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Statistical-mechanical liquid theories reproduce anomalous thermodynamic properties
of explicit two-dimensional water models
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We have developed an analytical theory for a simple model of liquid water. We apply Wertheim’s thermody-
namic perturbation theory (TPT) and integral equation theory (IET) for associative liquids to the rose model,
which is among the simplest models of water. The particles interact through rose potentials for orientation
dependent pairwise interactions. Modifying both the shape and range of a three-petal rose function, we construct
an efficient and dynamical mimic of the two-dimensional (2D) Mercedes-Benz (MB) water model. The particles
in 2D MB are 2D Lennard–Jones disks with three hydrogen bonding arms arranged symmetrically, resembling
the Mercedes-Benz logo. Both models qualitatively predict both the anomalous properties of pure water and the
anomalous solvation thermodynamics of nonpolar molecules. The IET is based on the orientationally averaged
version of the Ornstein-Zernike equation. This is one of the main approximations in the present work. IET
correctly predicts the pair correlation functions at high temperatures. Both TPT and IET are in semi-quantitative
agreement with the Monte Carlo values of the molar volume, isothermal compressibility, thermal expansion
coefficient, and heat capacity. A major advantage of these theories is that they require orders of magnitude less
computer time than the Monte Carlo simulations.
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I. INTRODUCTION

Water is a critical component in living and industrial sys-
tems. From the self assembly of lipid structures in cell walls,
to the folding of proteins, to the transport of ions in batteries,
water provides the framework for complex molecular scale
to macroscopically relevant processes. An accurate treatment
of water is necessary to model the chemistry and physics of
such systems, and despite its seeming simplicity, water has
posed a challenge to treat in a both detailed and efficient
manner. Much of this challenge comes down to capturing the
strong and highly directional hydrogen bonding interactions
that form the network of the liquid and solid states. This strong
local ordering has a distant reach and leads to the anomalous
properties that are signature to the identity and behavior of
water. These anomalous properties principally include the
temperature of maximum density at 4 ◦C, the negative thermal
expansion coefficient below this temperature, and the very
high liquid state heat capacity [1].

Development of models for water that capture these
anomalous properties has often been coupled with an increase
in complexity [2]. The widely used atomically realistic mod-
els, the SPC [3] and TIP [4] models, have been tuned to
generate a variety of explicit water potentials that uniquely
capture its dynamic and thermodynamic properties. This of-
ten includes the addition of charge and multipolar sites both
on and off the oxygen and hydrogen atom centers, such
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as in the various forms of TIP4P, TIP5P, AMOEBA, and
others [5–8]. Increasing complexity is not the only route
to capturing water’s properties, as there are simpler mod-
els that lack atomic details, such as Bol’s model [9], the
model proposed by Smith and Nezbeda [10,11], and the
original Mercedes-Benz (MB) model [12]. The MB wa-
ter model is a two-dimensional (2D) water model, where
molecules are modelled as Lennard–Jones disks with three
added arms for hydrogen bond formation. The major advan-
tages of 2D models are computational efficiency and their
intuitive form. For such models thermodynamic properties
can be calculated with computer simulations in very short
amounts of time enabling the underling physical principles
to be more extensively explored and clearly visualized than
in three-dimensional models. Two-dimensional model simula-
tions have been shown to qualitatively predict the anomalous
properties of water and they have been successfully extended
to capture thermodynamic properties of solvation of nonpolar
solutes [13–19]. The dimensional simplicity of a 2D model
makes it an ideal platform for building and refining analytical
methods such as thermodynamic perturbation theory, integral
equation theory, and general statistical mechanic modeling
[20–28]. Such analytical models, along with Monte Carlo
(MC) simulations, have recently been extended to success-
fully investigate how the rotational and translational degrees
of freedom independently influence the structural and thermo-
dynamic properties of waters [29–32].

The rose water model is another 2D model that was re-
cently proposed as mimic of MB water model [33]. Similar
to the MB model, rose waters are modeled as Lennard–Jones
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disks with an added hydrogen bonding potential. Instead of
Gaussian functions intrinsic to the MB model, sinusoidal
functions in polar coordinates, known as rose functions, are
used to model the hydrogen bonding interaction. In the case
of water a three-petal rose function is used; however, the
model is easily adaptable to different orientational interac-
tions, similar to those explored in the original 2D model
study from Ben-Naim [12]. With molecular dynamics (MD)
simulations, the authors have shown that rose model exhibits
the same anomalous properties as the MB model [33]. The
advantage of rose model is that it is simpler, computationally
more efficient, and the form of the model enables straight-
forward calculation of forces and torques needed in MD
simulation.

While many of the computational investigations of liquid
systems resort to either MC or MD using targeted models,
these do come with an often significant computational cost.
Analytical theories are often significantly faster than MC and
MD sampling, and they are often able to determine state
dependent properties of a given model that would be difficult
to determine with numerical sampling. Some example ana-
lytical theories include thermodynamic perturbation theory
(TPT) and integral equation theory (IET). A theory has been
developed by Wertheim for fluids comprised of molecules
that associate into dimers and higher clusters due to the
presence of highly directional attractive forces [34,35]. This
theory has been successfully applied to a number of different
three-dimensional fluid systems, including water and aque-
ous solutions (see, for example, [11,36,37] and references
therein). In the present work, we apply two variants of the
theory of associating fluids: the Wertheim’s thermodynamic
perturbation theory (TPT) [34,35,38,39], and the Wertheim’s
integral equation theory (IET) [34,40,41]. Both enable calcu-
lation of thermodynamic properties, though TPT is generally
simpler to use than IET. If structural properties are of interest,
the more complex IET is needed. Wertheim’s theory is used to
model fluids composed of molecules with highly directional
attractive forces that can associate in dimers and more com-
plex clusters. Wertheim developed versions of TPT and IET
out of the original associating theory.

Wertheim’s theory has been successfully applied to a
number of different systems, including MB water and gen-
eral aqueous solutions [20–26]. For the MB model TPT
and IET generally work well at high temperatures, however
at low temperatures they are less successful. Both theories
semi-quantitatively predict molar volume, isothermal com-
pressibility, thermal expansion coefficient and heat capacity
[20], and they predict thermodynamic and structural prop-
erties of solvation of nonpolar solutes [21]. The rose water
model exists in two forms, one modeled to mimic MB water
properties and another to more closely reproduce real water’s
property trends, and this presents a unique opportunity to
explore IET and TPT sensitivity. In this study, Wertheim’s IET
and TPT, previously used for the MB water model, are applied
to the two variations of the rose water model. Using these
theories, different thermodynamic and structural properties
of the rose models are calculated and these results are com-
pared to results from MC simulations. This has the potential
to highlight clearly the current strengths and limitations of the
IET and TPT approaches.

The paper is organized in following way. The next
section the models used in this study are introduced, interac-
tion potentials of MB water model (Sec. II A) and rose water
model (Sec. II B) are presented. In Sec. III details of integral
equation theory (Sec. III B), thermodynamic perturbation the-
ory (Sec. III C) and the Monte Carlo simulations (Sec. III A)
are provided. The results are shown and discussed in Sec. IV
and summarized in Sec. V.

II. THE MODELS

A. MB water model

In the MB water model molecules are modeled as two-
dimensional Lennard–Jones (LJ) disks, and each disk has
three arms attached which can form hydrogen bonds with
arms from other molecules [12,13]. Arms are evenly placed
on the disk thus the angle between two arms is 120◦. All
three arms are equivalent. The interaction energy between two
MB particles is the sum of the LJ term and hydrogen bonding
(HB) term:

U (
−→
Xi ,

−→
Xj ) = ULJ(ri j ) + UH B(

−→
Xi ,

−→
Xj ). (1)

−→
Xi is the vector of the position and orientation of the ith
particle. The LJ term is calculated in a standard way as

ULJ(ri j ) = 4εLJ

[(
σLJ

ri j

)12

−
(

σLJ

ri j

)6]
, (2)

where εLJ is the depth of the LJ potential and σLJ is the
contact distance. The HB term is a sum of all interactions U kl

HB
between the arms k and l of molecules i and j, respectively:

UHB( �Xi, �Xj ) =
3∑

k,l=1

U kl
HB(ri j, θi, θ j ). (3)

The interaction between two arms is calculated using
Gaussian functions which depend on orientation of each in-
teracting molecule and distance between them:

U kl
HB(ri j, θi, θ j )

= εHBG(ri j − rHB)G(�ik �ui j − 1)G( �jl �ui j + 1)

= εHBG(ri j − rHB)G

{
cos

[
θi + 2π

3
(k − 1)

]
− 1

}

× G

{
cos

[
θ j + 2π

3
(l − 1)

]
+ 1

}
, (4)

where G(x) is an unnormalized Gaussian function:

G(x) = exp

(
− x2

2σ 2

)
, (5)

εHB is the HB energy parameter and rHB is the HB distance. −→ui j

is the unit vector in the direction of −→ri j ,
−→
ik is the unit vector of

the kth arm of the ith particle, and θi represents the orientation
of ith particle. The interaction between two HB arms is the
strongest when distance between the particles is rHB and the
interacting arms are parallel and pointing towards each other’s
centers. Similar to previous studies, energies were expressed
in |εHB| and lengths in rHB. HB energy parameter, εHB, thus

034115-2



STATISTICAL-MECHANICAL LIQUID THEORIES … PHYSICAL REVIEW E 106, 034115 (2022)

equals −1 and HB distance rHB is 1. Parameters used in the
LJ potential were set to εLJ = 0.1|εHB| and σLJ = 0.7rHB.

B. Rose water model

The rose water model is a simple two-dimensional model
that mimics the MB water model [33]. The name of the model
comes from the use of a polar coordinate rose function to
model the orientational HB interaction. Rose functions are
sinusoidal functions of the form

r = a sin(nθ ) or r = a cos(nθ ), (6)

where n is the number of periods and a is the amplitude of
function. Cosine or sine forms of the function are equivalent,
with the only difference being a slight rotational offset. Using
different combinations of sine (or cosine) functions, functions
with different shapes can be produced:

r =
M∑

i=1

ai sini(niθ ). (7)

In the case of the rose water model, the number of peri-
ods is ni = 3, which gives a three-petal function. As in MB
model, molecules are modeled as LJ disks with an added
HB potential:

U ( �Xi, �Xj )rose = ULJ(ri j ) + UHB( �Xi, �Xj ), (8)

where ri j is distance between centers of molecules i and j, and
�Xi and �Xj are vectors describing positions and orientations of
molecules i and j. The LJ term is the same as in MB water
model:

ULJ(ri j ) = 4εLJ

[(
σLJ

ri j

)12

−
(

σLJ

ri j

)6]
. (9)

The main difference between the rose water model and MB
water model is the HB term. In the MB water model, the
interaction between two molecules depends on the orientation
of both molecules, and as such, the joint pair of particles
contributes a single UHB energy. In the rose water model,
the contributions of each particle to the HB are separated.
This means that the contribution of particle i to the HB is
independent of orientation of particle j:

UHB( �Xi, �Xj ) = UHB( �ri j ) + UHB( �r ji ). (10)

As result, it is possible that one particle in the interaction
forms a half-strength HB with the other, while the other par-
ticle does not form an HB interaction with the first particle.
Contribution of particle i to the energy of the HB between
particles i and j depends on the distance between interacting
particles and on the position of particle j in the body frame
of particle i. The HB energy contribution of particle i is the
product of a distance-dependent term [s(ri j )] and orientation-
dependent term [U (θi j )]:

UHB( �ri j ) = εHB

2
∗ s(ri j ) ∗ U (θi j ), (11)

where �ri j is the vector between particle i and j oriented in
body frame of particle i, ri j is the magnitude of this vector, θi j

is the angle of orientation of the vector in the body frame of
particle i, and εHB is the HB energy parameter. Due to the fact

that UHB( �ri j ) is only half of the HB potential [the other half is
UHB( �r ji )], 1

2 is used in Eq. (11). In the orientation-dependent
term of the rose function, the value depends on position of
molecule j in body frame of molecule i, in other words it
depends on the orientation of molecule i respective to a line
between centers of interacting molecules. In the case of rose
water model, the orientation-dependent term is

U (θi j ) = a2 sin2(3θi j ) + a1 sin(3θi j ), (12)

where a1 and a2 are coefficients that define the amplitude of
each sinusoidal term and thus determine the shape of orien-
tational part of the potential. In some cases, use of cartesian
coordinates instead of polar coordinates is more convenient.
In cartesian coordinates,

sin(θi j ) = 3x2
i jyi j − y3

i j

r3
i j

, (13)

where ri j =
√

x2
i j + y2

i j , xi j and yi j are coordinates of molecule
j in cartesian coordinate system of molecule i body frame.
Thus, the HB contribution of molecule i in cartesian coordi-
nates is

UHB( �ri j ) = εHB

2
∗ s(ri j ) ∗

[
a2 ∗

(
3x2

i jyi j − y3
i j

)2

r6
i j

+ a1 ∗ 3x2
i jyi j − y3

i j

r3
i j

]
. (14)

To incorporate a distance-dependence to the HB interaction, a
double-sided cubic switching function, s(ri j ), is used:

s(ri j ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, ri j < rl ,

(rl +2ri j−3rHB )(rl −ri j )2

(rl −rHB )3 , rl � ri j < rHB,

(ru+2ri j−3rHB )(ru−ri j )2

(ru−rHB )3 , rHB � ri j < ru,

0, ru � ri j,

where rHB is the HB distance, and rl and ru are lower and
upper bound distance for activation/deactivation of the HB
potential. The switching function is symmetrical thus |rHB −
rl | = |rHB − ru| = rFWHM, where rFWHM is “full width at half
maximum” of the peak formed by the function. This function
is more efficient to compute than the Gaussian functions used
in the MB water model, and the parameters of switching
function are selected in such a way that the function resembles
a Gaussian function.

To summarize, the parameters of rose water model that can
be varied are: εLJ, σLJ, εHB, rHB, rFWHM, a1, and a2. Two dif-
ferent sets of these parameters were used in our calculations.
One set produces results similar to the MB water model and
is here referred to as the MB parametrization, and the other
set produces results resembling more experimental-like water
and is here referred to as the real parametrization. The MB
parametrization values are as follows: εLJ = 0.1, σLJ = 0.7,
εHB = 1, rHB = 1, rFWHM = 0.2, a1 = 0.6, and a2 = −0.4.
The LJ parameters are the same as in MB water model, while
the other parameter are chosen in a way that makes the ther-
modynamic properties of the rose water model similar to those
of the MB water model [33].
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FIG. 1. The combined LJ and HB potential energy surface of the rose water model is similar in form to the three-armed potential of the
MB water model. Comparing the potential surface of one rose water particle with the (a) MB parametrization with the (b) real parametrization
shows a gap in the MB parametrization between the HB minima and the interior repulsive LJ wall. This separation can lead to stabilizing a
dense and orientationally disordered form.

In Fig. 1(a) the potential surface of one rose model
molecule with the MB parametrization is shown. The blue
color represents favorable interactions and the red color rep-
resents unfavorable interactions. There are three regions of
highly attractive interaction and between them there are three
regions of repulsive interaction. The absolute value of energy
at attractive regions is larger than absolute value of energy at
repulsive regions. Toward the center of the molecule there is
highly repulsive “wall” which is the repulsive portion of the
LJ interaction potential that prevents particle overlap.

To obtain more realistic waterlike properties, two major
changes of the rose water model are made. The LJ energy
parameter is increased to 1/5 of the HB energy parameter and
the minimum of the LJ potential is set to coincide with the rHB

distance [33]. The width of the HB (rFWHM) is also increased.
An accounting of the values of the real parametrization pa-
rameters are as follows: εLJ = 0.2, σLJ = 2−1/6rHB, εHB = 1,
rHB = 1, rFWHM = 5/12, a1 = 0.6, a2 = −0.4. Figure 1(b)
shows the potential surface of one rose water particle with
the real parametrization. It is evident in this surface that the
repulsive wall of the LJ potential is expanded outward to close
the gap between it and the three attractive HB wells seen in
the MB parametrization. Moreover, the regions between ener-
getically favorable HB arms are less repulsive, indicating that
the real parametrization results in a generally more attractive
orientational function.

III. THEORY

A. Monte Carlo simulations

Monte Carlo simulations with the Metropolis algorithm
were used to obtain structural and thermodynamic properties
of the rose water model using both parametrization schemes.
Results from these simulations were used as reference points
for comparisons to analytical theories. We were interested
in properties of rose water model both at constant volume
and constant pressure, therefore simulations were carried
out in both the NV T and N pT ensemble. A square basic
cell was filled with 100 rose water particles and placed
under periodic boundary conditions using the minimum
image convention to mimic macroscopic systems. Initial

configurations were randomized in both orientation and
position with a minimum separation distance of σLJ. In
each simulation step, a molecule was randomly selected
for translation or rotation. N translational and N rotational
move attempts were performed in each cycle, leading to an
average of one translation and one rotation move attempt per
particle over the course of each MC cycle. For N pT ensemble
simulations, one attempted change of the system volume
was included in each cycle. An initial 100 000 cycles were
used to equilibrate the systems, and this was followed by 10
individual MC trajectories each sampled for 100 000 cycles.
All thermodynamic and structural properties were computed
over the course of these production trajectories [13].

B. Integral equation theory

Wertheim’s integral equation theory (IET) was applied to
both the MB and real parametrizations of the rose water model
[34]. In this effort, an orientationally averaged version of
the multidensity Ornstein-Zernike (OZ) equation was applied
with the polymer Percus-Yevick (PPY) closure [20,34,40,41].
To successfully apply the IET, one additional approximation
was made that is not present in MC simulations: the position
of bonding arms/regions of a molecule is not fixed. The ver-
sion of the multidensity OZ equation suitable for use in water
models has the following form:

ĥ(k) = ĉ(k) + ĉ(k)ρĥ(k), (15)

where ĥ(k) and ĉ(k) are the matrices with elements that are
the Fourier transforms of partial correlation functions hi j (r)
and ci j (r). The partial correlation functions used in this OZ
equation remain finite with decreasing temperature. A partial
density matrix, ρ, was used in Eq. (15) instead of the original
Wertheim’s density parameters. An ideal network approxi-
mation was also used, meaning that the part of correlations
that is responsible for forming ringlike structures is neglected
[40,41]. Due to the equivalence of the bonding arms, the
matrices used in the OZ equation are 2×2-dimensional in-
stead of the traditional 4×4-dimensional form. As such, these
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matrices have a structure as follows:

ŵ(k) =
(

ŵ00(k) ŵ01(k)
ŵ10(k) ŵ11(k)

)
, (16)

where w represents either h or c. The matrix of partial
densities is

ρ =
(

ρ 3ρ

3ρ 6ρ

)
, (17)

where ρ is the average number density of molecules in the
system, and coefficients 3 and 6 appear in partial density
matrix due to the reduction of dimensionality. To solve the OZ
equation, an additional relation that connects h and c corre-
lation functions is needed. Polymer PY closure was used [34]:

ci j (r) = fLJ(r)[ti j (r) + δi0δ j0]

+ δi1δ j1x2 f̄HB(r)eLJ(r)[t00(r) + 1], (18)

where t (r) = h(r) − c(r), x is the fraction of MB par-
ticles not bonded at one arm, fLJ(r) = eLJ(r) − 1, and
eLJ(r) = exp[−βULJ (r)]. f̄HB(r) is the orientationally aver-
aged Mayer function of the hydrogen bonding potential and is
calculated as

f̄HB(r) = 〈exp[−βUHB(r, θ1, θ2)]〉θ1,θ2
− 1, (19)

where UHB(r, θ1, θ2) is HB potential of one bonding side. The
fraction of particles not bonded at one arm is calculated from
mass-action law [34]:

x = 1

1 + 3ρx

, (20)

where 
 is calculated as


 = 2π

∫
g00(r, ρ) f̄HB(r)rdr. (21)

The total radial distribution function (pair distribution func-
tion) g(r) was calculated as

g(r) = g00(r) + 3g01(r) + 3g10(r) + 9g11(r), (22)

where gi j (r) = hi j (r) + δi0δ j0 [20]. To solve the OZ equa-
tion together with PPY closure, the direct iterative method was
used. In addition, the method of Talman was used to carry out
forward and inverse Fourier-Bessel transformation [42].

After determination of a pair distribution function, ther-
modynamic quantities can be calculated using standard
thermodynamic relations. The internal energy per particle is
calculated as

βU = 1 + πβρ

∫ ∞

0
ULJ(r)eLJ(r)y(r)rdr + 9βπx2ρ

[ ∫ ∞

0
ULJ(r)eLJ(r) f̄HB(r)y00(r)rdr

+
∫ ∞

0

〈
UHB(r, θ1, θ2) exp[−βUHB(r, θ1, θ2)]

〉
θ1,θ2

eLJ(r)y00(r)rdr

]
, (23)

where 〈...〉θ1,θ2 denotes orientational averaging, yi j (r) is a partial cavity distribution function, which when using PPY is equal
to yi j (r) = gi j (r) − ci j (r) [20,43]. The total cavity distribution function is calculated as y(r) = y00(r) + 3y01(r) + yg10(r) +
9y11(r). The pressure is determined via the virial equation [34], which has the following form:

p = 1 − πρ2

2

∫ ∞

0

∂ULJ(r)

∂r
eLJ(r)y(r)r2dr − 9πx2ρ2

2

[ ∫ ∞

0

∂ULJ(r)

∂r
eLJ(r) f̄HB(r)y00(r)r2dr

+
∫ ∞

0

〈
∂UHB(r, θ1, θ2)

∂r
exp[−βUHB(r, θ1, θ2)]

〉
θ1,θ2

eLJ(r)y00(r)r2dr

]
. (24)

To calculate properties at constant pressure, the bisection
method was used to determine the density at which the pres-
sure of the system equals the target pressure. This enabled
calculation of thermodynamic quantities at the newly deter-
mined density.

C. Thermodynamic perturbation theory

In addition to IET, Wertheim’s thermodynamic perturba-
tion theory (TPT) was applied to both parametrizations of the
rose water model [34,35]. In TPT, the Helmholtz free energy is
the primary quantity calculated, and all other thermodynamic
quantities can be determined from it. For MB water and the
rose water models, the total Helmholtz free energy of the
system, A, is the sum of the LJ and HB terms:

A

NkBT
= ALJ

NkBT
+ AHB

NkBT
, (25)

where N is the number of particles, kB is the Boltzmann con-
stant, and T is the temperature. In this way, hydrogen bonds
are considered as a perturbation of the system of LJ disks. The
free energy of a system of LJ disks is calculated using Barker-
Henderson perturbation theory [20,44–46], where hard disks
(HD) are used as a reference system and the LJ potential is
used as the perturbation:

ALJ

NkBT
= AHD

NkBT
+ ρ

2kBT

∫ ∞

σLJ

gHD(r, η)uLJ(r)d�r, (26)

where AHD is the Helmholtz free energy of hard disks, gHD is
the radial distribution function of hard disks, and σLJ is the LJ
contact distance. To calculate free energy of hard disks, the
following equation was used [20,47]:

Aex,HD

NkBT
= − 1.10865 − 0.8678 log(1 − η) − 0.0157(1 − η)

+ 1.1322

1 − η
− 0.00785

(1 − η)2
. (27)
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The key parameter of the HD free energy is the packing
fraction, calculated as η = 1

4πρd2. The d value is the hard
disk diameter, calculated as

d =
∫ σLJ

0
{1 − exp[−βuLJ(r)]}dr. (28)

The radial distribution function of hard disks gHD(r) was
calculated using the expression of Gonzalez et al. [48].

The Helmholtz free energy of the HB contribution was
calculated using

AHB

NkBT
= 3

(
log x − x

2
+ 1

2

)
, (29)

where x is the fraction of HB particles not bonded at one arm
(the same fraction that was used in IET) [20,34]. This fraction
is calculated in the same way as in IET, using the mass-
action law:

x = 1

1 + 3ρx

, (30)

where 
 is defined as


 = 2π

∫
gLJ(r, ρ) f̄HB(r)rdr. (31)

Here, f̄HB(r) is the same orientationally averaged Mayer func-
tion that was used in IET. The radial distribution function
needed in Eq. (31) was calculated by solving the Ornstein-
Zernike equation with PY closure for the system of LJ disks.

All other thermodynamic quantities were calculated using
standard thermodynamic relations [45,49], these following
from the determination of the Helmholtz free energy.

IV. RESULTS AND DISCUSSION

All results are presented in reduced units, reduced in re-
lation to the strength and length of an HB interaction. In
this reduction, the HB energy parameter εHB was used to
normalize temperature and excess internal enthalpy (A∗ =

A
|εHB| , T ∗ = kB∗T

|εHB| ), while all distances were normalized with
characteristic length of the hydrogen bond rHB (r∗ = r

rHB
).

A. Structural properties

As the structure of a liquid affects all its thermody-
namic properties, changes in a liquid’s structure will result in
changes in the respective thermodynamic properties. To better
understand and explain how changing conditions, such as
different temperatures, alter the thermodynamic properties of
the system, it is important to uncover how different conditions
affect the overall structure of the liquid. As such, structural
properties of rose water model were investigated first. Of the
two parametrizations of interest, we start with exploring the
MB parametrization of the rose water model as it is expected
to show strong similarities with results obtained using the
original Mercedes-Benz water model [13,15,20].

1. MB parametrization

Figure 2 shows example configurations of rose water
model particles in NV T Monte Carlo simulations at various

FIG. 2. At low density, the MB parametrization of rose water will
readily melt with increasing temperature in NV T simulations. Snap-
shots are shown for systems with a density of 0.7 and temperatures
of: (a) T ∗ = 0.1, (b) T ∗ = 0.15, (c) T ∗ = 0.2, (d) T ∗ = 0.5. The red
lines indicate potential hydrogen bond contacts between the black
line illustrated representations of rose water molecules.

temperatures and density 0.7. Strong interaction contacts be-
tween particle pairs, where the interaction energy was less
than −0.5, are shown with red lines. These interactions in-
clude strong hydrogen bonds and very tight neighbor contacts
that are favorable regardless of particle orientation. When
the temperature is low, T ∗ = 0.1 in Fig. 2(a), particles in
the system are generally highly ordered as the structures ob-
served are mostly crystalline. The open hexagonal packing is
apparent at low temperature, visible with the red hexagonal
grid that forms in much of the systems. Some particles also
adopt structures that are less ordered, forming defects in the
overall crystal. When the temperature increases to T ∗ = 0.15
[Fig. 2(b)], near or slightly above the melting temperature of
the model [33], the hexagonal structure of the system col-
lapses to a higher density domain that is not as ordered. The
network of favorable contacts is looser and less symmetrical
at this temperature, indicative of a liquidlike structure. The
system at this temperature has properties of liquid state, there
is no long-ranged order, but there is still some short-ranged
order. Figure 2(c) shows the system at T ∗ = 0.2, which is
expected to be a liquid state form at this fixed density. The
rose water particles still form favorable pairing contacts, but
they fill the free space in a more uniform manner. At this tem-
perature, longer chains of particles connected with favorable
interactions are present in the system, and cyclic structures
are less apparent than observed at lower temperatures. At
a high temperature of T ∗ = 0.5 in Fig. 2(d), the majority
of particles interact via chains of different lengths; however,
these chains are shorter than the chains generally observed at
lower temperatures.

In Fig. 3, radial distribution functions (RDFs) of water are
shown for the rose water model with the MB parametriza-
tion alongside the MB water model at a constant pressure
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FIG. 3. Water-water radial distribution functions at increasing temperature and a constant pressure of p∗ = 0.12 shows how increasing
disorder at higher temperatures leads to improved agreement between MC simulations (red curves) and IET (blue curves). The stacked g(r)
plots are each vertically offset by 2 for comparison and show increasing temperature from 0.175, 0.2, 0.25, and 0.3. The (a) rose water model
on the left is consistently less structured than the (b) MB water model on the right.

of p∗ = 0.12. The RDFs are stacked according to increasing
temperatures from T ∗ = 0.175 upwards to T ∗ = 0.3. The red
curves show the results from Monte Carlo simulations (MC)
while results with IET are blue. Comparing radial distribution
functions of both models calculated with MC simulations
[Fig. 3(a) with Fig. 3(b)], it is evident that the functions
describing both models are very similar, though they differ
slightly in the specific height of the RDF peaks. The distance
of the first small peak corresponds to the separation distance
between two molecules in LJ contact, while the taller second
peak correspond to two molecules with potentially a direct
hydrogen bond between them. At this pressure, the first small
peak of the RDF is noticeably higher in the case of the rose
water model at the lower temperatures, and this indicates that
the rose water model tends to adopt more disordered states
than the MB water model with more molecules in LJ contact.
This loss of structure carries over to the second peak, which
is lower in the rose water model than the MB water model,
indicating a loss in direct HB interactions at the same ther-
modynamic state point. As the temperature increases, these
differences become less and less noticeable with both models
assuming less orientationally ordered states.

In both water model cases, IET is quite successful at
predicting RDFs, though this agreement is very much temper-
ature dependent. The theory successfully predicts the position
of major peaks that appear in the RDFs calculated with MC;
however, the amplitude of the peaks calculated with the-
ory differs from the simulations to some extent. The peaks
predicted by IET are lower than those calculated with MC,
consequently IET predicts a less structured system than MC.
The reason for this is orientation averaging present in IET.

For both models, the IET prediction of the first two peaks
is more accurate than the prediction of more distant peaks.
IET is more successful at predicting RDFs in the case of the
rose water model than in case in case of MB water model.
This is most clearly seen with the amplitude of the first peak
being in tighter agreement between IET and the rose water
model simulations. As the temperature increases, IET and
MC simulations give quite similar results. IET struggles with
highly structured liquids, and the loss of strong hydrogen
bonding with increased temperature means that orientational
interaction approximations in IET are less severe.

Raising the temperature of the simulations increases dis-
order in these systems, and this has the effect of increasing
the similarity of the rose water and MB models. Increasing
pressure on a systems where the ordered crystalline form has
a lower density than the more disordered higher density form
should have a similar effect. Figure 4 shows the same models
and temperatures seen in Fig. 3, only the constant pressure
has been increased to p∗ = 0.19. The RDFs look similar at
these differing pressures, though the differences do align with
favoring states with decreased overall order. This is most
easily seen in the relative heights of the first two peaks in all
of the RDFs. For example, at the lowest shown temperature of
T ∗ = 0.175, the first peak of the rose water model MC simula-
tion curve grows from a g∗(r) value of nearly 1.0 to about 1.2,
this while the tall second peak decreases from 3.8 down to 3.5.
These combined changes are consistent with favoring more
dense and less orientationally ordered states. The RDFs of the
rose water and MB water models are also in closer agreement
at this higher pressure, particularly when the temperature is
also high. While HB interactions are still present as seen in the
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FIG. 4. Water-water radial distribution functions at increasing temperature and a constant pressure of p∗ = 0.19 shows how increasing
disorder at higher temperatures leads to improved agreement with IET. The stacked g(r) plots are each vertically offset by 2 for comparison
and show increasing temperature from 0.175, 0.2, 0.25, and 0.3. The (a) rose water model on the left is consistently less structured than the
(b) MB water model on the right, and this higher pressure of 0.19 favors more compact and further disordered states than does p∗ = 0.12
in Fig. 3.

still tall first hydration shell peaks, the specific distinctions in
how the HB interactions are calculated become less important
at higher pressure. The more orientationally disordered LJ
interaction potential is handled identically between the rose
water and MB water model, and these LJ interactions tend to
dominate at high pressure state points.

This increase in pressure has a small overall effect on the
IET curves, though it is one that is similar to that seen in the
MC simulations. At higher pressure, the first RDF peak grows
taller than that from the IET calculations at lower pressure. All
other peaks are dampened, indicating a favoring of more dis-
ordered states at all of the temperatures shown. The agreement
between IET and MC simulations changes very little, unlike
the convergence in behavior seen with increasing temperature.
All the peak locations remain consistent between IET and MC
simulations, and IET simply becomes more and more accurate
at predicting peak and trough magnitudes as the temperature
grows.

2. Real parametrization

The real parametrization of the rose water model differs
from the MB water model by not having a σLJ parameter
that is notably smaller than rHB and by having a modestly
wider HB interaction well. Despite these changes, this real
parametrization of the rose water model still appears to cap-
ture the anomalous property behavior observed in the MB
water model, though in ways more attuned to the behavior
seen in experiments.

In Fig. 5, example positions and orientations of the real
parametrization rose water model particles during Monte

FIG. 5. The real parametrization of rose water behaves simi-
larly to the MB parametrization in that it will readily melt with
increasing temperature in NV T simulations. Snapshots are shown for
systems with a low density of 0.7 and temperatures of: (a) T ∗ = 0.1,
(b) T ∗ = 0.15, (c) T ∗ = 0.2, (d) T ∗ = 0.5. The red lines indicate
strong interaction contacts between the illustrated representations of
rose water molecules.
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FIG. 6. Water-water radial distribution functions at increasing temperature and a constant pressures of p∗ = 0.12 (left) and p∗ = 0.19
(right) shows improved agreement of MC simulations (red curves) with IET calculations (blue curves) with increasing temperature. The
stacked g(r) plots are each vertically offset by 2 for comparison and show increasing temperature from 0.225, 0.25, 0.3, and 0.5.

Carlo simulation are shown at various temperatures and con-
stant density of 0.7. With a temperature of T ∗ = 0.1 in
Fig. 5(a), a highly ordered structure of molecules connected
with strong interactions is formed. Comparing the snapshots
see here to those from the MB parametrization in Fig. 2(a),
the real parametrization model shows a less ordered structure
overall. It appears that pentagon, heptagon, and even oc-
tagon arrangements are stabilized in addition to the hexagonal
structures primarily seen in the MB parametrization crystals.
The reason for this change in ordering is likely due to the
wider HB interaction well and the lack of the repulsive ori-
entational potential that penalizes particles that do not adopt
hydrogen bonding orientations (see Fig. 1). These differences
make the HB interaction more promiscuous in general. As
the temperature increases above the melting temperature to
0.15 [Fig. 5(b)], the system loses much of the open crystalline
order, forming a more well-packed domain that is less re-
liant upon specific hydrogen bonding orientations. When the
temperature increases further to 0.2 [Fig. 5(c)] some more
chainlike structures do appear, as seen in the MB parametriza-
tion, though not to the same extent as this latter model. Even
though there is a reduction in hydrogen bonds in the system,
the particles are still connected with the well-packed cluster.
At the highest temperature shown in Fig. 5(d), there is a
continued decrease in hydrogen bonds in the system, with a
shift from ringlike structures to chainlike structures. This shift
is not as dramatic as that seen with the MB parametrization,
and the temperature dependence of the interaction behavior is
less variable overall.

Radial distribution functions were calculated for the real
parametrization of the rose water model as a function of
temperature at constant pressures of p∗ = 0.12 and p∗ = 0.19

in Fig. 6 using both MC sampling (red curves) and IET (blue
curves). The main difference between these RDFs and those
of the rose water model with the MB parametrization seen
in the previous section is in the first peak(s). In the MB
parametrization there is a split first peak. The small initial
peak consists of dense packed states that can be more orien-
tationally disordered, while the tall second peak is seen for
optimally hydrogen bonded particles. In the real parametriza-
tion there is no clear separation of these states as the HB and
LJ potentials have consistent minima as a function of radial
distance (see Fig. 1), and the MB parametrization has two
characteristic size parameters for the interaction minima: rHB

for the HB potential and 21/6 × 0.7 × rHB for the LJ potential.
The single potential minimum distance of rHB in the real
parametrization results in a generally less structured system
that is more accepting of bent HB interactions, resulting in
peaks in the RDFs that are broader with decreased height. As
with the other parametrization, this structure decreases with
increasing temperature in the stacked plots shown, tempera-
tures that extend up to T ∗ = 0.5 in these comparisons.

IET is even more successful at predicting the RDFs of the
rose water model with the real parametrization than the MB
parametrization. As with the MB parametrization series, the
agreement between the functions calculated with IET and MC
improves with increasing temperature. Integral equation the-
ory accurately predicts the position of peaks at all shown
temperatures. In general, IET predicts a less structured system
than MC as the peaks and troughs predicted by IET are mod-
erately less intense than those calculated by MC. The reason
for this improved agreement with the real parametrization
of the rose water model comes from the reduced repulsion
between unfavorably oriented HB interactions (see Fig. 1),
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FIG. 7. The MB water model and rose water model with the MB parametrization both show temperature dependent density maxima,
though these are not apparent in TPT and IET. The plots shown are of density as function of temperature at constant pressure p∗ = 0.12 (first
row) and p∗ = 0.19 (second row). Results for the rose water model are in the left column and results for the MB water model are in the
right column. The red points show results from MC simulations, while the blue line shows results from TPT and the black line shows results
from IET.

leading to a more promiscuous orientational potential. This
less selective orientational potential is more consistent with
the orientational averaging approximation used in IET, so the
error between IET and the real parametrization of the rose
water model is reduced.

B. Thermodynamic properties

1. MB parametrization

While the structure of the interaction potential is funda-
mentally different, it has been indicated that the rose water
model is able to reproduce many of the temperature dependent
thermodynamic properties exhibited by the MB water model
[33]. To explore this capability in more detail, we studied
thermodynamic properties of the rose water model with the
MB parametrization at constant pressure and compared these
to properties of MB water model using MC calculations, IET,
and TPT.

Figure 7 shows the density of the rose water model and MB
water model as a function of temperature at two constant pres-
sures. It is evident in these panels that the MB water model
and the rose water model with the MB parametrization report
extremely similar densities at temperatures higher than 0.25
at both of the chosen pressure values. The models do deviate
at lower temperatures, with the rose water model generally
having a greater density at temperatures near the points of
maximum density. This density difference between the models
is consistent with the rose water model being less structured
than the MB model, as seen in the radial distribution function
profiles (Fig. 3). The temperature where this density maxi-

mum is observed appears at a lower value for the rose water
model than the MB water model, again a likely consequence
of the reduced structure of the model.

Thermodynamic perturbation theory and integral equa-
tion theory are both successful at predicting density at
temperatures above 0.3, showing quantitative agreement in
the density values and reproducing well the curvature with
increasing temperature. As the temperature decreases below
0.3 both theories do correctly predict an increase in density,
though the agreement with MC calculations becomes increas-
ingly poor. Neither TPT nor IET successfully reproduce the
point of density maximum observed in the MC calculations.
It is clear from the radial distribution function analyses that
IET is less structured than the MB water model and both
parametrizations of the rose water model. The maximum in
the density of water is a consequence of increasing order
due to more persistent hydrogen bonding interactions as the
temperature lowers. The interactions prefer a lower density
expanded state relative to higher density states that lack the
orientational ordering of ideal hydrogen bonds. While neither
TPT nor IET capture this feature, TPT does a better job at
reproducing the density values of MC calculations than does
IET. This agreement between MC calculations and both TPT
and IET improves with increasing pressure. This likely comes
from the fact that increasingly dense states tend to be favored
at higher pressures with both the MB water and rose water
models, and these states tend to be less structured, which is
consistent with the behavior of the analytical theories.

Figures 8 and 9 show the excess enthalpy and entropy
respectively as a function of temperature for two different
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FIG. 8. Excess enthalpy as function of temperature shows similar behavior for rose water and MB water, though the analytical theories
tend to better agree with simulation at lower pressures. The plots shown are from calculations at constant pressure p∗ = 0.12 (first row) and
p∗ = 0.19 (second row) for rose water on the left and MB water on the right. The red points are from MC simulations, while the blue lines
show TPT results and the black lines show IET results.

FIG. 9. Excess entropy as function of temperature shows similar behavior for rose water and MB water, though the analytical theories
tend to better agree with simulation at lower pressures. The plots shown are from calculations at constant pressure p∗ = 0.12 (first row) and
p∗ = 0.19 (second row) for rose water on the left and MB water on the right. The red points are from MC simulations, while the blue lines
show TPT results and the black lines show IET results.
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FIG. 10. The change in excess heat capacity as a function of temperature shows elevated values near and above the melting transitions
for the rose water model on the left and MB water model on the right. The data shown are from constant pressure p∗ = 0.12 (top row) and
p∗ = 0.19 (bottom row). The red points are from MC simulations, while the blue lines show TPT results and the black lines show IET results.

pressures. The excess enthalpy and entropy of both water
models increases with increasing temperature. The values of
the enthalpy and entropy are negative up to a temperature
of approximately 0.3 and positive at higher temperatures. At
these high temperatures, both rose water and MB water report
similar H∗ and S∗ values, and the TPT and IET theories match
as well. This agreement comes about because the contribution
of hydrogen bonds to enthalpy and entropy diminishes with
increasing temperature, and the subtle details of structuring
become less significant. The primary differences between the
models and the theories appear at low temperature where the
orientational restrictions of hydrogen bonding begin to matter
more. While not readily apparent in these plots, the rose water
model generally has a higher enthalpy and entropy than MB
water at any given low temperature. For example, at T ∗ = 0.2
and p∗ = 0.12 the rose water model has an excess enthalpy
of −0.6 and entropy of −0.3 while the MB water model has
values just above −0.8 and −0.6 at this same state point. This
difference is consistent with the less rigid structuring of the
rose water model. The reason that this difference between
models is not readily apparent comes from the difference in
curvature of the TPT and IET plots for the rose water and
MB water models. The rose water model forms of the theories
have a steeper change in curvature than the MB water model
forms, noticeable between temperatures of 0.15 and 0.2. This
less gradual change in curvature leads to a slightly poorer
agreement between the analytical theories and the rose water
model than that seen for the analytical forms with the MB
water model.

The excess heat capacity, C∗
p as a function of temperature at

two different constant pressures is shown in Fig. 10. As with
other properties, at high temperatures the rose water and MB

water simulation results are highly similar and the differences
between the models is more visible at lower temperatures.
The notable features present in all these simulation results
are the two maxima at lower temperatures. The taller and
sharper peak is due to the phase transition from solid to liquid
state, while the lower and broader second maximum is due to
the high dynamics of hydrogen bonding interactions at that
temperature. As with real water, these models show an overall
elevated heat capacity in the liquidlike state, the state where
there are a large number of fluid hydrogen bonds. This is
bracketed by low C∗

p values both at very high temperatures,
due to the loss of potential hydrogen bonding interactions
with the low density, and at very low temperatures, due to
the crystalline structure with persistent hydrogen bonding.
Increasing pressure primarily affects the liquid state C∗

p peak
by lowering the free space and decreasing the dynamics of
hydrogen bond formation and breaking, lowering the Cp. The
primary difference between the rose water model and the MB
water model is the location of phase transition maximum,
which is at a slightly lower temperature in the rose water
model.

As with the other thermodynamic properties, IET and TPT
are successful at calculating the C∗

p seen in the MC simulations
at constant pressure at high temperatures for both models.
This success is not seen at low temperatures, with clear differ-
ences at temperatures below 0.35. Neither IET or TPT are able
to reproduce the second maximum at higher temperatures,
and mainly show smooth curves that peak at a temperature
below the MC simulation melting peaks of the models at both
shown pressures. While the agreement is not strong for any
of these cases at low temperatures, it does appear that there is
noticeably better agreement for the MB water model versions.
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FIG. 11. All models show a maximum in the coefficient of thermal expansion, with the rose water and MB water simulation results showing
a characteristic crossing to negative values at the temperature of maximum density. As with other plots, the rose water model is show in the
left plots and MB water model on the right plots. The data shown are from constant pressure p∗ = 0.12 (top row) and p∗ = 0.19 (bottom row).
The red points are from MC simulations, while the blue lines show TPT results and the black lines show IET results.

In Fig. 11 the temperature dependence of the coefficient
of thermal expansion is shown at two different pressures.
The negative value for the coefficient of thermal expan-
sion below the temperature of maximum density is one of
water’s well known anomalous properties, and this is seen in
the MC simulations of both the rose water model and MB
water model. As temperature increases from these values, a
maximum is observed between temperatures of 0.25 and 0.3
at these pressures, and the property asymptotically approaches
a value of 1/T ∗ as the temperature further increases. The rose
water and MB water models have nearly the same maxima
locations and values, though differences appear at low temper-
ature. In particular, the rose water model anomalous behavior
is less pronounced, and this is consistent with its correspond-
ing shift in the density maximum to lower temperature and an
apparent narrowing of the gap between this maximum and the
melting point. In both the rose water and MB water models,
increasing the pressure lowers the height of the maximum of
the coefficient of thermal expansion, which is expected given
the reduced free volume under higher pressure conditions.

The agreement between IET and TPT and the respective
model simulations is almost perfect for calculation of the
expansion coefficient at high temperatures. While this agree-
ment degrades at low temperatures, these analytical theories
do predict the coefficient’s maximum at the same tempera-
ture as the MC simulations, though the magnitude is lower.
As with the density results, the expansion coefficient agree-
ment with simulations is slightly better for TPT then for
IET, this seen in the higher maxima of the blue curves in
Fig. 11. This agreement is modestly better with the MB water
model than with the rose water model because of the slightly

lower magnitude maximum seen from the MB water model
simulations.

The temperature dependence of the isothermal compress-
ibility at two different pressures is shown in Fig. 12. The
rose water and MB water models strongly agree with one an-
other with low values at low temperatures and the isothermal
compressibility increases to approach 1/p∗ at high tempera-
tures. This rapid rise increases with a decrease in the number
of hydrogen bonds and decrease in the density. Less dense
materials are generally more compressible, though the low
density solid form of water has a very low compressibility
as it is crystalline with a tightly hydrogen bonded network.
Of interest in these curves is the liquid state minimum in the
isothermal compressibility, which occurs at nearly the same
temperature as the point of maximum density. This is a com-
pressibility minimum due to the high density, highly cramped
molecular environment. This decrease in compressibility with
decrease in free volume of the molecules is generally seen by
comparing the results at different pressures. The isothermal
compressibility values drop nearly in half in moving from
p∗ = 0.12 to p∗ = 0.19, and this decrease is seen across
nearly the entire temperature range shown for all models.

Both TPT and IET are successful in predicting the key
features of how the isothermal compressibility changes with
temperature; however, TPT shows a better agreement with
MC simulation than IET. This agreement is nearly quanti-
tative at temperatures above 0.25, and it degrades at lower
temperatures. Note that the compressibility of the MC simu-
lations drops to nearly zero at very low temperatures, and this
corresponds to the transition to a solid phase. As previously
mentioned, both TPT and IET are unsuccessful in predicting
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FIG. 12. Isothermal compressibility as function of temperature is comparably well reproduced between the rose water and MB water
models, here at constant pressure p∗ = 0.12 (top row) and p∗ = 0.19 (bottom row) conditions. The red points are from MC simulations, while
the blue lines show TPT results and the black lines show IET results.

properties of solid materials, so it is expected that they will
be unable to capture this large drop in the isothermal com-
pressibility. Neither TPT nor IET can reproduce the liquid
state minimum in the compressibility, though this is a subtle
anomaly in a phase regime were these models struggle.

2. Real parametrization

The real parametrization of the rose water model was de-
veloped to explore how flexible these single point potential
energy surfaces can be and to clarify what parameters are
critical for the reproduction of real water’s anomalous prop-
erties. The key change, beyond the magnitude of the LJ and
HB strength parameters, is to unify the minima of the LJ
and HB potentials. This unification means that the density
difference between a typical solid form and the liquid state

density maximum will be smaller. As discussed in the radial
distribution function analyses, this eliminates the small first
peak seen in the MB water model radial distribution function
which is not observed from analyses of x-ray and neutron
scattering experiments of liquid water. Along with this struc-
tural change, we investigated how the various thermodynamic
properties and anomalies are altered, and we also investigated
how these changes alter TPT and IET modeled on the real
parametrization of the rose water model.

The temperature dependence of the number density of
the rose water model at two constant pressures is shown in
Fig. 13. The simulation results indicate a behavior similar to
the rose water model with the MB parametrization at the same
constant pressures, with magnitudes ranging between 0.2 and
1.1 throughout the reported temperature range. A density

FIG. 13. The rose water model with the real parametrization has a maximum in density in the liquid-to-supercooled region that is only
about 10% greater than the density of solid form at temperatures at constant pressure (a) p∗ = 0.12 and (b) p∗ = 0.19. The red points show
results from MC simulations, while the blue line shows results from TPT and the black line shows results from IET.
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FIG. 14. The real parametrization of the rose water model has a lower excess enthalpy than the MB water model. Shown here is the excess
enthalpy as a function of temperature at constant pressure (a) p∗ = 0.12 and (b) p∗ = 0.19. The red points are results from MC simulations,
while the blue and black lines are results from TPT and IET, respectively.

maximum looks to appear just below T ∗ = 0.2, though it is
possible this is in the supercooled liquid region at these target
pressures. Expectedly, the number density increases through-
out this temperature series when simulations are performed at
a higher constant pressure.

Of the analytical theories, TPT is more successful than IET
at predicting the magnitude of the simulated densities of the
rose water model. The agreement between TPT and the rose
water model is strong at temperatures at and above 0.3, but
the densities increasingly deviate as the temperature lowers.
Note that due to parameter convergence of the applied algo-
rithm, TPT is limited to temperatures above 0.17 in this and
other property analyses. TPT is unable to reproduce a density
maximum, which is not unexpected given the similar inabil-
ity seen previously. Interestingly, IET does predict a density
maximum at a marginally lower temperature than where one
looks to exist in the rose water model. This agreement is
tempered by the density being approximately 30% lower than
the MC simulations. The poor agreement for the magnitude
of the densities at low temperatures is expected given the lack
of structure in IET, seen in the previous radial distribution
function analyses.

The excess enthalpy and entropy as a function of temper-
ature for the rose water model with the real parametrization
are shown in Figs. 14 and 15. While the shapes of the trend
are similar to that seen in the MB water model comparisons,
the values remain lower for enthalpy and entropy throughout
the temperature range at these same constant pressures. Where

values would shift from negative to positive above a tempera-
ture of 0.3 in the MB water model comparisons, the excess
enthalpy does not reach positive values until temperatures
higher than 0.4. The reason for this shift comes from the less
repulsive nature of the interaction potential, as seen in the
lack of red away from the LJ contact surface in Fig. 1(b).
The other notable feature in this property is the change in
curvature below temperatures of 0.2. This is likely a product
of the expected phase transition in this temperature region at
the chosen constant pressures.

As with the previous comparisons to MB water and its
rose water model parametrization, the agreement between
TPT and IET with MC simulations is good primarily at high
temperatures. Both TPT and IET have notably higher excess
enthalpies at temperatures below 0.3. The higher enthalpy
values are expected given the lack of structure depicted by
these methods. Of the two methods TPT is closer to the
rose water model simulation results, but this improvement is
quite small. Overall, the agreement between TPT and IET
with the real parametrization of the rose water model is poorer,
as these methods show larger differences in excess enthalpy in
the low temperature region.

The temperature dependence of the excess heat capacity
of the real parametrization of the rose water model, shown
in Fig. 16 at two constant pressures, shows similar behavior to
the MB parametrization. There are again two notable maxima,
with the taller peak indicative of a solid to liquid phase tran-
sition, and the lower and broader peak at higher temperature

FIG. 15. The real parametrization of the rose water model has a higher excess entropy than the MB water model. Shown here is the excess
entropy as a function of temperature at constant pressure (a) p∗ = 0.12 and (b) p∗ = 0.19. The red points are results from MC simulations,
while the blue and black lines are results from TPT and IET, respectively.
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FIG. 16. TPT and IET show similar trends to rose water for the excess heat capacity as function of temperature at constant pressure
(a) p∗ = 0.12 and (b) p∗ = 0.19. The red points are results from MC simulations, while the blue and black lines are results from TPT and IET,
respectively.

corresponding to the dynamical behavior of strong hydrogen
bonding contacts. The key difference is the shift in the peak
maxima to higher temperatures. This increase is consistent
with the observed lower excess enthalpy and generally more
attractive nature of the model.

The comparisons to TPT and IET set the rose water model
results in Fig. 16 apart from those seen in Fig. 10. At high
temperature both TPT and IET have a low C∗

p like the MC
simulations, but the agreement degrades as the temperature
decreases. Both TPT and IET are unable to reproduce the drop
in the C∗

p at very low temperatures, and this is unsurprising
given their inability to reproduce solid phase properties. How-
ever, at intermediate temperatures and low pressure both TPT
and IET reproduce a maximum just above 0.3, right where
the MC simulations exhibit a similar maximum. While the
height of this maximum is lower than that seen in the MC
simulations, this is behavior not observed in the MB model
comparisons. As the pressure increases to 0.19, the magnitude
of this peak is reduced to the point that the maximum at low
pressure becomes a saddle point at high pressure, similar to
the behavior of the MC simulations. Both TPT and IET have
lower C∗

p values than the MC simulations, but TPT is a bit
closer to the simulation results in most cases, indicating that
it is a bit more successful at matching simulation behavior.

Figure 17 shows the coefficient of thermal expansion
for the rose water model with the real parametrization as

function of temperature at two different pressures. As with
the MB parametrization, a peak is observed at tempera-
tures above 0.25 and the coefficient gradually approaches a
value of 1/T ∗ at very high temperatures. As the tempera-
ture decreases, the coefficient of thermal expansion decreases,
though there is an unexpectedly anomalous spike similar to
that seen in the temperature dependence of C∗

p in Fig. 16.
In many respects the properties behave quite similarly as
the location and magnitude of the peaks in these plots are
near the same values, such as the main broad peak around
a temperature of 0.32. This is a higher temperature than
the expansion coefficient peak of the MB parametrization,
again a consequence of this real parametrization being less
repulsive.

TPT is generally quite successful at predicting the coef-
ficient of thermal expansion for this rose water model. The
values are the same at high temperatures and near a tempera-
ture of 0.25, and it only modestly underpredicts the magnitude
of the peak maximum at both of the target pressures. This
is notably better agreement than that seen for the MB water
parametrization in Fig. 10. At low temperature, both TPT and
IET fail to reproduce the expansion coefficient seen in MC
simulations. IET does actually drop to a negative value at low
temperature, but it tends to underpredict the magnitude of the
coefficient of thermal expansion moreso than TPT at all other
temperatures.

FIG. 17. Simulations of the rose water model with the real parametrization show a familiar peak in the coefficient of thermal expansion,
though the shift to negative values near the apparent solid to liquid phase transition temperature is not visible at constant pressures of (a) p∗ =
0.12 and (b) p∗ = 0.19. The red points are results from MC simulations, while the blue and black lines are results from TPT and IET,
respectively.
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FIG. 18. TPT is able to predict the isothermal compressibility of the rose water model as function of temperature at constant pressures of
(a) p∗ = 0.12 and (b) p∗ = 0.19. The red points are results from MC simulations, while the blue and black lines are results from TPT and IET,
respectively.

Figure 18 shows the temperature dependence of the
isothermal compressibility at two constant pressures. In the
solid phase at low temperature rose water is quite incom-
pressible, but above the expected melting temperature at these
pressures the compressibility rapidly increases and asymptot-
ically approaches a value of 1/p∗. This observed behavior
is similar to that seen with the MB parametrization model,
only shifted to higher temperatures as seen for other thermo-
dynamic parameters. The primary point of note is how well
TPT reproduces the compressibility at temperatures above 0.2
for both pressures. TPT captures the overall change in the
compressibility better than IET.

The general quality of agreement of TPT, and to a lesser ex-
tent IET, with the real parametrization of the rose water model
is greater than that seen with the MB parametrization and MB
water model. This improvement is a reflection of the increased
promiscuity of the HB interaction in the rose water model.
The rose water model is more accepting of bent hydrogen
bonds, and this is more compatible with the approximations
used for these strong interactions in the analytical theories.
This agreement is directly seen in the structure via the radial
distribution functions, and this carries over to nearly all the
investigated thermodynamic properties.

V. CONCLUSIONS

We have applied two statistical-mechanical theories devel-
oped for associated fluids by Wertheim, TPT and IET, to the

rose model of water and compared results to those of the
Mercedes-Benz model of water. Both of these theories have
previously been shown to capture the volume anomalies of
pure water and the thermal anomalies of nonpolar solvation,
and we observe similar behavior in their ability to capture
such features with the two-dimensional rose water model,
particularly when using a parametrization that better mimics
the behavior of pure water. Of these two theories, IET is some-
what more computationally demanding than TPT, but both are
orders of magnitude more efficient than Monte Carlo simula-
tions. Both theories qualitatively reproduce the temperature
trends of key thermodynamic properties like molar volume,
isothermal compressibility, thermal expansion coefficient, and
heat capacity. This reproduction becomes quantitative agree-
ment at high temperatures, where the orientational averaging
approximation is less problematic. This agreement carries
over to less rigidly structured fluids, and it is reflected in the
increased quality of structural and thermodynamic property
predictions for the rose water model over the Mercedes-Benz
water model and parametrization sets.
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