes), and further average the results over five
systems with a similar volume that is close to the mean volume V .
Black squares are results for smaller systems with V ≈ 4000, red
circles are results for larger systems with V ≈ 30 000. Solid lines are
the PDFs from (a), (b) Eq. (39) and (c), (d) Eq. (40).

under investigation, while a complete derivation of these ex-
pressions can be found in Ref. [18].

The PDF of diagonal matrix elements of ĥ from Eq. (32) is

Phαα
(x) = 1

π

√
V

2
K0

(√
V

2
|x|

)
, (39)

where K0 is a modified Bessel function of the second kind.
The latter emerges since Phαα

is approximated as a prod-
uct distribution of normal random variables. The PDF of
off-diagonal matrix elements of ĥ is obtained from a sum
distribution, and yields the exponential distribution,

Phαβ
(x) =

√
V

2
e−√

2V |x|. (40)

The PDF of diagonal matrix elements of n̂ from Eq. (31) is
related to that of the square of normal random variables, and
it is described by a chi-square distribution with degree 1,

Pnαα
(x) = V 1/4

√
2π

1√
x + 1√

V

e−
√

V
2 [x+ 1√

V ]. (41)

The PDF of off-diagonal matrix elements of n̂ is related to that
of the product distribution of normal random variables and is,
up to normalization, identical to the PDF of diagonal matrix
elements of ĥ. It is given by

Pnαβ
(x) =

√
V

π
K0

(√
V |x|), (42)

FIG. 15. Probability density function P of the matrix elements
of n̂. Results are shown for (a), (b) diagonal matrix elements and
(c), (d) off-diagonal matrix elements, in billiards (a), (c) B1 and
(b), (d) B2. We consider matrix elements from the entire spectrum
(excluding zero modes), and further average the results over five
systems with similar volume that is close to the mean volume V .
Black squares are results for smaller systems with V ≈ 4000, red
circles are results for larger systems with V ≈ 30 000. Solid lines are
the PDFs from (a), (b) Eq. (41) and (c), (d) Eq. (42). The results in
(a), (b) are shifted in the x axis by 1/

√
V , such that the shifted matrix

elements are non-negative.

where K0 is again a modified Bessel function of the
second kind.

The analytical expressions from Eqs. (39)–(42) are shown
as lines in Figs. 14 and 15. They very accurately describe the
numerical results, which are shown as symbols. The agree-
ment suggest that the overwhelming majority of the matrix
elements of local observables in the tight-binding billiards un-
der investigation comply with those in other quantum-chaotic
quadratic models, and are well described by the single-
particle ETH.

VI. CONCLUSIONS

In this paper, we explored the fate of quantum-chaotic
quadratic Hamiltonians in the absence of disorder. To this end,
we introduced the tight-binding billiards, i.e., the systems of
free fermions on square lattices with curved boundaries. Even
though these systems share some similarities with billiards in
continuum, the lattice discretization introduces an ultrahigh
energy scale to the tight-binding billiards such that a direct
quantitative comparison does not seem to be obvious. In fact,
it appears that the tight-binding billiards may represent a
class of quantum systems that lie in between single-particle
quantum billiards in continuum and interacting many-body
quantum systems in the lattice.
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We showed that the tight-binding billiards exhibit several
universal properties. Most importantly, (a) the average eigen-
state entanglement entropy of many-body eigenstates agrees
reasonably well with predictions from RMT [16] and with
results for the typical pure fermionic Gaussian states [8,68]
and (b) the statistical properties of observables in nondegener-
ate single-particle eigenstates comply with the single-particle
ETH [18]. These properties establish close connections of
tight-binding billiards with other quantum-chaotic quadratic
Hamiltonians studied in the past, i.e., the 3D Anderson model
below the localization transition and the Dirac SYK2 model
[17,18]. As a side result, we derived a closed-form expres-
sion of the average second Rényi entanglement entropy as a
function of the subsystem fraction, which builds on previous
results from Refs. [15,69] and complements a similar expres-
sion found before for the von Neumann entanglement entropy
[16]. Moreover, we observed a subextensive number of zero
modes, i.e., degenerate single-particle eigenstates with zero
energy. We interpreted them as chiral particles and argued that
their wave function is confined to one of the sublattices.

Our results may stimulate future studies of several in-
triguing properties of tight-binding billiards. First, one should
explore the validity of universal eigenstate entanglement en-
tropy and the single-particle ETH in other billiard geometries,
in particular, those that are associated with a weaker degree
of ergodicity in the corresponding continuum billiards. Then
it would also be interesting to explore how generic is the
mechanism that gives rise to zero modes and the emergence of
chiral particles. The zero modes studied here represent a plat-
form to sharpen the notion of quantum scars in tight-binding
billiards in the future, which may give rise to some form of
weak ergodicity breaking of the single-particle ETH. Particu-
larly interesting is the question of quantum quench dynamics
and its characterization for different classes of initial states,
especially those that have large overlaps with zero modes.
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APPENDIX A: WAVE-FUNCTION STRUCTURE
OF ZERO MODES

In Sec. II B, we presented some general properties of zero
modes. Here we extend these arguments to obtain informa-
tion about their wave functions. The analysis is built on the
structure of the Hamiltonian matrix sketched in Fig. 2(b)
that consists of four blocks, i.e., two diagonal and two off-
diagonal blocks. The diagonal blocks of dimensions NA × NA

and NB × NB are zero, while the off-diagonal blocks of dimen-
sions NA × NB and NB × NA may include nonzero elements.
Let us first consider the case in which all the columns in the
off-diagonal block of dimensions NA × NB [bottom left block
in Fig. 2(b)] are linearly independent. This implies m = 0 in
Eq. (14) and hence the rank of the Hamiltonian is rank(H ) =

2NB = V − δN (we assume NA � NB, as in the main text). We
show below that in this case, the wave functions of all zero
modes are confined into the larger sublattice, i.e., sublattice A.

Suppose |α〉 is a zero mode of the Hamiltonian. We can
write |α〉 = |αA〉 + |αB〉, where |αA〉 only includes occupa-
tions in sublattice A and |αB〉 only includes occupations in
sublattice B. Then,

Ĥ |α〉 = 0 ⇒ Ĥ (|αA〉 + |αB〉) = Ĥ |αA〉 + Ĥ |αB〉 = 0. (A1)

Since Ĥ |αA〉 ∈ HB and Ĥ |αB〉 ∈ HA, each term must equal to
zero, i.e., Ĥ |αA〉 = 0 and Ĥ |αB〉 = 0 (HA and HB are single-
particle Hilbert spaces in sublattices A and B, respectively).
If we write |αB〉 as a sum over the position basis vectors in
sublattice B, |αB〉 = ∑NB

i=1 vi|bi〉, we have

Ĥ |αB〉 = Ĥ
NB∑
i=1

vi|bi〉 =
NB∑
i=1

viĤ |bi〉 = 0, (A2)

⇒
NB∑
i=1

vi|si〉 = 0, (A3)

where |si〉 can be represented as columns in the NA × NB off-
diagonal block in the Hamiltonian matrix. Since all columns
are linearly independent, Eq. (A3) then requires vi = 0 for i =
1, . . . , NB, and, as a consequence,

|αB〉 =
NB∑
i=1

vi|bi〉 = 0. (A4)

Zero modes hence only have occupations in the larger
sublattice A.

As argued in Sec. II B, the case considered above is found
in billiard B1. In Fig. 16, we show examples of the wave-
function amplitudes in this billiard at V = 950. The upper two
rows in Fig. 16 refer to eigenstates at nonzero energy, while
the lower two rows refer to zero modes. We observe that the
latter are indeed confined into sublattice A, as expected from
Eq. (A4). Moreover, even the structure of energy eigenstates
at nonzero energy, in particular, of those that are close to
zero modes, appears to be nontrivial, at least for the system
sizes under consideration. Investigating the evolution of the
structure of these states with increasing the system size is an
interesting problem for future research.

Next we consider a more general case in which the off-
diagonal block of dimension NA × NB [bottom left block in
Fig. 2(b)] consists of NB − m columns that are linearly in-
dependent, while the remaining m � 0 columns are linear
combinations of the NB − m linearly independent columns.
The rank of the matrix is given by Eq. (14), i.e., rank(H ) =
V − (δN + 2m), and the number of zero modes is M = δN +
2m. We show below that in this case, the wave functions of
δN + m zero modes are confined into the larger sublattice, i.e.,
sublattice A, while the wave function of the remaining m zero
modes are confined into sublattice B.

We first rewrite Eqs. (A2) and (A3) at m > 0 as

Ĥ |αB〉 =
NB∑
i=1

vi|si〉 =
NB−m∑

i=1

vi|si〉 +
NB∑

i=NB−m+1

vi|si〉 (A5)
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FIG. 16. Amplitudes |ψ (α)
j |2 of the Hamiltonian eigenfunctions in the single-particle site-occupation basis, |α〉 = ∑V

j=1 ψ
(α)
j | j〉, where

| j〉 ≡ ĉ†
j |∅〉, in billiard B1 at V = 950. Numbers correspond to the eigenfunction index α. Black numbers (upper two rows) refer to

eigenfunctions at nonzero energy, while red numbers (lower two rows) refer to zero modes. The color scale in the density plot is adjusted
in each panel to the corresponding minimal and maximal value.

and express the vectors that are not linearly independent as

|si〉 =
NB−m∑

j=1

k(i)
j |s j〉, i = NB − m + 1, . . . , NB. (A6)

This enables us to rewrite Eq. (A5) as

Ĥ |αB〉 =
NB−m∑

i=1

vi|si〉 +
NB∑

i=NB−m+1

vi

NB−m∑
j=1

k(i)
j |s j〉

=
NB−m∑

i=1

vi|si〉 +
NB−m∑

j=1

ω j |s j〉 =
NB−m∑

i=1

(vi + ωi )|si〉,

(A7)

where the coefficients ω j are ω j = ∑NB
i=NB−m+1 vik

(i)
j . As in

Eq. (A2), one has Ĥ |αB〉 = 0, which yields NB − m conditions

for the coefficients vi,

vi = −ωi = −
NB∑

l=NB−m+1

vl k
(l )
i , i = 1, . . . , NB − m. (A8)

This suggests that one is free to choose m coefficients from
subsystem B for any zero mode, while the remaining NB − m
coefficients are set by the condition Eq. (A8). In other words,
one may view the effective dimensionality of the state |αB〉 to
be given by m.

Since the Hamiltonian matrix is symmetric, there are again
NB − m linearly independent rows (and therefore columns) in
the off-diagonal block of size NB × NA [upper right block in
Fig. 2(b)], while the other NA − NB + m = δN + m are linear
combinations of the first NB − m ones. Therefore, one can
similarly show that one is free to choose δN + m coefficients
from subsystem A for any zero mode, while the other NB − m
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FIG. 17. Amplitudes |ψ (α)
j |2 of the Hamiltonian eigenfunctions in the single-particle site-occupation basis, |α〉 = ∑V

j=1 ψ
(α)
j | j〉, where

| j〉 ≡ ĉ†
j |∅〉, in billiard B2 at V = 1534. Numbers correspond to the eigenfunction index α. Black numbers (upper three rows) refer to

eigenfunctions at nonzero energy, while red numbers (lower row) refer to zero modes. The color scale in the density plot is adjusted in
each panel to the corresponding minimal and maximal value.

are set by a condition similar to Eq. (A8). One may hence
view the effective dimensionality of the state |αA〉 to be given
by δN + m.

In summary, one can consider a general form of zero modes
that is a superposition of m states from subsystem B and δN +
m states from subsystem A. Since it is possible to construct
symmetrized zero modes such that they are confined into a
single subsystem only, see Eq. (16), this gives rise to m zero
modes that are confined into subsystem B and the other δN +
m zero modes to be confined into subsystem A.

This case is relevant for the description of zero modes
in billiard B2. In Fig. 17, we show examples of the wave-
function amplitudes in this billiard at V = 1534. The upper
three rows in Fig. 17 refer to eigenstates at nonzero energy,
while the lower row refers to zero modes.

We note that the zero modes obtained after numerically
diagonalizing the Hamiltonian matrix (such as those shown
in the lower row of Fig. 17) do not necessary belong in a
single sublattice only. We verified that if one diagonalizes the

subspace of all zero modes according to the operator �̂ from
Eq. (4), one indeed obtains new orthogonal zero modes that
are eigenstates of �̂ with eigenvalues ±1. Furthermore, m of
these new zero modes are confined into subsystem B and the
other δN + m are confined into subsystem A.

APPENDIX B: PROTOCOLS FOR LATTICE BIPARTITIONS

In Sec. IV, we studied the bipartite entanglement entropies
of many-body Hamiltonian eigenstates in tight-binding
billiards. In each billiard, we considered four bipartitions as
sketched in Fig. 7. The protocols for performing these bipar-
titions are given below. The procedure is terminated once the
number of lattice sites in subsystem A is equal to the number
of lattice sites in its complement.

(1) Bipartitions a1 and b1 (horizontal bipartition): A sub-
system A is constructed by gradually adding rows from
bottom to top. In each row, individual sites are added from
left to right.
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(2) Bipartitions a2 and b2 (vertical bipartition): A subsys-
tem A is constructed by gradually adding columns from left to
right. In each column, individual sites are added from bottom
to top.

(3) Bipartitions a3 and b3 (diagonal bipartition): A sub-
system A is constructed by first choosing a particular corner
site of a lattice, and then gradually adding lattice sites along
the diagonals that are closest to that site. In billiard 1 (a3),
we start at the bottom right corner site and add lattice sites
along the diagonals, such that each of the diagonals runs
from top right to bottom left. In billiard 2 (b3), we start in
the bottom left corner site and add lattice sites along the
diagonals, such that each of the diagonals runs from top left to
bottom right.

(4) Bipartitions a4 and b4 (symmetric bipartition): A sub-
system A is constructed by first drawing a line that connects
two edge points of billiards in continuum and then gradually
rotate the line by increasing the angle of the line with the
horizontal axis. Lattice sites of tight-binding billiards that are
located in the region between the original line and the rotated
line belong to subsystem A. In billiard 1 (a4), we draw a line
that connects the points (0,0) and (L, 0), see Fig. 1(a) and
the definition of the billiard in Eq. (2). We then increase the
angle of the line with the lower horizontal line in L steps,
such that in the final step the line connects the points (0,0)
and (L, L). In each step, we add new lattice sites by rows,
from bottom to top and from left to right. In billiard 2 (b4), we
draw a line that connects the points (L, L) and (0, yh − Rh),
see Fig. 1(c) and the definition of the billiard in Eq. (3). We
then increase the angle of the line with the upper horizontal
line in L steps, such that in the final step the line connects
the points (L, L) and (xv − Rv, 0). In each step, we add new
lattice sites by rows, from top to bottom and from right
to left.

APPENDIX C: CALCULATION OF
ENTANGLEMENT ENTROPIES

In the calculations of eigenstate entanglement entropies,
we first randomly select a many-body eigenstate |m〉. Denot-
ing the single-particle energy eigenstates as {|q〉 = ĉ†

q|∅〉; q =
1, ...,V }, we randomly choose (with probability 1/2) for each
|q〉 whether it is occupied or empty. Then, the many-body
eigenstate is constructed as |m〉 = ∏

{ql }m
ĉ†

ql
|∅〉, where {ql}m

represents the set of occupied single-particle energy eigen-
states in |m〉.

Next we construct a one-body correlation matrix [66] of
|m〉 with matrix elements

(ρm)i j = 〈m| ĉ†
i ĉ j |m〉 , (C1)

where i, j,= 1, ...,V . The matrix elements can be calculated
using a unitary transformation between the operators ĉ†

i , ĉi

that create and annihilate a particle on lattice site i, and the
operators ĉ†

q, ĉq that create and annihilate a particle in an
energy eigenstate |q〉.

We determine a lattice bipartition into subsystem A with
VA sites and subsystem B with VB sites, where V = VA +
VB and VA � VB. The one-body correlation matrix ρm from
Eq. (C1) is then restricted to entries i, j from subsystem
A, and the corresponding eigenvalues are denoted {�i}, i =

1, ...,VA. The von Neumann entanglement entropy can be
obtained as [67]

Sm =
VA∑
i=1

−[�i ln �i + (1 − �i ) ln(1 − �i )]. (C2)

Similarly, the second Rényi entanglement entropy is given
by [105]

S(2)
m =

VA∑
i=1

− ln
[
�2

i + (1 − �i )
2
]
. (C3)

The average eigenstate entanglement entropies S and S(2) are
then calculated according to Eq. (22), i.e., by averaging over
contributions from different randomly selected many-body
eigenstates |m〉.

APPENDIX D: CLOSED-FORM EXPRESSION FOR THE
SECOND RÉNYI ENTANGLEMENT ENTROPY

The main input for the derivation is the distribution F f (x)
of eigenvalues of the one-body correlation matrix ρm, re-
stricted to entries i, j from subsystem A. Here f denotes the
subsystem fraction f = VA/V ∈ (0, 1/2]. As pointed out in
Ref. [15], the restricted ρm of a typical many-body eigen-
state |m〉 of random quadratic Hamiltonians such as the Dirac
SYK2 model belongs to the β-Jacobi ensemble with β = 2.
Then, the distribution of the corresponding eigenvalues of
systems at half filling is [15]

F f (x) = 1

2π f

√
( f+ − x)(x − f−)

x(1 − x)
1[ f−, f+], (D1)

where 1[ f−, f+] indicates that the distribution is nonzero for
f ∈ [ f−, f+], with f± = 1

2 (1 ± 2
√

f (1 − f )). The average

entanglement entropy of the nth Rényi entropy is S (n) =
VA

∫
F f (x)S(n)(x)dx, where S(n)(x) = 1

1−n ln[xn + (1 − x)n].
We next perform two steps that are identical to those in

Ref. [69]. (a) We express

ln[xn + (1 − x)n] =
n−1∑
j=0

ln[x − ξ j (1 − x)], (D2)

where ξ j = eiπ (2 j+1)/n for j = 0, 1, ..., n − 1. (b) We further
express each summand on the right-hand side of Eq. (D2) as

ln[x − ξ j (1 − x)] = ln[x(1 + ξ j ) − ξ j]

= ln

[
(1 + ξ j )

(
x − ξ j

1 + ξ j

)]

= ln(1 + ξ j ) + ln(x − d j ), (D3)

where d j = ξ j/(1 + ξ j ). Note that these steps assume that
n is a positive even integer and that the contributions to ξ j

come in pairs ( j′, n − 1 − j′), thereby guaranteeing the sum
in Eq. (D2) to be real. Equations (D2) and (D3) enable us to
express the average entanglement entropy S (n) as a sum of two
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contributions,

Sna = 1

1 − n

1

2π f

n−1∑
j=1

ln(1 + ξ j )
∫ f+

f−

√
( f+ − x)(x − f−)

x(1 − x)
dx

(D4)
and

Snb = 1

1 − n

1

2π f

n−1∑
j=1

∫ f+

f−

√
( f+ − x)(x − f−)

x(1 − x)
ln(x − d j )dx,

(D5)
such that S (n) = VA(Sna + Snb ).

We now focus on the second Rényi entropy by setting n =
2. In this case,

∑1
j=0 ln(1 + ξ j ) = ln 2 and hence S2a ≡ Sa in

Eq. (D4) can be simplified to

Sa = − 1

2π f

∫ f+

f−

√
( f+ − x)(x − f−)

x(1 − x)
dx ln 2

= −
(

1 − 2
√

f+ f−
2 f

)
ln 2

= −
(

1 − √
1 − 4 f (1 − f )

2 f

)
ln 2, (D6)

where in the last step we used the relation 2
√

f+ f− =√
1 − 4 f (1 − f ). Evaluation of S2b in Eq. (D5) is, however,

more tedious. Defining

I1(x, f+, f−) =
∫ √

( f+ − x)(x − f−)

x(1 − x)
dx, (D7)

one can solve it per parts, i.e., expressing S2b = Sb1 + Sb2,
where

Sb1 = − 1

2π f

1∑
j=0

(I1(x, f+, f−) ln(x − d j )| f +
f− ) (D8)

and

Sb2 = 1

2π f

1∑
j=0

(∫ f +

f−
I1(x, f+, f−)

1

x − d j
dx

)
. (D9)

The coefficients d j in Eqs. (D8) and (D9) are d0 = ξ/(1 + ξ )
and d1 = ξ ∗/(1 + ξ ∗), with ξ = i. The integral I1(x, f+, f−)
from Eq. (D7) was already computed in Ref. [69] and yields
(omitting its dependence on f+, f− for clarity)

I1(x) = − 2 arctan F (x) + 2
√

f+ f− arctan

(√
f+ f−
f+

F (x)

)

+ 2
√

f+ f− arctan

(√
f+ f−
f−

F (x)

)
, (D10)

where F (x) =
√

f+−x
x− f−

. One observes that I1(x = f+) = 0 and

I1(x = f−) = −π + 2π
√

f+ f−, which gives rise to a rather
simple expression for Sb1 from Eq. (D8),

Sb1 = −1 − 2
√

f+ f−
2 f

1∑
j=0

ln( f− − d j ) = 1 − √
1 − 4 f (1 − f )

2 f

× (2 ln 2 − ln[1 + 4 f (1 − f )]). (D11)

On the other hand, evaluation of Sb2 from Eq. (D9) requires
us to solve integrals of the form

I2 =
∫ f+

f−
arctan

(
η

√
f+ − x

x − f−

)
1

x − d j
dx

= π ln

⎛
⎝1 + η

√
f+−d j

f−−d j

1 + η

⎞
⎠, (D12)

where it follows from Eq. (D10) that the values of η are η = 1,
η = √

f−/ f+ and η = √
f+/ f−. This gives rise to three contri-

butions to Sb2, which we express as Sb2 = Sb2a + Sb2b + Sb2c.
The first contribution, Sb2a, stems from the first term on the
right-hand side of Eq. (D10), i.e., it corresponds to η = 1 in
Eq. (D12) and gives

Sb2a = 1
f ln 2 + 1

2 f ln[1 + 4 f (1 − f )]

− 1
f ln(1 +

√
1 + 4 f (1 − f )). (D13)

The second contribution, Sb2b, stems from the second term on
the right-hand side of Eq. (D10), i.e., it corresponds to η =√

f−/ f+ in Eq. (D12) and gives

Sb2b =
√

1 − 4 f (1 − f )

2 f

[
− 1

2 ln[1 + 4 f (1 − f )]

+ ln(
√

1 + 4 f (1 − f ) +
√

1 − 4 f (1 − f ))

− ln(1 +
√

1 − 4 f (1 − f ))
]
. (D14)

The third contribution, Sb2c, stems from the third term on
the r.h.s. of Eq. (D10), i.e., it corresponds to η = √

f+/ f− in
Eq. (D12), and it is equal to the second contribution, i.e.,

Sb2c = Sb2b. (D15)

All together, we get S (2) = VA(Sa + Sb1 + Sb2a + 2Sb2b),
which is

S (2) =VA
ln 2

2 f

[
1 −

√
1 − u( f ) − 2 log2

(
1 + √

1 + u( f )

2

)

− 2
√

1 − u( f ) log2

(
1 + √

1 − u( f )√
1 + u( f ) + √

1 − u( f )

)]
,

(D16)

where u( f ) = 4 f (1 − f ). Finally, we observe that by replac-
ing

√
1 − u( f ) → 1 − 2 f , which is strictly speaking valid

only for f � 1/2, we get Eq. (24) in the main text, which is
symmetric with respect to f = 1/2, i.e., it is applicable at any
0 < f < 1.

APPENDIX E: TRANSLATIONALLY INVARIANT FREE
FERMIONS ON A SQUARE LATTICE WITH REGULAR

BOUNDARIES

We complement the results for the average eigenstate en-
tanglement entropies of tight-binding billiards in Sec. IV with
those for TI free fermions on square lattices with regular
(square) boundaries, using either periodic or open boundary
conditions (PBCs or OBCs, respectively). It was suggested
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FIG. 18. Volume-law coefficients sTI and s(2)
TI of the average

eigenstate entanglement entropies for TI free fermions in 2D lattices
with regular boundaries, using PBCs (circles) and OBCs (triangles).
(a) Results for von Neumann entanglement entropy, (b) results for
the second Rényi entropy, both at the subsystem fraction f = 1/2.
The volume-law coefficients are defined using Eqs. (25) and (22),
where at each V we average over M = 5000 many-body eigenstates.
Horizontal red lines are results for the same model in 1D and 3D
lattices, (a) sTI = 0.5378 [46] and (b) s(2)

TI = 0.4713 [17]. The width
of the lines correspond to the estimated error bar 10−4. Dashed lines
are linear fits to the OBC results at V � 3000.

[46] that the volume-law contribution to the average eigenstate
entanglement entropies of TI free fermions on hypercu-
bic lattices with regular boundaries may be independent of

dimensionality. However, the numerical calculations were so
far only reported in 1D [16,46] and 3D lattices [17] for the von
Neumann entropy, and in 1D and 3D lattices for the second
Rényi entropy [17].

Previous numerical studies in 1D and 3D lattices deter-
mined the volume-law coefficients at the subsystem fraction
f = 1/2 to be sTI = 0.5378 for the von Neumann entropy
[46] and s(2)

TI = 0.4713 for the second Rényi entropy [17].
Our numerical results for the 2D lattices at different system
sizes V are shown as symbols in Fig. 18. The horizontal
lines in Fig. 18 denote the predictions sTI and s(2)

TI from
1D and 3D lattices given above, and the width of the hori-
zontal lines correspond to an estimated error bar 10−4. One
observes that the 2D results using PBCs agree with the 1D
and 3D predictions within the error bar already for moderately
large systems. This is expected since the finite-size corrections
to the average eigenstate entanglement entropies of TI free
fermions with PBCs are small [8,46]. On the other hand, the
2D results using OBCs exhibit larger finite-size corrections,
which were also observed in 1D systems [16]. Still, a sim-
ple extrapolation of the results at large V, see the dashed
lines in Fig. 18, suggest that the OBC results agree with the
PBC results to high precision, and will eventually become
identical in the thermodynamic limit. It is interesting to note

that the finite-size corrections to both sTI and s(2)
TI appear

to scale as V −1/2 = L−1, where L is the linear size of the
system. The same scaling with L was observed for sTI in one
dimension [16].

In conclusion, our numerical results for the volume-law
coefficients in 2D TI free fermion models are consistent
with results in the same model in dimensions one and three
and firmly establish that these volume-law coefficients are in
asymptotically large systems different from those found in
quantum-chaotic quadratic systems, which are obtained from
Eqs. (23) and (24).
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