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Using combinatorial optimization techniques we study the critical properties of the two- and three-dimensional
Ising models with uniformly distributed random antiferromagnetic couplings (1 � Ji � 2) in the presence of
a homogeneous longitudinal field, h, at zero temperature. In finite systems of linear size, L, we measure the
average correlation function, CL (�, h), when the sites are either on the same sublattice, or they belong to different
sublattices. The phase transition, which is of first order in the pure system, turns to mixed order in two dimensions
with critical exponents 1/ν ≈ 0.5 and η ≈ 0.7. In three dimensions we obtain 1/ν ≈ 0.7, which is compatible
with the value of the random-field Ising model, but we cannot discriminate between second-order and mixed-
order transitions.
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I. INTRODUCTION

Phase transitions in systems with quenched disorder are not
well understood despite intensive research. Exact results in
this field are very scarce. In experiments, thermal equilibrium
is difficult to reach, which is also true for several numerical
simulations. A paradigmatic system in this field of research is
the random-field Ising model (RFIM) [1,2], for which a phase
transition takes place in three dimensions (d = 3), while in
d = 2 the random field destroys the transition which takes
place in the pure model. The phase transition in the d = 3
RFIM is governed by a zero-temperature fixed point, the
properties of which can be very efficiently studied by combi-
natorial optimization algorithms [3–6]. In this way the ground
states of the random samples can be exactly calculated and the
simulation is performed for large systems with high statistics.

In a theoretical point of view the perturbative renormaliza-
tion group (PRG) can be carried in all orders of perturbation
theory for the RFIM [7,8]. It predicts dimensional reduction,
which means that the critical exponents of the RFIM in d
dimensions are the same as the exponents of the pure Ising
model in d − 2 dimensions. Another prediction of the PRG
is that the RFIM and the disordered antiferromagnetic Ising
model in an external magnetic field are in the same universal-
ity class, which means that critical exponents and other critical
parameters are the same for the two models and they do not
depend on the specific form of disorder. This statement is first
formulated for random bonds [9], but it has afterwards been
generalized for dilution [10]. The diluted version is very im-
portant, since it can be connected with experiments, which has
been performed extensively [2]. Regarding the predictions of
the PRG, some are false (cf. the dimensional reduction [11]),
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but some could be true, regarding universality of the RFIM
and the diluted antiferromagnetic Ising model in a field. In
this respect we mention the theoretical analysis in [12], but
also conflicting numerical results [13–18].

In this paper we are going to study the critical properties
of the antiferromagnetic Ising model in an external magnetic
field with random couplings at zero temperature in d = 2
(square lattice) and in d = 3 (simple cubic lattice). In the pure
model in the ground state there is a first-order transition and
at the transition point the ground state is infinitely degenerate.
Switching on disorder the degeneracy at the transition point
is lifted and the properties of the transition are expected to
be changed. For the numerical calculations we use very effi-
cient combinatorial optimization algorithms and calculate the
exact ground state of large finite samples. We are going to
obtain precise numerical estimates for the critical properties
of the d = 2 model; less extensive simulations will be per-
formed in d = 3. Regarding previous studies: a very large
number of numerical simulations have been performed for
the RFIM [4–6,19–23]; only a few simulations are devoted to
the diluted antiferromagnetic Ising model in a field [13–18]
and we are not aware of simulations for the random-bond
antiferromagnetic Ising model in a field. In this paper we aim
to fill this gap.

The rest of the paper is organized in the following way. The
model and the method of investigation are presented in Sec. II.
The numerical results are calculated and analyzed in Sec. III
and a discussion is presented in Sec. IV.

II. THE MODEL

Our starting point is the antiferromagnetic Ising model in a
field

HAF = J
∑
〈i, j〉

σiσ j − h
∑

i

σi (1)
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in terms of σi = ±1 at site i and the first sum runs over nearest
neighbors. We consider finite lattices of linear size L and with
periodic boundary conditions (PBCs). The ground state of this
pure model is antiferromagnetic for h < dJ and ferromagnetic
for h > dJ . The transition at hc = dJ is of first order and at
this point the ground state is infinitely degenerate [24]: each
spin in one of the sublattices can be either σi = 1 or σi = −1.

For computational reasons it is convenient to
perform a gauge transformation σi → (−1)

∑
k ik σi, with

i = {i1, i2, . . . , id}. For a hypercubic lattice with PBC and
even L we obtain a ferromagnet in an alternating magnetic
field:

HAF = −J
∑
〈i, j〉

σiσ j − h
∑

i

(−1)
∑

k ik σi. (2)

In the next step we consider disorder in the system. In the
literature one generally considers random site dilution, which
amounts to replacing the spin variable σi by σiεi, where the
εi are independent random numbers: εi = 0 (εi = 1), with
probability p (1 − p). Instead we consider here the model
with random couplings [random antiferromagnet in a field
(RAFF)]:

HRAFF = −
∑
〈i, j〉

Ji jσiσ j − h
∑

i

(−1)
∑

k ik σi (3)

and the Ji j couplings are taken independently from the boxlike
distribution:

π (J ) =
{

(�J )−1 for J0 < J � J0 + �J,

0 otherwise.
(4)

In the limit �J → 0 we have the pure system. In the follow-
ing we argue that the phase diagram of the random system
can be different, if the smallest coupling is Jmin = J0 > 0 or
Jmin = J0 = 0. Indeed, the ground state is strictly antiferro-
magnetic (AFM) ordered, if h < 2dJmin and for h > 2dJmin

excitations destroy (locally) the AFM order. In our numerical
work we shall investigate the region with J0 > 0 and keep
J0 = �J = 1.

In the plane of temperature (T ) and field (h) the schematic
phase diagram of the RAFF is shown in Fig. 1, which in d = 3
contains a ferromagnetic and a paramagnetic phase. With zero
field, h = 0, the phase diagram has a random-bond Ising fixed
point [25], in which the critical exponents [26] are different
from their values in the pure model in d = 3. For finite field,
according to PRG arguments, the transition is controlled by
the fixed point of the random-field Ising model. Finally, there
is a zero-temperature fixed point, the properties of which will
be studied in this paper. In d = 2 the critical exponents at the
zero-field fixed point are the same as for the pure Ising model,
however with logarithmic corrections [27,28]. In d = 2 the
ferromagnetic phase for T > 0, h > 0 is expected to be ab-
sent, which follows from the PRG results. In this paper, we
focus on calculating the critical properties of the RAFF at the
zero-temperature fixed point.

III. RESULTS AT ZERO TEMPERATURE

At zero temperature the ground state of finite samples has
been calculated exactly by a very efficient combinatorial op-
timization algorithm. The problem is turned into the so-called

FIG. 1. Schematic phase diagram of the RAFF in d = 3. In the
zero-field fixed point (blue) the critical exponents are those of the
random-bond Ising model. For finite value of the field the transition
is expected to be controlled by the fixed point of the random-field
Ising model (green) according to the prediction of the perturba-
tive renormalization group. In d = 2 the ferromagnetic phase for
T > 0, h > 0 is expected to be absent. The properties of the model
at the zero-temperature (red) fixed point are the subject of this paper.

max-flow problem [29]: all the sites of the first sub-lattice are
linked to an extra site (the source) by a bond weighted by h,
while the sites of the other sublattice are linked to another
extra site (the sink) also weighted by h. The bond between
two original sites i and j are weighted by Ji j . Then the min cut
separating the source from the sink realizes one ground state.
If the ground state is degenerate, each distinct ground state
corresponds to a min cut. This min cut is found via the max-
flow algorithm using the Goldberg and Tarjan algorithm [30].

We calculated average correlation functions:

CL(�) = 〈σiσi+�〉, (5)

with � = {�1, �2, . . . , �d} and 〈· · · 〉 denotes the average in
the ground state of a given sample, which amounts to av-
eraging for all spin pairs having a distance |�|, and · · ·
stands for the average over quenched disorder. We concen-
trate on the behavior of CL(�) for the largest separations and
calculate CL(�(↑↓)

max ) ≡ C(↑↓)
L , when the sites are on different

sublattices, �
(↑↓)
max = {L/2 − 1, L/2, . . . , L/2} and CL(�(↑↑)

max ) ≡
C(↑↑)

L , when the sites belong to the same sublattice, �
(↑↑)
max =

{L/2, L/2, . . . , L/2}. In principle, other long � vectors can
also be considered. However, these are quite close and the re-
sults obtained are correlated. We mention that other quantities,
such as sublattice magnetization, energy, or susceptibility,
could have been studied using the same numerical method.
However, we focus on the behavior of the correlation func-
tion, which more clearly shows the properties of the phase
transition in the system.

A. Square lattice

For the square lattice we considered finite lattices of linear
size: L = 16, 32, 64, 128, 256, 512, and 1024 and the
number of realizations varied between 10 000 for the smaller
sizes and 500 for the larger ones. We have calculated the
average correlation functions C(↑↓)

L (h) and C(↑↓)
L (h), which are
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FIG. 2. Average correlation functions C (↑↑)
L (h) (upper curves)

and C (↑↓)
L (h) (lower curves) as a function of the field, h, calculated on

finite square lattices. Results of the one spin-flip approximation are
shown by full lines. The dashed lines illustrate the expected limiting
behavior in the vicinity of the transition point in the thermodynamic
limit [see in Eq. (7)]. The vertical dashed line at the transition point
illustrates the jump of C (↑↑)

L (h).

shown in Fig. 2. For smaller sizes we have monitored the cor-
relations in the complete range 4 � h � 8 at discrete points
separated by �h = 0.02. At the finite-size phase transition
regions, where the correlations are subject to rapid variation,
we have chosen much smaller discretization in �h, so that
about 30 different h values are considered in this region.

In Fig. 2 we include also the results of the so-called one
spin-flip approximation (see Appendix for details). In this
method we start with the ferromagnetic ground state and only
one spin-flip excitation is taken into account. In this figure for
relatively smaller values of h < 5, the numerical curves are
very close to one another and their values practically agree
with those calculated within the one spin-flip approximation.
Having a closer look at the curves, one can see that in this
region for a fixed h, C(↑↑)

L (h) and C(↑↓)
L (h) monotonously

increase with L. If the value of h is increased further, the
curves for different lengths start to cross each other, e.g.,
C(↑↓)

2L (h) = C(↑↓)
L (h) at h = h∗(L). Generally h∗(L) decreases

with increasing L, but converges rapidly to a limiting value:
limL→∞ h∗(L) = h∗. This limiting value of h∗ looks identical
for C(↑↓)

L (h), too, and within the error corresponds to the
estimated transition point, hc (see caption of Fig. 4). After
passing the crossing points the order of the the curves for
different values of L reverses, and their values start to decrease
rapidly and exceed a minimum. The value at the minimum
tends towards zero in the large L limit. In Fig. 3 we enlarge
the sloping part of the curves. As can be seen in the figure,
the finite-size curves run over an inflection point at h = h̃(L),
at which point we draw a tangential straight line described by
the equation y = C′(h − h0). Here

C′ = C′(L) = dC

dh

∣∣∣∣
h̃(L)

(6)

is the slope and h0 = h0(L) is the crossing point with the
horizontal axis, which can be used as a finite-size transition
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FIG. 3. C (↑↑)
L (h) at the decreasing parts and their slope at

the inflection points are indicated by straight dashed lines. The
crossing point of a straight line with the horizontal axis defines
the finite-size transition parameter h0(L). From right to left, L =
32, 64, 128, 256, 512, and 1024. In the inset the slopes of the
curves at the inflection point are plotted versus L in a double-
logarithmic scale. The slope of the dashed straight line is ε = 1/2.

parameter. By inspection we notice a power-law variation:
C′(L) ∼ Lε , with ε ≈ 0.50(5) (see the inset of Fig. 3).

Consequently in the thermodynamical limit the slope of
the curve diverges and at the same time the extension of the
critical region, �h(L) ∼ h0(L) − hc, with hc = limL→∞ h0(L)
being the transition point, shrinks to zero. According to the
inset of Fig. 4 this relation is also in a power-law form,
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FIG. 4. The average correlation function, C (↑↑)
L (h), close to the

transition point as the function of the scaling variable (h − hc )L1/2,
with hc = 5.102 estimated in the inset [L = 128, (+), L = 256
(+), L = 512 (+), L = 1024 (+), and L = 2056 (+)]. In the
left inset the finite-size transition parameter h0(L), as defined in
Fig. 3, is plotted as a function of L−ω, for different values of
ω = 0.6, 0.55, 0.5, 0.45, and 0.4, from top to bottom. The best
asymptotic form is obtained with ω ≈ 0.5, leading to an estimate
for hc, used in the main panel. Right inset: finite-size scaling of the
minimum value of C (↑↑)

L (hmin) in log-log plot. The slope of the dashed
straight line is 2x ≈ 0.7.
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�h(L) ∼ L−ω, with ω ≈ 0.50(5). Using the corresponding
scaling combination, (h − hc)L0.5, the finite-size correlation
functions can be put approximately to a master curve, as
shown in the main panel of Fig. 4.

In a finite system at the critical point the correlation length,
ξ , is limited by the linear size of the system, ξ ∼ L, and
the extension of the critical region scales as �(h) ∼ ξ−1/ν .
Hence the correlation length critical exponent in our case is
ν = 1/ω ≈ 2. In the thermodynamical limit the two limiting
transition points become equal: h∗ = hc and at the transition
point C(↑↑)

L (h), as well as C(↑↓)
L (h) has a jump, from a finite

value at h → h∗ to zero at h → hc. At the right side of the
transition point for h > hc the transition is continuous, which
is manifested by the fact that the value of the minima of
C(↑↑)

L (h) goes to zero as a power law: C(↑↑)
L (hmin) ∼ L−2x.

This is checked in the right inset of Fig. 4 and an estimate
2x = 0.70(7) is obtained.

If we consider the behavior of the correlation functions in
the thermodynamic limit, then for h < hc we have C(↑↑)(h) =
C(↑↓)(h) and at h = hc there is a finite jump to zero. At the
other side of the transition point h > hc we have C(↑↑)(h) =
−C(↑↓)(h) and close to the transition point the variation is of
a power-law form:

C(↑↑)(h) ∼ (h − hc)2β, h > hc, (7)

with β = xν. With our previous estimates we have 2β ≈ 1.4
and we illustrate such type of behavior in Fig. 2.

We can thus conclude that the transition of the RAFF in
d = 2 and in zero temperature is of mixed order. Mixed-order
transitions can be observed in a variety of models [31]; also
the RAFF in d = 1 has a mixed-order transition [32].

B. Cubic lattice

For the cubic lattice we used finite systems of linear size
L = 8, 16, 24, 32, and 42 with periodic boundary condition
and the number of samples was at least 1000 even for the
largest systems. We calculated the average correlation func-
tions, C(↑↑)

L (h) and C(↑↓)
L (h), which are shown in Fig. 5 for

different sizes. Comparing the position of the curves it is seen
that (for a given L) C(↑↓)

L (h) is considerably shifted down from
C(↑↑)

L (h). This is different from the d = 2 case, when the lim-
iting positions of C(↑↑)

L (h) and C(↑↓)
L (h) in the thermodynamic

limit look identical (see in Fig. 2). Considering the relative
positions of the finite-size curves [separably for C(↑↓)

L (h) and
C(↑↓)

L (h)], these are similar to the d = 2 case. For h < 8.5
these are very close to each other, but at the same time the
correlations are larger for larger L’s. Increasing the value of h
the correlation curves for different sizes cross each other, and
these crossing points seem to approach a limiting value h∗ for
large values of L. This limiting crossing point seems to be
the same for both C(↑↑)

L (h) and C(↑↓)
L (h). Passing the crossing

point, for h > h∗ the curves start to decrease rapidly in an
approximately linear form and the slope of these linear parts
increases with L. By inspection the slopes of the curves for a
given L are close to each other for C(↑↑)

L (h) and for C(↑↓)
L (h).

In the following let us concentrate on the fast varying
behavior of C(↑↓)

L (h) and let us define a finite-size transition
parameter with the position of the crossing point of the curve
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FIG. 5. Average correlation functions C (↑↑)
L (h) (upper curves)

and C (↑↓)
L (h) (lower curves) for different sizes for the cubic lattice. If

mixed-order transition takes place the solid lines indicate the possible
behavior of the curves in the thermodynamic limit. Inset: slope of
C (↑↓)

L (h) at the crossing point with the x axis as a function of the
linear size of the cubic lattice, L, in a log-log plot. The slope of the
dashed line is ε ≈ 0.7.

with the x axis, which is denoted by h0(L). The slope of the
curves at h0(L) is denoted by C′(L), which are plotted as a
function of L in the inset of Fig. 5 in a log-log scale.

According to this figure the slopes have a power-law size
dependence C′(L) ∼ Lε, with ε ≈ 0.7. Assuming that this be-
havior remains valid even at the thermodynamic limit, then the
slope at a true transition point, defined as hc = limL→∞ h0(L),
will be infinite. Next we have to decide about the behavior of
the correlations at the transition point. One possibility is that
there is a finite jump, like in d = 2, and the transition is of
mixed order. In this case we have the relation 1/ν = ε ≈ 0.7.
In this case for h > hc the correlation functions are expected
to follow a power-law dependence, like in Eq. (7). Since the
jump in finite systems is relatively small, one can expect
that this jump vanishes in the thermodynamic limit and the
transition is of second order, however with a very small value
of the magnetization exponent, β. This scenario would fit
to the prediction of the PRG, that the critical properties of
the RAFF are the same as that of the RFIM, for the latter
the critical exponents being 1/ν ≈ 0.7 and β ≈ 0. With our
limited finite-size date we cannot discriminate between these
two possibilities for the type of phase transition in the system.

IV. DISCUSSION

In this paper we considered the antiferromagnetic Ising
model with random couplings and in the presence of a ho-
mogeneous field, and studied the properties of the phase
transition at zero temperature. Using very efficient numerical
algorithms we calculated exact ground states of finite hyper-
cubic lattices in d = 2 and d = 3 for a large set of random
samples. We have calculated average spin-spin correlation
functions and studied their properties, when the two sites are
at the same sublattice or the sites belong to different sub-
lattices. The phase transition in the nonrandom system is of
first order and the ground state at the transition point being
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infinitely degenerate with a finite entropy per site. Due to
disorder, this degeneracy is lifted and the transition turns to
mixed order in d = 2. The critical exponents are 1/ν ≈ 0.5
and η = 2x ≈ 0.7, which represents a new random universal-
ity class. In d = 3 we could not decide between mixed-order
or second-order transition due to our limited finite-size results.
The second-order scenario would fit to the prediction of the
PRG theory, having critical exponents 1/ν ≈ 0.5 and β ≈ 0.
In order to decide between the possible forms of phase tran-
sitions, one has to enlarge the system. For the computational
work we used CPU clusters, but with today’s supercomputers
one can go into the range of L ∼ 100 [6]. We also mention that
at T = 0 the dilution of isolated sites in an Ising antiferromag-
net in a field breaks sublattice symmetry, which is not the case
for isolated bond dilution. Therefore, the critical behavior in
the two models is not necessarily equivalent.

An interesting question: What happens with the transition
at finite temperature? According to the prediction of the PRG,
the critical properties of the RAFF should be the same as
that of the RFIM. In this way in d = 2 there should be no
ordered phase, while in d = 3 the critical exponents should
be the same as for the RFIM, both at T = 0 and for T > 0.
For the diluted Ising antiferromagnet in a field this scenario
has been numerically confirmed in d = 3 [18] (see, however,
conflicting numerical results in [13–17]), while the case d = 2
has not yet been studied.

Another way to complete our model is to introduce (ran-
dom) transverse fields into the problem. This question has
been studied in d = 1 and reentrant critical behavior is
observed around the RAFF fixed point [32]. Similar type
reentrant phase transitions are expected to take place in higher
dimensions, too.
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APPENDIX: CORRELATIONS IN THE ONE
SPIN-FLIP APPROXIMATION

Here we consider the square lattice; the considerations are
straightforward to generalize for the cubic lattice. Let us con-
sider the ferromagnetic phase with h < 4 and start to increase
the staggered longitudinal field over h = 4. Here we consider
such processes, when single ↑ spins are flipped in one of the
sublattices. The ferromagnetic ground state will then change
locally at such a site, where the strength of the field exceeds
the sum of the four local couplings:

4∑
j=1

Ji j < h. (A1)

At this point the originally ↑ spin will turn to ↓. The probabil-
ity distribution P4(x)dx of the sum of four random couplings
x = J1 + J2 + J3 + J4 is given by the convolution

P4(x) =
∫

dJ1

∫
dJ2

∫
dJ3π (J1)π (J2)π (J3)

× π (x − J1 − J2 − J3), (A2)

and can be calculated by the box distribution in Eq. (4) (with
J0 = �J = 1):

P4(x) = 1

12
[|8 − x|3 − 4|7 − x|3 + 6|6 − x|3

− 4|5 − x|3 + |4 − x|3]. (A3)

This is nonzero for 4 < x < 8, and in the range 4 < x < 6 is
given by

P4(x) =
{

1
6 (x − 4)3, 4 < x < 5
1
6 (x − 4)3 − 2

3 (x − 5)3, 5 < x < 6
(A4)

and symmetric for x = 6.
The integrated density μ4(x) in this range behaves as

μ4(x) =
∫ x

4
P4(x′)dx′

=
{

1
24 (x − 4)4, 4 < x < 5
1

24 (x − 4)4 − 1
6 (x − 5)4, 5 < x < 6.

(A5)

The average number of flipped ↑ spins at a field h is given by

nfl = μ4(h)
L2

2
= 1

48
(h − 4)4L2, 4 < h < 5, (A6)

and the average correlation function is obtained from the
following reasoning. First we consider the case when the two
sites are on different sublattices, which are denoted by (+)
and (−], respectively. In (+) the spins are fixed to +, while
in (−] they are +, with probability [1 − μ4(h)] and −, with
probability μ4(h). From this follows

C(↑↓)
L (h) = 1 − 2μ4(h)

=
{

1 − 1
12 (h − 4)4, 4 < h < 5

1 − 1
12 (h − 4)4 + 1

3 (h − 5)4, 5 < h < 6.

(A7)

It has the symmetry C(↑↓)
L (h) = −C(↑↓)

L (12 − h).
The correlation function between two sites on the same

sublattice is 1 for the (+) sublattice, while for the (−] sub-
lattice the following cases could happen. Both spins are +,
with probability [1 − μ4(h)]2; both are −, with probability
μ4(h)2, and one is + and the other is −, with probability
2[1 − μ4(h)]μ4(h). Summing up the different contributions
the average correlation function is given by

C(↑↑)
L (h)

= 1 + [1 − 2μ4(h)]2

2

=
{

1
2

[
1 + (

1 − 1
12 (h − 4)4

)2]
, 4 < h < 5

1
2

[
1+(

1 − 1
12 (h − 4)4 + 1

3 (h − 5)4
)2]

, 5 < h < 6.

(A8)
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