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Selberg trace formula in hyperbolic band theory
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We apply Selberg’s trace formula to solve problems in hyperbolic band theory, a recently developed extension
of Bloch theory to model band structures on experimentally realized hyperbolic lattices. For this purpose we
incorporate the higher-dimensional crystal momentum into the trace formula and evaluate the summation for
periodic orbits on the Bolza surface of genus two. We apply the technique to compute partition functions on
the Bolza surface and propose an approximate relation between the lowest bands on the Bolza surface and on
the {8, 3} hyperbolic lattice. We discuss the role of automorphism symmetry and its manifestation in the trace
formula.
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I. INTRODUCTION

Experimental realizations of hyperbolic lattices in both
circuit quantum electrodynamics [1] and topoelectric circuits
[2] recently resurged interest in the mathematical proper-
ties of hyperbolic space and physical systems in it [3–6]. A
current and experimentally motivated focus of attention is
on properties such as band structures [7–14] and interacting
quantum systems [15–31]. Historically, however, hyperbolic
space served as a crucial platform to investigate theories of
both classical and quantum chaos, because key chaotic prop-
erties such as ergodicity can be proven mathematically for
geodesic flow on hyperbolic surfaces [32–37]. One of the most
well-studied systems is the Hadamard–Gutzwiller model de-
scribing chaotic motion on the Bolza surface [38–45], which
is a hyperbolic surface of constant negative curvature and
genus two.

In the study of quantum chaos on hyperbolic surfaces,
trace formulas play a central role [46–48]. They relate sums
over eigenvalues of the quantum Hamiltonian to sums over
classical periodic orbits on the surface. While such trace for-
mulas are typically valid semi-classically only, they become
exact for hyperbolic surfaces, where they resemble Selberg’s
celebrated trace formula [49–52]. The latter is pivotal to
mathematical fields such as algebraic geometry or number
theory. Previous applications of the Selberg trace formula
in a physics context, besides investigations of the spectral
statistics of quantum chaotic systems, include regularization
techniques in quantum field theory or cosmology and partition
functions in string theory [52–54]. In this work, we show that
the trace formula also leads to new insights into the physics of
hyperbolic band theory.

To define the concept of a hyperbolic lattice, we first define
a {p, q} lattice, with p, q � 3 integers, as a lattice constructed
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from regular p-gonal faces with coordination number q for
each vertex. The Euclidean square, triangular, and hexagonal
lattices correspond to {4, 4}, {3, 6}, and {6, 3}, respectively.
These are tessellations of the Euclidean plane. In contrast, for
all {p, q} such that (p − 2)(q − 2) > 4, the ensuing graph is
a tessellation of the hyperbolic plane D. These cases will be
called hyperbolic lattices. Here we employ the Poincaré disk
model of the hyperbolic plane, whose properties are summa-
rized in Appendix A. In the following, we summarize both
the experimental and mathematical context that motivate the
application of the Selberg trace formula to hyperbolic lattices
and hyperbolic band theory.

A. Experimental context

Hyperbolic lattices recently gained relevance in experi-
ments in circuit quantum electrodynamics [1] and topoelec-
trical circuits [2], where the system Hamiltonian is described
by a tight-binding Hamiltonian on such lattices. In the for-
mer case, for instance, the lattice is implemented through
waveguide resonators, with photon propagation on such an
arrangement described by the tight-binding Hamiltonian

HTB = −J
∑
〈i, j〉

[ψ̂†(zi )ψ̂ (z j ) + H.c.] (1)

in second-quantized form. Here i labels the lattice sites with
coordinates zi ∈ D, J is the hopping amplitude, and ψ̂†(zi )
is the creation operator for a particle on site zi. The sum
extends over all pairs of nearest-neighboring sites. In typi-
cal experiments, the number of lattice sites is of order 100.
Defining the adjacency matrix (Ai j ) such that Ai j = 1 if sites
i, j are nearest neighbors, and Ai j = 0 otherwise, the system
Hamiltonian becomes

HTB = −J
∑
i, j

Ai jψ̂
†(zi)ψ̂ (z j ). (2)
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In topoelectrical circuit networks, (Ai j ) is realized through the
circuit Laplacian, with particles represented by local electric
currents.

Finding the eigenenergies and corresponding states of
HTB, which is quadratic in the field operators, is equivalent
to solving the eigenvalue problem for the adjacency matrix,∑

j

Ai jψ (z j ) = −Eψ (zi ). (3)

Note that only a finite number of terms on the left-hand
side of this equation are nonzero. In experimental situations,
the eigenvalues E will strongly depend on the boundary of
the finite graph that is used to model the hyperbolic lattice.
(See Ref. [55] for a discussion and numerical study of the role
of boundary effects on the spectrum.) Although impossible to
implement in experiment, we can assume in theory that the
hyperbolic lattice extends infinitely, and ask for all solutions
of this eigenvalue problem. This seemingly simple problem,
however, remains unsolved for any hyperbolic {p, q} lattice
so far.

The main reason for our inability to solve the lattice eigen-
value problem in Eq. (3) is that Bloch’s theorem in its usual
form is not applicable here, as translations—defined below
as generators of the Bravais lattice—do not commute on hy-
perbolic lattices. Instead, a generalized automorphic Bloch
theorem needs to be applied [14,56], which contains currently
insufficiently understood higher-dimensional representations
of the Fuchsian translation group.

One conceptual framework to deal with energy bands in
hyperbolic lattices, called hyperbolic band theory, has been
developed in Ref. [13]. It predicts that eigenfunctions that
result from Eq. (3) on the infinite lattice are parameterized by
higher-dimensional generalized Brillouin zones. The simplest
incarnation are one-dimensional Bloch waves ψk(zi ) with en-
ergy E (k), where k = (k1, . . . , k2g) is a crystal momentum
with 2g components. Crucially, g > 1 for hyperbolic lattices,
so that momentum space and position space do not have the
same dimension.

Through a continuum approximation of Eq. (3), described
further in Sec. V, the energies E (k) can be mapped to the
mathematically well-defined energy spectrum of the Lapla-
cian �g on a closed hyperbolic surface of genus g > 1,
denoted E (k). The Selberg trace formula is a nonperturbative
formula to compute sums over all such eigenvalues E (k)
and in turn, mapping back to E (k), yields predictions about
observables on hyperbolic lattices, which are often obtained
from functions of the spectrum. While previous application of
the Selberg trace formula in quantum chaos only required to
consider the case k = 0, the new application motivated here
naturally incorporates the crystal momentum k �= 0. After
introducing the corresponding mathematical apparatus and
several other applications, we will return to the problem of
energy bands on hyperbolic lattices in Sec. V.

B. Mathematical context

The connection between the hyperbolic band theory de-
veloped in Ref. [13] and hyperbolic lattices is facilitated by
the theory of hyperbolic crystallography [21]. It implies that
a large number of hyperbolic lattices can be divided into

a unit cell and a hyperbolic Bravais lattice. The simplest
hyperbolic Bravais lattice is the {8, 8} lattice, which is the
Bravais lattice of, for instance, the {8, 3} or {8, 4} lattices.
It is part of a family of self-dual {4g, 4g} Bravais lattices,
whose first member is the square lattice for g = 1. A single
face of these lattices, which is the fundamental domain for
the corresponding tessellation of the hyperbolic plane, yields
a closed Riemann surface of genus g upon identification of
opposite edges [3,4,13,21,57,58]. For g > 1, these surfaces
are hyperbolic. In particular, upon imposing such periodic
boundary conditions for the fundamental square or octagon
of the {4, 4} or {8, 8} lattices, we obtain the genus-one torus
or genus-two Bolza surface, respectively.

The merit of identifying the Bravais lattice for a given
lattice is that the spectrum of the tight-binding model HTB

[or, equivalently, the eigenvalues of its adjacency matrix in
Eq. (3)] can be classified according to the irreducible rep-
resentations of the translation group generating the Bravais
lattice. This typically simplifies the computational effort im-
mensely. In the Euclidean case, for the {4, 4} Bravais lattice,
say, the Bravais lattice is generated by the Abelian group
�1 � Z2 and all irreducible representations are one-
dimensional and labeled by the two-dimensional crystal
momentum. For fixed crystal momentum, typically a finite
number of bands exists. In the hyperbolic cases with g > 1,
the Fuchsian group �g generating the Bravais lattice is non-
Abelian and the unitary irreducible representations are group
homomorphisms

χ : �g → U(N ), (4)

with N � 1. Automorphic wave functions in these representa-
tions transform according to

ψ (γ z) = χ (γ )ψ (z), (5)

where z is a site on the lattice and γ ∈ �g. Importantly,
higher-dimensional representations with N > 1 may occur.
Although it would be exciting to study implications of these
higher-dimensional representations, the natural first step is to
ignore their impact and focus instead on the contributions
from one-dimensional (N = 1) representations of �g. The
corresponding Bloch wave functions ψk(z) are labeled by a
crystal momentum k = (k1, . . . , k2g) with 2g components.

In most parts of this work, for concreteness, we restrict our
analysis to hyperbolic band theory on the Bolza surface. For
one, this model has been covered in the original reference
[13] and it constitutes the simplest non-Euclidean extension
of the usual Bloch wave theory with only a modest number
of additional parameters. Furthermore, it is by far the most
well-studied model in the context of applications of the Sel-
berg trace formula to Physics and so allows us to make many
remarkable connections to previous work. It should be noted
that in this case the non-Abelian group �g is an arithmetic
Fuchsian group, which implies several unique features and
simplifies some of the algorithms used. We illuminate this
aspect in Appendix C 1 but refer to the literature for a detailed
exposure [46–48,59].

The setting for the Bolza surface is depicted in Figs. 1 and
2. The fundamental domain D is the central octagon of the
{8, 8} lattice. We abbreviate the Fuchsian group by � := �2.
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FIG. 1. The {8, 8} lattice is a hyperbolic Bravais lattice underly-
ing several {p, q} lattices. Left. We show the {8, 3} lattice (gray) with
the {8, 8} Bravais lattice superimposed (orange). The corresponding
unit cell of the {8, 3} lattice has 16 sites (red dots). The fundamental
domain D of the Bolza surface is the central octagon of the {8, 8}
lattice, highlighted in orange shade. Right. The Bravais lattice is
generated by four generators γ1,...,4 and their inverses through the
non-Abelian Fuchsian group � in Eq. (6). Note that the {8, 8} lattice
is self-dual, because by placing a vertex into the center of each face of
the {8, 8} lattice and connecting nearest neighbors we obtain another
{8, 8} lattice.

We have

� = 〈
γ1, γ2, γ3, γ4

∣∣γ1γ
−1
2 γ3γ

−1
4 γ −1

1 γ2γ
−1
3 γ4 = 1

〉
. (6)

Every element γ ∈ � is a product of the four generators
γ1,2,3,4 and their inverses. The transformations {γμ} generate
the Bravais lattice or, alternatively, provide side pairings be-

FIG. 2. Left. By identifying opposite sides of a rectangle we
obtain a torus of genus one, which is a closed Euclidean manifold.
The mappings γ1 and γ2 that implement the side-pairings are the
generators of the {4, 4} Bravais lattice. Of course, they are simply
Euclidean translations in two nonparallel directions. Right. By iden-
tifying opposite sides of an octagon, we obtain the Bolza surface, a
closed hyperbolic manifold of genus two. The four transformations
γ1, . . . , γ4 that implement the side-pairings are the same as in Fig. 1
and thus the generators of the {8, 8} Bravais lattice.

tween opposite sides of D. The Bolza surface is the resulting
closed hyperbolic surface of genus g = 2 and area

A = 4π (g − 1) = 4π (7)

in units of the squared curvature radius. Hyperbolic band the-
ory assigns a crystal momentum to each generator according
to

χk(γμ) = χk
(
γ −1

μ

)∗ = eikμ (8)

for μ = 1, . . . , 4 in Eqs. (4) and (5). These boundary con-
ditions lead to an infinite, discrete spectrum {Eλ(k)} of
eigenvalues of the Laplacian on the Bolza surface. The prop-
erties of the latter are studied here with the Selberg trace
formula. We note that while for a hyperbolic lattice with Nunit

sites in the unit cell there are Nunit bands for every k, the
fact that the domain D ⊂ D contains infinitely many points
implies that the spectrum {Eλ(k)} is unbounded from above
for each k.

C. Structure of this work

This work is organized as follows. In Sec. II we review
the Euclidean trace formula and introduce the Selberg trace
formula for nonvanishing crystal momentum. In Sec. III we
turn to a few applications of the so-obtained trace formula
in the context of partition functions; in particular, we discuss
the ground-state energy of the Laplacian, Weyl’s law, and the
empty lattice approximation on the Bolza surface. In Sec. IV
we discuss how the automorphism symmetry of the Bolza
surface is reflected in the trace formula and how this can be
used to organize the enormous amount of data contained in
the orbit length spectrum. In Sec. V we develop a continuum
theory for the lowest band of the adjacency matrix on the
{8, 3} lattice and compute the associated energy band with
the Selberg trace formula. We give a summary and outlook in
Sec. VI. Appendices A and B contain a review of hyperbolic
geometry, the Euclidean trace formula, and several extensive
tables for the Bolza surface. Appendix C 1 contains a sum-
mary of the properties of the arithmetic Fuchsian group � for
the Bolza surface and Appendix C 2 contains a description of
the algorithm to find all primitive periodic orbits.

II. TRACE FORMULAS

Trace formulas for the Laplacian −�g on a closed surface
M allow us to compute expressions of the type

tr f (−�g) =
∞∑

λ=0

f (Eλ), (9)

where f (E ) is a suitable test function. The eigenvalues are
solutions of

−�gψλ(z) = Eλψλ(z) (10)

for z ∈ M. In the following we study trace formula for the
torus and the Bolza surface.

A. Warm-up: Euclidean case

Before turning to hyperbolic surfaces, it is instructive to
review our methodology for the Euclidean case. The results
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are simplified by the fact that Euclidean translations commute,
but there are many similarities to trace formulas on hyperbolic
manifolds that are worth pointing out.

The Laplacian in the Euclidean plane is given by

�g = ∂2
x + ∂2

y . (11)

We study solutions of Eq. (10), where z ∈ S = [0, L]2 ⊂ R2

is restricted to one square of the {4, 4} lattice with lattice
constant L. Choosing periodic boundary conditions, the eigen-
values are labeled by two integers λ = s ∈ Z2 and read

Es = p2
s =

(
2π

L

)2

s2. (12)

In the following notice the distinct use of p and p = |p|.
Using Poisson’s summation formula we obtain the trace

formula∑
s∈Z2

h(ps) = L2
∫

d2 p

(2π )2
h(p) + L2

∑
n∈Z2\(0,0)

h̃2(Ln), (13)

with the Fourier transform of h(p) in two dimensions given by

h̃2(r) = 1

(2π )2

∫ ∞

0
d p′ p′

∫ 2π

0
dϕ h(p′)eip′r cos ϕ. (14)

Equation (13) is derived in Appendix B. The sum on the
right-hand side extends over all periodic orbits on the torus.
These are labeled by two integers n = (n1, n2) ∈ Z2\(0, 0)
and the length of the corresponding closed orbit is Ln = L|n|.
Geometrically, they correspond to straight lines {x} ⊂ S de-
termined by n · x = 0 that are periodically continued across
the boundaries of S to yield a closed orbit on the torus.

There are some intriguing number-theoretic aspects to the
trace formula (13). The number of closed orbits of length
Ln for a fixed positive n ∈ N, denoted d̃E(n), is given by the
number of ways of writing n2 as the sum of two squares. Using
this function, the last term in Eq. (13) can be written as

L2
∞∑

n=1

d̃E(n)h̃2(Ln). (15)

Since any square n2 can be written in at least one way as a
sum of two squares (n2 = n2 + 0), we have d̃E(n) > 0 for all
positive n.

If n yields a closed orbit of length Ln, then mn for any
integer m > 1 yields a closed orbit of length mLn, obtained
by traversing the first orbit m times. We may consider the
first orbit to be more fundamental or primitive. Specifically,
we call a Euclidean orbit primitive if it corresponds to an n
such that the greatest common divisor of n1 and n2 is unity,
i.e., gcd(n1, n2) = 1. Denote the number of primitive periodic
orbits of length Ln for each n > 1 by dE(n). Then Eq. (15)
becomes

L2
∞∑

n=1

dE(n)
∞∑

m=1

h̃2(mLn), (16)

where the second sum results from traversing the primitive
orbits m times. This expression bears some resemblance to
the Selberg trace formula encountered in the next section.

We now consider the domain S as the fundamental tile of a
tessellation of the Euclidean plane, each tile forming a face of

the infinite {4, 4} lattice. Bloch waves are solutions to Eq. (10)
for x ∈ S that satisfy the twisted boundary condition

ψkλ(x + Lei ) = eikiψkλ(x), (17)

where ei is the unit vector in i = 1, 2 direction and k =
(k1, k2) ∈ [0, 2π )2 is an external parameter (the dimensionless
two-dimensional crystal momentum). This boundary condi-
tion can also be viewed as threading the torus with nonzero
Aharonov–Bohm fluxes. Through Eq. (17), both eigenfunc-
tions and eigenvalues parametrically depend on k. We have
ψs,k(x) = L−1ei(ps+k/L)·x for x ∈ S and

Es,k = p2
s,k =

(
ps + 1

L
k
)2

. (18)

Note how k �= 0 lifts the degeneracy of the eigenvalues Es ∝
s2 from Eq. (12). This characteristic feature is also present in
the hyperbolic case. We show in Appendix B that the trace
formula now reads∑
s∈Z2

h(ps,k ) = L2
∫

d2 p

(2π )2
h(p) + L2

∑
n∈Z2\(0,0)

e−in·k h̃2(Ln).

(19)

Importantly, and also foreshadowing the hyperbolic case, the
external momentum k only appears in the sum on the right-
hand side through a simple, yet characteristic phase factor for
each n.

B. Selberg trace formula

We now consider the trace formula for the Laplacian on
the Bolza surface. Basic elements of hyperbolic geometry and
or notation are summarized in Appendix A. The hyperbolic
Laplacian on the Poincaré disk reads

�g = 1
4 (1 − |z|2)2

(
∂2

x + ∂2
y

)
. (20)

We study the eigenvalue problem (10) for z = x + iy ∈ D,
where D ⊂ D is one octagon of the {8, 8} tessellation. When
this fundamental domain D is equipped with periodic bound-
ary conditions that identify opposite edges, we obtain the
Bolza surface, see Fig. 2.

Periodic boundary conditions are implemented by choos-
ing four generators γ1, . . . , γ4 ∈ PSU(1, 1) satisfying

γ1γ
−1
2 γ3γ

−1
4 γ −1

1 γ2γ
−1
3 γ4 = 1 (21)

in PSU(1, 1) and constraining solutions of Eq. (10) such that

ψλ(γμz) = ψλ(z) (22)

for μ = 1, . . . , 4 and all z ∈ D. The Fuchsian group � in
Eq. (6), which is a discrete subgroup of PSU(1, 1) made from
all possible products of the four generators and their inverses
subject to the constraint in Eq. (21), is the first homotopy
group of the Bolza surface. An alternative point of view is
to consider � as the (noncommutative) translation group of
the {8, 8} Bravais lattice. Then applying the generators γμ and
their inverses maps one octagon to any of its eight neigh-
boring octagons. Repeating this procedure, every octagon in
the {8, 8} lattice can be uniquely identified with an element
γ ∈ � applied to an arbitrarily chosen central octagon that we
identify with D.
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FIG. 3. Low-lying eigenvalues Eλ(k) of Eq. (10) on the Bolza
surface with twisted boundary condition (23) along the generic line
k = (0.8, 0.3, 1.2, 1.7)k in four-dimensional momentum space, with
k ∈ [0, π ]. We observe that some degeneracies present for k = 0 are
lifted for k �= 0. Furthermore, re-orderings and crossings of energy
bands occur for nonzero crystal momentum, indicating a rich band
structure of the model. Data reproduced with kind permission from
Ref. [13].

In the latter formulation, it appears natural to consider
more general boundary conditions than Eq. (22). In hyperbolic
band theory, Eq. (22) is replaced by the twisted boundary
condition

ψkλ(γμz) = eikμψkλ(z), (23)

reminiscent of the transformation of Bloch waves in a Eu-
clidean Bravais lattice, with k = (k1, k2, k3, k4) ∈ [0, 2π )4

an external parameter—the hyperbolic crystal momentum.
As discussed in the introduction, the factor of automorphy
χk(γμ) = eikμ constitutes a one-dimensional representation of
the hyperbolic translation group �.

The eigenvalues of −�g on the Bolza surface for k = 0
are known to high precision [60]. The spectrum is discrete,
infinite, and unbounded from above. The lowest eigenvalues
is E0 = 0, corresponding to a constant eigenfunction, the next
eigenvalues are E1 = E2 = E3 = 3.839, followed by the four-
fold degenerate eigenvalue 5.354. For k �= 0, the eigenvalues
Eλ(k) implicitly depend on the crystal momentum k through
the boundary condition in Eq. (23), see Fig. 3. Not much is
known about Eλ(k) on the Bolza surface, but a first study
in the context of hyperbolic band theory was carried out in
Ref. [13], where it was observed that some degeneracies of the
eigenvalues are removed for k �= 0 and the invariance under
the automorphism group of the surface was studied. Note that
the eigenvalues Eλ(k) are real because −�g is self-adjoint
with respect to the canonical scalar product of functions on
D for any value of k.

The eigenvalues of −�g can be associated with the ampli-
tude pλ of a two-dimensional momentum pλ ∈ R2 through the

positive root of

Eλ = 1
4 + p2

λ, (24)

in analogy to Eq. (12) for the Euclidean case. At this point,
it is not obvious why p = |p| should be related to a two-
dimensional momentum instead of a one-dimensional one, but
this will be suggested by the way in which it appears in the
trace formulas below. Of course, Eq. (24) can be generalized
to k �= 0, expressing the eigenvalues Eλ(k) through the func-
tion pλ(k) = [Eλ(k) − 1/4]1/2.

In the following, as we did in the Euclidean case, we first
discuss the trace formula for k = 0 and then generalize the
setup to arbitrary k. The Selberg trace formula on the Bolza
surface for k = 0 reads [38,39,51,52]

∞∑
λ=0

h(pλ) = A
∫

d2 p

(2π )2
tanh(π p)h(p)

+
∞∑

n=1

d0(n)
∞∑

m=1

�nh̃(m�n)

2 sinh(m�n/2)
, (25)

where A = 4π is the hyperbolic area of D, d0(n) is the number
of primitive periodic orbits of length �n (defined below), and

h̃(t ) =
∫ ∞

−∞

d p

2π
h(p)eipt (26)

is the Fourier transform of h(p) in one dimension. The first
term on the right-hand side of Eq. (25) resembles the trace
over the continuous spectrum of −�g in the infinite hyper-
bolic plane D [50,61]. The second term constitutes a sum
over all primitive periodic orbits on the Bolza surface. This
structure mirrors the Euclidean trace formula in Eq. (13).

The determination of the periodic orbits on the Bolza sur-
face or, equivalently, in the Hadamard–Gutzwiller model, has
been established in Refs. [38–42]. We explain the method in
some detail in Appendix C 2. Here we highlight a few facts
that are relevant to understand the second term in the Selberg
trace formula. First note that every element γ �= 1 from the
discrete group � determines a unique geodesic in D that is
left invariant under the action of γ . If δ ∈ � is another group
element, then the geodesic determined by the conjugate δγ δ−1

is the one determined by γ , but the geodesic is shifted by
δ. We then only consider those geodesics that pass through
the central octagon D. Every geodesic determined by some
γ ∈ � that passes through D becomes a periodic orbit on
the Bolza surface after the opposite edges of D have been
identified and the orbit has been continued accordingly. (This
nonobvious fact may be surprising on first encounter.) The
closed orbit typically consists of several geodesic segments
when plotted in D, which correspond to group elements that
are conjugate to each other, and which need to be counted
as one orbit, see Fig. 4. All of these considerations result in
a one-to-one correspondence between periodic orbits on the
closed manifold and conjugacy classes of �, i.e., sets [γ ] =
{δγ δ−1, δ ∈ �}. Furthermore, if [γ ] defines a periodic orbit,
then [γ m] with integer m > 1 defines the same orbit traversed
m times. The primitive periodic orbits are those conjugacy
classes [γ ], where γ cannot be written as δm for some element
δ ∈ �. The set of lengths of primitive periodic orbits including
their degeneracy is called the length spectrum of the surface.
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FIG. 4. All primitive periodic orbits on the Bolza surface of
length �n [Eq. (27)] for some values of n. We plot the geodesics in the
full Poincaré disk for better visibility, although they actually need to
be continued periodically across the boundaries of the fundamental
octagon (orange) through the side-pairings defined in Fig. 2. The
orbits are traversed once in a certain direction: If γ ∈ � is represen-
tative of one direction, then γ −1 ∈ � is representative of the opposite
one. Each orbit implies a number of additional orbits obtained by
2π/8-rotations about the origin, indicated at the bottom right; often
this number equals 8, but high-symmetry orbits may yield smaller
values (as in the case of n = 16, left).

The primitive periodic orbits on the Bolza surface are la-
beled by a positive integer n � 1. Their length, which appears
in the second term of Eq. (25), reads [42]

�n = 2 arcosh[mo(n) + n
√

2], (27)

where mo(n) is the odd integer to best approximate n
√

2; see
Eq. (C7). The peculiar form of this expression has a number-
theoretic origin, related to the fact that � is an arithmetic
Fuchsian group [47,48]. The number of primitive periodic

orbits of length �n is denoted by d0(n). The function d0(n) for
n � 1500 for the Bolza surface has been determined by Au-
rich, Bogomolny, Steiner [42]. With these definitions at hand,
it now becomes clear that the second term in the Euclidean and
hyperbolic trace formulas, Eqs. (16) and (25), are structurally
very close.

The primitive closed orbits on the torus are labeled by
two integers n ∈ Z2. For each n � 1, there are dE(n) such
vectors. A similar, yet more subtle, labeling applies to the
Bolza surface. We first define the function χk : � → U(1)
such that χk(γμ) = χk(γ −1

μ )∗ = eikμ as in Eq. (8). We have
χk(γ γ ′) = χk(γ )χk(γ ′). Each periodic orbit is associated to
a conjugacy class [γ ] with some representative group element
γ . The latter can be written as a product of generators and their
inverses, schematically γ = γν1γν2 · · · γνr . To this product, we
associate a four-component vector v = (v1, v2, v3, v4)T ∈ Z4

via

χk(γν1γν2 · · · γνr ) = eiv·k. (28)

Hence, the component v1 is the number of times γ1 appears in
the factorization minus the number of times γ −1

1 appears, etc.
For example,

χk
(
γ3γ

−1
4 γ1γ3

) = ei(k1+2k3−k4 ) ⇒ v =

⎛
⎜⎜⎝

1
0
2

−1

⎞
⎟⎟⎠. (29)

The d0(n) distinct primitive periodic orbits of length �n then
give rise to d0(n) vectors v, which we collect in a set denoted
Vn.

The Selberg trace formula for k �= 0 was discussed by
Selberg in his original paper [49] and appears in the literature
in the context of nontrivial representations of the Fuchsian
group � [52]. However, it does not seem to have been applied
in a physical context. It reads

∞∑
λ=0

h[pλ(k)] = A
∫

d2 p

(2π )2
tanh(π p)h(p)

+
∞∑

n=1

∑
v∈Vn

∞∑
m=1

eimv·k �nh̃(m�n)

2 sinh(m�n/2)
. (30)

This formula is the central tool for our analysis. For k = 0
we recover Eq. (25) because

∑
v∈Vn

1 = d0(n). It is striking
that the k-dependence only enters through a simple phase
factor in the sum over the primitive periodic orbits, just as
in the Euclidean case in Eq. (19). The corresponding Selberg
ζ -function in the presence of the factor χk(γ ) = eiv·k, and the
location of its zeros, have been discussed in Refs. [49,52].

To conclude this section we finally specify the regularity
conditions that have to be met by the function h(p) entering
Eq. (30). We analytically continue h(p) to a function defined
on the strip of height σ > 1/2 about the real axis given by
Sσ = {p ∈ C, |Im(p)| � σ }. We require the following condi-
tions to be satisfied [51]:

(I) h(p) = h(−p) is an even function,
(II) h(p) is analytic in Sσ ,
(III) There exist C > 0 and δ > 0 such that |h(p)| �

C
(1+|Re(p)|)2+δ for all p ∈ Sσ .
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III. PARTITION FUNCTIONS

In this section, we present an applications of Eq. (30)
to a problem from statistical mechanics: computing partition
functions in hyperbolic band theory.

A. Ground-state energy

We consider the partition function or heat kernel

Z (β, k) =
∞∑

λ=0

e−βEλ(k) (31)

for the Bolza surface, i.e., we apply the functions

h(p) = e−β(p2+ 1
4 ), (32)

h̃(t ) = e−β/4

√
4πβ

e−t2/(4β ) (33)

to Eq. (30). Here β is a positive parameter that we identify
with an inverse temperature. For large β, the partition function
is dominated by the ground-state energy E0(k) according to

Z (β, k)
β→∞∼ e−βE0(k). (34)

This equation can be used to determine the value of E0(k),
i.e., the lowest eigenvalue of the solution of the differential
Eq. (10) with boundary condition (23), from a set of purely
geometric data determined by the hyperbolic surface.

It is instructive to study whether the relevant contribution
to Eq. (34) comes from the first (integral) or second (sum)
part of the trace formula. For β → ∞, the momentum integral
in the first part is dominated by small momenta and we can
approximate tanh(π p) ≈ π p, which leads to

A
∫

d2 p

(2π )2
tanh(π p)h(p) ∼ 1

2

(
π

β

)3/2

e−β/4. (35)

This exponentially decaying contribution is unimportant for
large β. Since the sum over periodic orbits also contains a
factor e−β/4 in h̃(t ), we recognize that the number of orbits
that contributes to the sum needs to increase sufficiently fast
to yield a nonzero contribution. How this works is most easily
seen for k = 0, where E0(0) = 0 and

lim
β→∞

Z (β, 0) = 1. (36)

We use that for large � the number of primitive orbits in
the interval [�, � + d�] is given by (e�/�)d� [48]. Replacing
the sum over �n by an integral, using sinh(�/2) ∼ 1

2 e�/2, and
neglecting the sum over m > 1 we find from Eqs. (30) and
(35) that

Z (β, 0) ∼ e−β/4

√
4πβ

∫ ∞

0
d�

e�

�

�e−�2/(4β )

e�/2
∼ 1 (37)

as expected.
In practice, having only finite information about the length

spectrum of the Bolza surface, we terminate the orbit sum at a
finite value of n. This implies that the truncated sum necessar-
ily vanishes as β → ∞. To still utilize Eq. (34) when working
with the truncated sum, we need to evaluate it at an optimal
value β < ∞. In this work, we limit the trace formula to terms

FIG. 5. Ground-state energy E0(k) from the Selberg trace for-
mula (30). (a) Partition function Z (β, 0) for k = 0 (blue). Since
only a finite number of orbits are included [(n, m) � (150, 3) in
this work], there is an optimal range of β values from which the
asymptotic limit Z (β, 0) ∼ e−βE0 = 1 can be estimated (β ∼ 3–5 in
this work). We distinguish integral (dashed orange), sum (dashed
red), and total (blue) contributions, together with the limit of unity
(dashed horizontal line). (b) Ground-state energy E0(k) along the line
k = (0.8, 0.3, 1.2, 1.7)k with k ∈ [0, π ] from the trace formula with
(n, m) � (150, 3) (solid blue), compared to the exact value found
from numerically solving the Schrödinger Eq. (10) with boundary
condition (23) (black dashed); see Fig. 3. The faint gray curve is the
quartic expansion at low momenta from Eqs. (41)–(43).

with n � 150 and, accordingly, m � 3, so that Z (β0, 0) � 1
for β0 � 3; see Fig. 5. For an unbiased determination of E0(k)
for k �= 0, we define the function

Ē0(β, k) = − 1

β
log Z (β, k) (38)

and need to find a suitable criterion to choose the optimal β0

with E0(k) = Ē0(β0, k). A sound criterion is d
dβ

Ē0(β, k) = 0,
which, if Ē0 has a maximum, implies E0(k) = maxβ Ē0(β, k).
In general, the criterion to find the optimal β0 may depend
on the particular truncation used for the trace formula. Deter-
mining this criterion in general would thus be a problem of
asymptotic analysis much beyond the ambition of the present
work.

In this work, we determine the ground-state energy E0(k)
from the trace formula along certain lines in k space. We max-
imize Ē0(β, k) over the interval β ∈ [3, 7], which works in
our particular case with n � 150, because typically Ē0(β, k)
initially increases with β and then rapidly decreases for
larger β ∼ 7, implying that the best estimate is reached
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at the maximum. For small |k|, the dependence on β � 3
is small. We compare our findings to numerical solutions
of the Schrödinger Eq. (10) with the boundary condition
(23) provided by the authors of Ref. [13]. We find good
agreement, while largest deviations appear when E0(k) >

0 is largest. In Fig. 5 we compare both determinations of
E0(k) along the generic line k = (0.8, 0.3, 1.2, 1.7)k with k ∈
[0, π ]. We also compared and found reasonable agreement
within the truncation chosen along the lines k = k(1, 1, 1, 1)
and k(1, 1,−1, 1) that are discussed in Sec. V. This leads
us to suspect that the true value of E0(k) is recovered when
including all (infinitely many) primitive periodic orbits in the
trace formula.

For nonvanishing crystal momentum k �= 0 we have
E0(k) > 0, because a constant wave function cannot solve the
Schrödinger equation subject to the boundary condition (23).
Although a closed formula for E0(k) is absent, an expansion
for small k is possible. For this purpose, we introduce the
vector K via

K =

⎛
⎜⎜⎝

k1 + k4

k2 − k1

k3 − k2

k4 − k3

⎞
⎟⎟⎠. (39)

The merit of introducing the variable K is that several formu-
las involving small k simplify considerably. This is ultimately
rooted in the automorphism symmetry of the energy spectrum,
discussed in Sec. IV, but at this point may be viewed as a mere
elegant rewriting.

Equation (39) is an invertible linear transformation, hence
k = 0 if and only if K = 0. Equations (70) and (91) then
imply

∑
v∈Vn

eimv·k = d0(n) − 3m2d1(n)K2 + m4

8
d2(n)K4 + O(k6),

(40)

with integer coefficients d0,1,2(n) listed in Table IV. Inserting
this expression into the trace formula for the partition function
then yields an expansion of Z (β, k) and Ē0(β, k) in powers
K2 and K4. We determine the coefficients in these expansions
from the truncated trace formula with n � 150 and m � 3 at
values of β where the functions show a local plateau. These
β values happen to be around β ∼ 3–6 in accordance with the
previous analysis. We also use the variation across the plateau
to estimate the error; see Fig. 6. We obtain

E0(k) = e1K2 + e2K4 + O(k6), (41)

with

e1 = 0.0563(1), (42)

e2 = −0.00028(5). (43)

Using the data for E0(k) from Ref. [13] with k =
(0.8, 0.3, 1.2, 1.7)k, i.e., K2 = 7.56k2, we fit the coefficients
in the range 0 � k � 0.40 to find e1 = 0.0563 and e2 =
−0.00028, in excellent agreement with the values obtained
from the Selberg trace formula.

FIG. 6. The coefficients in the k-expansion of E0(k) in Eq. (41)
can be obtained from Z (β, k) for large values of β. From the
truncated partition function with (n, m) � (150, 3), we estimate
the asymptotic values of e1 and e2 in the range of β values where
the function has a local plateau, assuming this plateau would extend
to β → ∞ if all orbits were included. The blue curves are the β-
dependent coefficients and the dashed horizontal lines correspond
to the best estimates from Eqs. (42) and (43). The insets show the
plateau regions together with the estimated errors of e1 and e2 in
these equations.

B. Weyl law

The opposite limit of Eq. (34), namely β → 0, corresponds
to a high-temperature expansion that allows to probe the
asymptotic distribution of large eigenvalues. For this purpose
we define the spectral staircase function

Nk(E ) =
∑

λ

θ [E − Eλ(k)], (44)

with θ the Heaviside step function. Weyl’s law states that the
eigenvalues of the Laplacian on a Riemann surfaces of area A
for k = 0 satisfy

N (E ) ∼ A

4π
E (45)

to leading order as E → ∞. In the following, we study the
behavior of Z (β, k) for small β to recover this result for the
case of the Bolza surface, and identify the contribution from
k �= 0.

For β → 0, the orbit sum contribution to Z (β, k) is expo-
nentially suppressed and can be neglected. (We verified this
numerically.) The integral contribution, which is independent
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of k, yields

∞∑
λ=0

e−βEλ(k) ∼ e−β/4 A

4πβ

(
1 − 1

12
β + . . .

)

= A

4π

(
1

β
− 1

3
+ . . .

)
. (46)

This implies that

Nk(E ) ∼ A

4π

(
E − 1

3

)
(47)

as E → ∞ from a Tauberian theorem argument, see Ref. [38].
We find that, in contrast to the low-temperature behavior, the
high-temperature asymptotics is not affected by the crystal
momentum.

C. Empty lattice approximation

In this section, we investigate whether integration over all
possible values of k yields the spectrum and trace formula
for the infinite system. In solid-state physics, this question is
related to the empty lattice approximation [13,62].

We first consider the Euclidean case. The spectrum of the
Laplacian in the infinite Euclidean plane is parameterized by
the two-momentum p and energies E = p2. For a suitable test
function h(p) we then have

∑
p

h(p) =
∫

d2 p

(2π )2
h(p). (48)

However, the Euclidean plane can be tessellated by squares
through the {4, 4} lattice. The corresponding Bloch wave
spectrum on the (dual) square Bravais lattice is given by

Es,k = 1

L2
(2πs + k)2, (49)

which coincides with the spectrum on the torus with k-twisted
boundary conditions. Write k = 2π k̂. As we vary s ∈ Z2

and k̂ ∈ [0, 1)2, every p = 2π
L (s + k̂) ∈ R2 is sampled exactly

once. Consequently, tracing over all values of s and k is
equivalent to tracing over the spectrum of the infinite Eu-
clidean plane parameterized by p ∈ R2. Consider again the
test function h(p) from Eq. (48). Upon integration over the
crystal momentum, the k-dependent terms in Eq. (19) vanish
due to ∫

[0,1)2
d2k̂ e−2π in·k̂ = 0 (50)

for every vector of integers n �= 0. We define the d-
dimensional torus as Td = [0, 2π )d and note that∫

[0,1)d

dd k̂ (. . . ) =
∫

Td

dd k

(2π )d
(. . . ). (51)

The nonvanishing contribution to the trace formula is given by∫
T2

d2k

(2π )2

∑
s∈Z2

h(ps,k ) = L2
∫

d2 p

(2π )2
h(p), (52)

which equals the result in the infinite Euclidean plane up to
the prefactor that sets the dimension. We summarize that by

sampling over all crystal momenta, the spectrum on the torus
yields the spectrum on the infinite Euclidean plane.

Let us now apply the same procedure to the Selberg trace
formula on the Bolza surface. The fundamental octagon of the
{8, 8} lattice tessellates the infinite hyperbolic plane D. We
explore whether by sampling all crystal momenta k̂ ∈ [0, 1)4

of the (dual) {8, 8} lattice we recover the result obtained from
solving the Schrödinger problem (10) in D. On the infinite
plane, E = 1

4 + p2 with p ∈ R2, and for a suitable test func-
tion h(p) we have [61]

∑
p

h(p) =
∫

d2 p

(2π )2
tanh(π p)h(p). (53)

Note that hyperbolic space has a natural length scale, the
curvature radius κ , which can be used to define a momentum
with the correct dimension. We continue to work with κ = 1
here.

Integrating the k-dependent Selberg trace formula (30)
over all values of k ∈ T4, most terms vanish because for every
vector of integers v �= 0 we have∫

T4

d4k

(2π )4
eimv·k = 0. (54)

However, this elimination fails if v = 0, which does occur for
certain n; see Table II. We empirically find that if 0 ∈ Vn,
then all elements of Vn are equal to 0; see the next section.
Consequently,

0 ∈ Vn :
∫

T4

d4k

(2π )4

∑
v∈Vn

eimv·k =
∑
v∈Vn

1 = d0(n). (55)

In our investigation of primitive periodic orbits on the
Bolza surface with n � 150, the case 0 ∈ Vn occurs for
n = 8, 16, 32, 80, 96, 112, which are all divisible by 4, with
d0(n) = 8, 12, 32, 48, 48, 48. Denote the presumably infinite
list of n values such that 0 ∈ Vn by

N0 = {8, 16, 32, 80, 96, 112, . . . } (56)

and assume that Eq. (55) holds for all n ∈ N0. We then arrive
at ∫

T4

d4k

(2π )4

∞∑
λ=0

h[pλ(k)]

= A
∫

d2 p

(2π )2
tanh(π p)h(p)

+
∑
n∈N0

d0(n)
∞∑

m=1

�nh̃(m�n)

2 sinh(m�n/2)
. (57)

The first term in Eq. (57) resembles the trace formula in
the infinite hyperbolic plane (53) up to a prefactor that sets
the dimension. The second term, however, precludes the sim-
ple notion that by sampling all hyperbolic Bloch momenta we
obtain the spectrum of the infinite hyperbolic plane. One inter-
pretation of this finding would be that sampling all hyperbolic
Bloch momenta results in an overcounting of eigenstates. It
appears challenging though to imagine a procedure whereby
omitting certain k values on the left-hand side of Eq. (57)
eliminates the second term on the right-hand side. Another
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interpretation would be that perhaps the infinite volume limit
result in Eq. (53) is incorrect and receives subleading correc-
tions, precisely of the form of the second term in Eq. (57).
Of course, a third option would be that we were lead on a
wrong direction by the success of the Euclidean formula (52)
and that sampling over Bloch momenta has no relation to the
spectrum on the infinite plane in hyperbolic space. We leave
the solution of this puzzle to future work.

Until here we have not specified the form of h(p) in the
empty lattice approximation. For the study of partition func-
tions, with h(p) from Eq. (32), the second term in Eq. (57) is
small compared to the first term for all β, because the contri-
bution from the few geodesics with n ∈ N0 cannot outweigh
the exponential decrease due to sinh(m�n/2) in the denomina-
tor. Indeed, it appears that d0(n) for n ∈ N0 does not show the
characteristic exponential increase of d0(n) found for generic
n values. This means that the partition function in hyperbolic
band theory obtained by sampling over all Bloch momenta
gives an excellent approximation of the partition function in
the infinite hyperbolic plane.

IV. SYMMETRIES

The Bolza surface features internal symmetries described
by a non-Abelian automorphism group G with 96 elements.
It has been shown in Ref. [13] that this symmetry results in a
G invariance of the eigenvalues Eλ(k) that solve Eq. (10) on
the Bolza surface with the twisted boundary conditions (23).
In a suitable four-dimensional representation of G introduced
below we have

Eλ(gk) = Eλ(k) (58)

for all g ∈ G. This G invariance implies that both sides of the
Selberg trace formula (30) are invariant under k → gk. From
the form of the right-hand side in Eq. (30), with sums over
v ∈ Vn for each n, this invariance cannot be deduced directly.
We show in the following that these sums can be written in a
manifestly G-invariant form, which, in turn, yields additional
insights into the nature of the Vn.

A. Automorphism invariance

The automorphism group G is generated multiplicatively
by four elements, denoted R, S, T,U . R is a rotation by 2π/8
about the center of the central octagon. Similar geometric
interpretation can be given to S, T , and U . The group reads

G ={RiS jT kU l | i ∈ {0, . . . , 7}, j ∈ {0, 1},
k ∈ {0, 1}, l ∈ {0, 1, 2}}. (59)

The four-dimensional representation yielding Eq. (58) is given
by [13]

R =

⎛
⎜⎜⎝

0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠, S =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠,

T =

⎛
⎜⎜⎝

0 −1 1 −1
−1 0 1 −1
−1 1 0 −1
−1 1 −1 0

⎞
⎟⎟⎠, U =

⎛
⎜⎜⎝

0 −1 0 0
1 −1 0 0
1 0 −1 1
0 1 −1 0

⎞
⎟⎟⎠.

(60)

The group contains inversion due to R4 = −14. Here 14 is the
4 × 4 unit matrix.

The group G in the representation of Eqs. (60) admits
exactly two invariants I (k) and Q(v) that are quadratic in the
components of k and v, respectively, which satisfy

I (gk) = I (k), (61)

Q(gT v) = Q(v) (62)

for all g ∈ G. From a suitable ansatz for the quadratic form
one verifies that

I (k) = kTIk, (63)

Q(v) = vTQv, (64)

with matrices

I = 1

192

∑
g∈G

gT g = 14 + �, (65)

Q = 1

192

∑
g∈G

ggT = 14 − �, (66)

� = 1

2

⎛
⎜⎜⎜⎝

0 −1 0 1

−1 0 −1 0

0 −1 0 −1

1 0 −1 0

⎞
⎟⎟⎟⎠. (67)

Importantly,

v ∈ Z4 ⇒ Q(v) ∈ N0. (68)

Since G contains inversion, there can be no invariants that
contain an odd number of components of k and v. The only
invariants to quartic order are I (k)2 and Q(v)2. To sextic
order, however, there are nontrivial G invariants that are not
powers of I or Q. Importantly, when expressed in terms of K
from Eq. (39), we have I (k) = 1

2 K2. This is derived below in
Eq. (91).

With these definitions we now show that the G invariance
of the Selberg trace formula (30) is due to the right-hand side
being a sum of terms of the form∑

g∈G

eimvT gk, (69)

with v some four-component vector of integers. This expres-
sion is manifestly invariant under k → gk. Although we only
verified this for n � 150, we believe the evidence is striking
that this pattern persists for larger n. Furthermore, we have∑

g∈G

eimvT gk = 96 − 24m2Q(v)I (k)

+ 2m4Q(v)2I (k)2 + O(k6). (70)

This allows us to expand the Selberg trace formula for∑∞
λ=0 h[pλ(k)] to quartic order in k with coefficients that

034114-10



SELBERG TRACE FORMULA IN HYPERBOLIC BAND … PHYSICAL REVIEW E 106, 034114 (2022)

are universally determined by the primitive periodic orbits.
Equation (70) implies Eq. (40), i.e.,

∑
v∈Vn

eimv·k = d0(n) − 3m2d1(n)K2 + m4

8
d2(n)K4 + O(k6)

(71)

for the Selberg trace formula (30) for the Bolza surface. The
integer coefficients d0,1,2(n) can be obtained directly from
differentiation of Eq. (71) or from Eqs. (79)–(81) derived
below. We list the coefficients in Table IV.

B. Automorphism-invariant sets

In the following, we introduce an economic way of rewrit-
ing the right-hand side of the Selberg trace formula in
Eq. (30). In general, to evaluate the orbit sum for a given
value of n, all vectors v ∈ Vn need to be known. Since the
number of geodesics of length � grows as e�/�, equally many
vectors v would need to be listed. However, it turns out that all
sets Vn are made from only a few compound sets W = W (a)

Q ,
labeled by the value of Q = Q(v) and a finite index a � 1.
Elements within each W are related to each other through
automorphisms from GT . Thus we only need to know how
often each W is contained in each Vn. The resulting data set
is very sparse and might hint at some underlying group or
number theoretic origin, though we were not able to identify
such a connection.

The sets Vn that enter the Selberg trace formula decompose
into GT -invariant sets W (a)

Q which have the form

W (a)
Q = GT v(a)

Q = {v | v = gT v(a)
Q for some g ∈ G}, (72)

with v(a)
Q ∈ Z4. Obviously, if v ∈ W (a)

Q , then gT v ∈ W (a)
Q . The

value of Q is constant among the set W (a)
Q due to Eq. (62),

Q(v) = Q(v(a)
Q ) for all v ∈ W (a)

Q . This justifies labeling the
sets by the integer Q. For every fixed Q = 0, 1, 2, . . . , there
is a finite number of distinct sets W (a)

Q , which is captured by
the additional superindex a. For example, the first few Vn are
given by

V1 = W1, V2 = W2, V3 = W (1)
3 , V4 = ∅, (73)

V5 = W (2)
3 ∪ W (2)

3 , V6 = W2 ∪ W2. (74)

For larger n, the decompositions become more involved, for
instance,

V11 = W1 ∪ W1 ∪ W1 ∪ W1 ∪ W (2)
5 ∪ W (2)

5 . (75)

We list all sets W (a)
Q with Q � 13 in Table I. These are the

cases relevant for n � 150. Although G contains 96 elements,
the number of elements of GT v for any v ∈ Z4 can be smaller
than 96 due to repetitions. We find that the numbers of ele-
ments in the sets W (a)

Q varies between 1 (only for W0 = {0}),
24, 48, and 96.

Having defined the sets W (a)
Q , we next define

ν
(a)
n,Q =

{
number of times W (a)

Q appears,

in the decomposition of Vn.
(76)

TABLE I. Invariant sets W (a)
Q with Q � 13, which are the sets

that appear in Vn for n � 150 in the orbit sum. We display the
generating vector v(a)

Q in Eq. (72) and the number of elements in each

set, denoted |W (a)
Q |. The number of times that W (a)

Q appears in Vn,

denoted ν
(a)
n,Q, is listed in Tables II and III in the Appendix.

Q W (a)
Q v(a)

Q |W (a)
Q | First appearance

0 W0 (0, 0, 0, 0)T 1 n = 8
1 W1 (1, 0, 0, 0)T 24 n = 1
2 W2 (1, 0, 1, 0)T 24 n = 2

3 W (1)
3 (1, 1, 0, 0)T 48 n = 3

W (2)
3 (1, 1, 0, 1)T 48 n = 5

4 W4 2(1, 0, 0, 0)T 24 n = 12

5 W (1)
5 (2, 0, 1, 0)T 96 n = 9

W (2)
5 (1, 1, 1, 0)T 48 n = 11

6 W (1)
6 (1, 0, 1, 2)T 48 n = 14

W (2)
6 (1, 1, 1, 1)T 48 n = 18

7 W (1)
7 (2, 1, 0, 0)T 96 n = 15

W (2)
7 (1, 0, 2, 1)T 96 n = 23

8 W8 2(1, 0, 1, 0)T 24 n = 40

9 W (1)
9 (1, 1, 2, 0)T 96 n = 37

W (2)
9 (1, 1, 0, 3)T 48 n = 39

W (3)
9 (2, 0, 2, 1)T 48 n = 41

W (4)
9 (1, 1, 1, 2)T 96 n = 47

W (5)
9 3(1, 0, 0, 0)T 24 n = 57

10 W (1)
10 (1, 0, 3, 0)T 96 n = 42

W (2)
10 (1, 2, 1, 0)T 48 n = 50

11 W (1)
11 (1, 0, 1, 3)T 48 n = 61

W (2)
11 (1, 0, 2, 2)T 96 n = 63

W (3)
11 (1, 2, 1, 1)T 96 n = 81

W (4)
11 (2, 1, 1, 2)T 48 n = 83

12 W (1)
12 2(1, 1, 0, 0)T 48 n = 68

W (2)
12 2(1, 1, 0, 1)T 48 n = 108

13 W (1)
13 (0, 0, 1, 3)T 96 n = 69

W (2)
13 (2, 0, 3, 0)T 96 n = 105

W (3)
13 (1, 0, 3, 1)T 96 n = 107

W (4)
13 (2, 1, 2, 0)T 48 n = 125

In the example from Eq. (75) we have ν11,1 = 4, ν (2)
11,5 = 2, and

all other ν
(a)
n,Q = 0. The Selberg trace formula (30) becomes

∞∑
λ=0

h[pλ(k)] = A
∫

d2 p

(2π )2
tanh(π p)h(p)

+
∞∑

n=1

∞∑
Q=0

∑
a

ν
(a)
n,Q

×
∑

v∈W (a)
Q

∞∑
m=1

eimv·k �nh̃(m�n)

2 sinh(m�n/2)
. (77)

The decomposition of Vn into W (a)
Q yields an

expression for the integer coefficients in Eq. (40).
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Using

∑
v∈Vn

eimv·k =
∑
Q,a

ν
(a)
n,Q

∣∣W (a)
Q

∣∣
96

∑
g∈G

eimv(a)
Q

T gk, (78)

and Eqs. (70) and (91), we find

d0(n) =
∑
Q,a

ν
(a)
n,Q

∣∣W (a)
Q

∣∣, (79)

d1(n) = 1

24

∑
Q,a

ν
(a)
n,Q

∣∣W (a)
Q

∣∣Q, (80)

d2(n) = 1

24

∑
Q,a

ν
(a)
n,Q

∣∣W (a)
Q

∣∣Q2. (81)

These numbers are collected in Table IV. Since |W (a)
Q | is

divisible by 24 for Q > 0, at least for all cases considered
here, we conclude that d1(n) and d2(n) are integers. The
equation for d0(n) shows that determining the numbers ν

(a)
n,Q

for k �= 0 might yield new insights into the problem of finding
the length spectrum on the Bolza surface even for k = 0. Note
also that Eq. (78) is indeed of the form of Eq. (69).

For a given n, only a few terms in the sum over Q are
nonzero in Eq. (77); see Tables II and III. For n � 150, we
verify the following statement, which we conjecture to be
valid for all n:

Conjecture. Assume v ∈ Vn. Then

n even ⇒ Q(v) even, (82)

n odd ⇒ Q(v) odd. (83)

Furthermore, for even n,

n ≡ 0 (mod 4) ⇒ Q(v) ≡ 0 (mod 4), (84)

n ≡ 2 (mod 4) ⇒ Q(v) ≡ 2 (mod 4). (85)

Pursuing to proof this conjecture strikes us as a promising task
for future investigations. Having a better understanding of the
sets Vn from a number-theoretic point of view bears potential
of eventually summing all terms in the Selberg trace formula,
which would yield an exact and genuinely nonperturbative
tool for studying quantum physics in hyperbolic space.

C. Relation to Hurwitz quaternions

Since the group G is finite, all its irreducible representa-
tions are unitary. The matrices in Eq. (60) are not unitary, but
there exists a basis in which they are. The corresponding basis
change matrix is

U = 14 − R =

⎛
⎜⎜⎝

1 0 0 1
−1 1 0 0
0 −1 1 0
0 0 −1 1

⎞
⎟⎟⎠. (86)

We denote the unitary representation by an overhat according
to

ĝ = UgU−1. (87)

The generators of G in the unitary representation read

R̂ =

⎛
⎜⎜⎝

0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠, Ŝ =

⎛
⎜⎜⎝

0 0 −1 0
0 −1 0 0

−1 0 0 0
0 0 0 1

⎞
⎟⎟⎠,

T̂ =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠,

Û = 1

2

⎛
⎜⎜⎝

−1 −1 −1 1
1 −1 −1 −1
1 1 −1 1

−1 1 −1 −1

⎞
⎟⎟⎠. (88)

For each k and v we define K = Uk and V = (U−1)T v such
that

K =

⎛
⎜⎜⎝

k1 + k4

k2 − k1

k3 − k2

k4 − k3

⎞
⎟⎟⎠, V = 1

2

⎛
⎜⎜⎝

v1 + v2 + v3 + v4

−v1 + v2 + v3 + v4

−v1 − v2 + v3 + v4

−v1 − v2 − v3 + v4

⎞
⎟⎟⎠, (89)

and

vT gk = VT ĝK. (90)

The invariants I and Q simply become

I (k) = 1
2 K2, (91)

Q(v) = V2. (92)

The simple form of the invariants I and Q in the new basis
suggests that it is a canonical choice for the problem at hand.
When written in this new basis, the elements v ∈ Vn have an
interesting structure as well. For this note that V1 is given by
the 24 elements in Eq. (C21), which translates to

V̂1 = (U−1)TV1

= {
(±1, 0, 0, 0)T , (0,±1, 0, 0)T , (0, 0,±1, 0)T ,

(0, 0, 0,±1)T ,
(± 1

2 ,± 1
2 ,± 1

2 ,± 1
2

)T }
, (93)

where in the last entry all signs are varied independently of
each other. These 24 vectors are precisely the unit Hurwitz
quaternions; see, e.g., Ref. [63]. In general, Hurwitz quater-
nions have the form V = (a, b, c, d )T with either a, b, c, d ∈
Z or a, b, c, d ∈ Z + 1

2 , meaning the components are either all
integers or all half-integers. The subset with a, b, c, d ∈ Z is
called Lipshitz quaternions. The reduced norm of a Hurwitz
quaternion is Q = V2 = a2 + b2 + c3 + d2, which is simply
the squared length of V or the invariant Q. Hence, Ŵ (a)

Q is a set
of Hurwitz quaternions with norm Q. It is easy to see that if V2

is even, then V must be a Lipshitz quaternion. Consequently,
if the conjecture in Eqs. (82)–(85) holds true for all n, then all
sets V̂n for n even are Lipshitz quaternions.

Quaternions comprise a division algebra structure that can
be conveniently expressed in terms of the basis

1̂ =
(

1 0
0 1

)
, î = iσ3, ĵ = iσ2, k̂ = iσ1, (94)
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with σi the standard Pauli matrices, so that

î
2 = ĵ

2 = k̂
2 = îĵk̂ = −1̂. (95)

Every Hurwitz quaternion V is then identified with the 2 × 2
matrix

H (V) = V11̂ + V2î + V3ĵ + V4k̂. (96)

Their addition and multiplication is defined through the usual
matrix operations and the invariant Q is given by the determi-
nant,

Q = V2 = detH (V). (97)

In this formulation, Eq. (93) becomes

V̂1 =
{

± 1̂, ±î, ±ĵ, ±k̂,
±1̂ ± î ± ĵ ± k̂

2

}
. (98)

We believe that studying the mapping

γ ∈ � → v(γ ) → H (v) (99)

in more detail in the future might yield useful insights into
higher-dimensional representations of the hyperbolic {8, 8}
Bravais lattice that go beyond the paradigm of U(1) Bloch
waves.

V. BAND STRUCTURES OF HYPERBOLIC LATTICES

The hyperbolic band theory and associated trace formulas
discussed in this work concern closed Riemann surfaces with
crystal momenta imposed through Aharonov–Bohm fluxes or,
equivalently, k-twisted boundary conditions on the fundamen-
tal polygon. In this section, we come back to the problem of
band structures on hyperbolic {p, q} lattices discussed in the
introduction.

Our goal is to solve Eq. (3) for the eigenvalues of the adja-
cency matrix. It has been shown in Ref. [10] that the left-hand
side of Eq. (3) can be replaced by a continuum approximation

according to∑
j

Ai jψ (z j ) = [q + qh2�g + O(h3)]ψ (zi), (100)

where the parameter h = h(p, q) depends on the values of p
and q and roughly corresponds to a lattice spacing. For the
{8, 3} lattice we have q = 3 and h = 0.348311. The eigen-
value problem on the graph can thus be approximated by the
eigenvalue problem of the hyperbolic Laplacian. The contin-
uum approximation (100) works best for small values of |z|
close to the origin, where curvature effects remain small [10].
Since the hyperbolic lattice is infinite and fills the whole disk
D, we unavoidably accumulate errors as |z| increases. It has
been found that the first few low-lying eigenvalues E in Eq. (3)
are well-captured by the continuum approximation, whereas
energies of highly excited states deviate substantially [10].

Here we propose one way to improve the accuracy of the
continuum approximation. For this we employ recent insights
into the crystallography of hyperbolic lattices. Sticking to our
example of the Bolza surface, we use that the {8, 3}-lattice
splits into a 16-site unit cell that is repeated infinitely often
within an {8, 8} hyperbolic Bravais lattice [21]; see Fig. 1.
Each unit cell is contained in one fundamental domain D,
and going from one unit cell of the {8, 3} lattice to another
is equivalent to moving across the faces of the {8, 8} lattice.
Since the Bravais lattice is generated by the Fuchsian group
� from Eq. (6), we conclude that all eigenstates of the {8, 3}
lattice transform under distinct representations of �. For the
{8, 3} lattice, the one-dimensional representations are found
to be particularly relevant [55]. They constitute Bloch waves
with an associated crystal momentum k.

The spectrum of Bloch waves on the {8, 3} lattice consists
of 16 bands Eη(k), η = 0, . . . , 15, which corresponds to the
number of sites in the unit cell. The bands are the eigenvalues
of the 16 × 16 Bloch-Hamiltonian [21]

H(k) = −
(A1 18

18 A2(k)

)
, (101)

with 18 the 8 × 8 unit matrix and

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 1

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

1 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A2(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 eik1 0 eik2 0 0
0 0 0 0 eik2 0 eik3 0
0 0 0 0 0 eik3 0 eik4

e−ik1 0 0 0 0 0 eik4 0
0 e−ik2 0 0 0 0 0 e−ik1

e−ik2 0 e−ik3 0 0 0 0 0
0 e−ik3 0 e−ik4 0 0 0 0
0 0 e−ik4 0 eik1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (102)

Note that for k = 0 the Bloch-wave Hamiltonian constitutes
(minus) the adjacency matrix of the 16-site unit cell with
periodic boundary conditions, whereas for k �= 0 it features
a complex phase eikμ on the bonds that cross the boundary of
the fundamental domain. In analogy to Eq. (58), one finds that
the eigenvalues {Eη(k)} are invariant under the 96 elements of

the automorphism group, i.e.,

Eη(gk) = Eη(k) (103)

for all g ∈ G. Here we use the four-dimensional represen-
tation of G from Eq. (60). This implies, for instance, that
the eigenvalues for small k can be expanded in K2 and K4
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to quartic order, with coefficients that depend on the band
index η. Furthermore, this indicates that the 16 sites of the
periodic unit cell provide a useful, albeit coarse, discretization
of the Bolza surface that incorporates all symmetries of the
continuous Riemann surface.

Since Eq. (100) has been derived from the local properties
of the graph, we expect it to comprise a good approximation
for z ∈ D in the fundamental domain as this limits the value
of |z|. By gluing together many fundamental domains with
boundary conditions defined through crystal momenta, we can
expect to have a faithful representation of many low-lying
Bloch-wave eigenstates. The best agreement is expected for
the lowest band. We thus obtain an approximate identification
between the lowest Bloch-wave band on the {8, 3} lattice,
E0(k), and the lowest band of the hyperbolic Laplacian −�g

on the Bolza surface, E0(k), given by

E0(k) ≈ −3 + 3h2E0(k), (104)

with h = 0.348311. This formula is the central result of this
section.

In the following we test the validity of the approximation
(104). (I) First note that, at least for generic k �= 0, there is no
reason to expect the ground state on the lattice or on the Rie-
mann surface to be degenerate, and hence it transforms with
a one-dimensional representation under �. The assumption
of the ground state being a Bloch wave is therefore justified
for generic k. We note that certain high-symmetry k points
in the Brillouin zone can yield a ground-state degeneracy.
These points are dictated by the automorphism group G and
are isolated. (II) Second, if Eq. (104) is valid, then it should
reproduce the expansion of E0(k) in Eqs. (41)–(43), because
both expressions are invariant under G. We note that we can
obtain the expansion of E0(k) for small k exactly by perturb-
ing along the k = k(1, 0, 0, 0)T direction with K2 = 2k2. We
then find

E0(k) = −3 + 1
48 K2 − 1

9216 K4 + O(k6),

!≈ −3 + 3h2(e1K2 + e2K4) + O(k6), (105)

with

e1 ≈ 1

3h2

1

48
= 0.0572405, (106)

e2 ≈ − 1

3h2

1

9216
= −0.000298127. (107)

These are in good quantitative agreement with Eqs. (42) and
(43), keeping in mind that we neglected higher-order contri-
butions in Eq. (104). (III) Third, we compare E0(k) and E0(k)
along special lines in k space, where the Bolza result E0(k)
is obtained from the truncated Selberg trace formula as de-
scribed in Sec. III A. The results of this comparison are shown
in Fig. 7. We find good agreement for small |k| and small
E0(k) + 3, but visible deviations at high-symmetry points of
the Brillouin zone. Some of these deviations can be traced
back to the finite truncation of the trace formula, whereas
others are actual shortcomings of Eq. (104) because they
persist when computing E0(k) exactly from the Schrödinger
equation [64].

Let us summarize the finding of this section. We started
from the observation that the continuum approximation in

FIG. 7. Lowest Bloch-wave band E0(k) on the {8, 3} lattice,
shown by solid red curves, along specific directions in k space.
We determine E0(k) as the lowest eigenvalue of H(k) = −A(k)
in Eq. (101). We compare with the lowest band of the Laplacian
on the Bolza surface, E0(k), matched through the approximation in
Eq. (104), shown as dashed blue curves. We compute E0(k) from
the truncated Selberg trace formula for primitive periodic orbits
with (n, m) � (150, 3), which is the same level of accuracy as in
Figs. 5 and 6. Computing E0(k) from the solution of the Schrödinger
equation yields an improved agreement between the red and blue
curves, indicating that some deviations result from the truncation of
the trace formula, but no perfect match is obtained in either case.
Still, we observe that Eq. (104) provides a decent approximation of
the lowest Bloch band in the {8, 3} lattice.

Eq. (100) allows us to compute the spectrum on hyperbolic
lattices from the spectrum of the hyperbolic Laplacian. How-
ever, only the first few eigenvalues are reproduced correctly.
This is partly due to the fact that the eigenvalue of −�g in
the continuum have the form 1

4 + p2, and so necessarily grow
quadratically in the momentum p. As a result, the typical
periodicity and cosine-shape of band structures is not repro-
duced by Eq. (100). Utilizing the crystallographic properties
of the {8, 3} lattice, however, we were able to extend Eq. (100)
to Eq. (104) to approximate the lowest band on the lattice
by the lowest band of the Laplacian on the Bolza surface.
The latter correctly reproduces the low-energy band structure
qualitatively, at many k points even quantitatively. Hence, we
achieved to improve the accuracy of the approximation from
a few eigenvalues to a whole band.

VI. SUMMARY AND OUTLOOK

In this work, we have applied the Selberg trace formula
to investigate both formal aspects and practical applications
in hyperbolic band theory. For this purpose, we considered
the trace formula with U(1) phase factors corresponding to
a nontrivial representation of the Fuchsian group underlying
the hyperbolic surface. This extension of the Selberg trace
formula naturally appears within hyperbolic band theory but
was not relevant to previous applications of the trace formula
in studies of, for example, quantum chaotic systems. This is
a striking example of new experimental achievements, in this
case hyperbolic lattices in circuit quantum electrodynamics
and topoelectric circuits, requiring an extended repertoire of
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mathematical techniques. This development may eventually
also influence new directions in mathematics.

We have applied the Selberg trace formula with crystal
momentum k to problems concerning the Bolza surface of
genus two, which had previously been studied for k �= 0 in
the context of hyperbolic band theory without the use of the
trace formula, and with the trace formula in the context of
quantum chaos for k = 0. Our work, therefore, comprises a
confluence of two directions in physics. We have shown that
the geometric data of the classical length spectrum of primi-
tive periodic orbits is sufficient to evaluate the trace formula
even for k �= 0. In contrast to the case of k = 0, however,
not only the number of primitive orbits of a certain length
�n is relevant [the quantity d0(n)], but instead a representa-
tive group element for each orbit is required to compute the
vectors v ∈ Vn. This information, however, is a byproduct of
the original algorithm described by Aurich, Bogomolny, and
Steiner. The sets Vn show some intriguing features that we
speculate to be of group or number theoretic origin. A better
understanding of these relations may help in the future to
determine a rule for the sequence of numbers d0(n) = |Vn|,
which, until now, appears to be entirely void of structure.

One practical applications we have considered is the
ground-state energy E0(k) on the Bolza surface. The presence
of the crystal momentum k �= 0 enforces E0(k) to be nonzero.
Using the automorphism symmetry of the surface, we de-
termined a universal low-k expansion up to quartic order.
Furthermore, we found good agreement between the result
deduced from the Selberg trace formula and the result from
numerically solving the Schrödinger equation; deviations are
due to the fact that the trace formula is truncated to orbits
with n � 150 here, and we expect perfect agreement if we
were able to include all primitive periodic orbits. We have then
shown that the lowest band on the {8, 3} lattice, E0(k), can to a
decent accuracy be approximated by E0(k), thereby making a
connection to the discrete lattices realized in experiment. This
approximation is based on recent advances in understanding
the crystallography of hyperbolic lattices and improves the
accuracy of earlier works on the continuum limit of hyperbolic
lattices.

Other applications that we have considered are related to
the band structure on the Bolza surface as a whole. Here
trace formulas become particularly powerful, since a deter-
mination of the high-energy spectrum from the Schrödinger
equation is computationally challenging. We verified that the
asymptotic Weyl law is unaffected by the crystal momentum
k �= 0, and have studied the relationship between the empty
lattice approximation and averaging over the crystal momenta
of Bloch waves. While the latter two procedures were found
to not be identical in the hyperbolic case, the small number of
terms that violate the identity are quantitatively unimportant in
practical applications such as computing partition functions.
These findings thus connect the spectrum on closed Riemann
surfaces to the spectrum on the infinite hyperbolic plane.

In the following we discuss some extensions and applica-
tions of the ideas laid out in this work that we suggest to be
addressed in future studies. One such problem is the study
of arithmetical quantum chaos in hyperbolic band theory.
It is understood well that the arithmeticity of the Fuchsian
group � for the Bolza surface results in spectral statistics that

does not fall into any of the usual random matrix ensembles
of quantum chaos [37,47,48]. This behavior is rooted in the
distribution of the eigenvalues {Eλ(k)} for k = 0. For k �= 0,
however, the degeneracies of eigenvalues are lifted, see Fig. 3,
and we conjecture that also the spectral statistics evolves to-
wards that of the usual quantum chaos. This crossover from
arithmetic quantum chaos to ordinary quantum chaos in the
spectrum {Eλ(k)}, and its implications for physical systems in
hyperbolic space, strikes us as a very intriguing aspect to be
illuminated.

Many of the techniques applied in this work for the Bolza
surface, the {8, 8} and {8, 3} hyperbolic lattices, can be ex-
tended to other surfaces and other hyperbolic lattices. The two
families of {4g, 4g} and {2(2g + 1), 2g + 1} Bravais lattices
[21,58] define closed hyperbolic surfaces through identify-
ing the opposite sides of a regular 4g-gon or 2(2g + 1)-gon,
respectively, and result in a crystal momentum k with 2g
components. At least some of their Fuchsian groups are arith-
metic [59], and so the procedure and applications described
in this work directly apply. Furthermore, it will be exciting to
relate their band structures, such as the ground-state energy
E0(k), to band structures on {p, q} hyperbolic lattices. For
instance, the results of Secs. IV and V can be generalized to
the {7, 3} hyperbolic lattice that tessellates the Klein quartic of
genus three, with {14, 7} Bravais lattice [21] and an automor-
phism group G with 2 × 168 elements, satisfying the Hurwitz
bound.

To apply the Selberg trace formula to hyperbolic lattices
beyond ground-state or low-energy physics, the mapping of
excited state energy bands between hyperbolic surfaces and
hyperbolic lattices needs to be understood better. For instance,
for the Bolza surface, with energies {Eλ(k)}, and the {8, 3}
lattice, with energies {Eη(k)}, an extension of the approximate
Eq. (104) for excited states should be constructed. There are
some immediate obstacles that relate to the degeneracies of
bands even at k = 0, but this might just imply that the map-
ping is not as simple as Eq. (104). A more direct approach to
trace formulas for hyperbolic lattices might start from trace
formulas for graph Laplacians such as the Ihara ζ -function
and related graph-theoretic functions [65,66].

Another exciting extension of the present work amounts
to including the effects of an external magnetic field. Spec-
tral studies of the Hofstadter butterfly on hyperbolic lattices
[9,24,31,67] reveal an intricate energetic landscape, whose
surprising features are deeply rooted in the nature of the
quantum hall effect and the Landau level problem in hyper-
bolic space [28,68,69]. Also, connections of this problem to
the geometric Langlands program have been pointed out in
Refs. [56,70]. In this context, the trace formula for the Maass
Laplacian of nonzero weight discussed in Ref. [52] might be
useful.

Very recently, ideas of the conformal bootstrap have been
applied to energy spectra of hyperbolic surfaces such as the
Bolza surface and the Klein quartic [71,72]. This includes a
dictionary between conformal field theories and hyperbolic
orbifolds. It seems to be a formidable question to turn this
around and ask which field theoretic object corresponds to
the Selberg trace formula from hyperbolic geometry, and what
this implies for our understanding of conformal field theories.
Furthermore, it would be exciting to explore which role is
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played by the crystal momenta and nontrivial representations
in this mapping.
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APPENDIX A: HYPERBOLIC GEOMETRY

We consider the Poincaré disk model of hyperbolic space
given by the unit disk

D = {z ∈ C | |z| < 1}, (A1)

equipped with the metric

ds2 = (2κ )2 dx2 + dy2

(1 − |z|2)2
. (A2)

Here z = reiφ = x + iy. Two choices of length scales enter
these definitions. First, we could choose the radius of the disk
D to be different from unity, but this is hardly done. Second,
the curvature radius κ sets the unit of length in the metric.
Common choices for κ are 1 and 1/2. In this work we choose
κ = 1. Geodesics in D are arcs of circles that intersect the
boundary orthogonally; this includes straight lines through the
origin. Integrating Eq. (A2) yields the distance between two
points z, z′ ∈ D as

d (z, z′) = κ arcosh

(
1 + 2|z − z′|2

(1 − |z|2)(1 − |z′|2)

)
. (A3)

This formula makes it particularly transparent that the hyper-
bolic plane is infinite, meaning that each point in D is infinitely
far from the boundary ∂D (points with |z| = 1) with respect to
the metric (A2).

The isometries of the hyperbolic plane, i.e., transforma-
tions that preserve the distance d (z, z′) between two points,
are parameterized by matrices(

a b
b∗ a∗

)
∈ PSU(1, 1) (A4)

with unit determinant |a|2 − |b|2 = 1. They act on z ∈ D via
Möbius transformations(

a b
b∗ a∗

)
z := az + b

b∗z + a∗ . (A5)

Since reversing the sign of a and b simultaneously yields
the same transformation, they are elements of PSU(1, 1) =

SU(1, 1)/{±1}. This group is isomorphic to PSL(2,R). The
latter naturally appears as the isometry group when working
with the Poincaré upper half-plane model of the hyperbolic
plane.

The Laplace–Beltrami operator on the hyperbolic plane, or
simply hyperbolic Laplacian, is given by

�g = 1

(2κ )2
(1 − |z|2)2(∂2

x + ∂2
y

)
. (A6)

It is self-adjoint with respect to the canonical scalar product
on the Poincaré disk,

〈 f1, f2〉D :=
∫

D

d2z

(1 − |z|2)2
f1(z)∗ f2(z) (A7)

or the scalar product in the fundamental octagon D of the
{8, 8} lattice,

〈 f1, f2〉D :=
∫
D

d2z

(1 − |z|2)2
f1(z)∗ f2(z). (A8)

The Laplacian commutes with isometries (A5). The continu-
ous spectrum of −�g on hyperbolic surfaces satisfies Eλ � 1

4
and so can be parameterized as Eλ = 1

4 + p2 with p2 real. A
discrete spectrum with energies below 1

4 can exist depending
on the surface under consideration, but for the case of the
Bolza surface the only eigenvalue that falls into this category
is the ground-state energy E0 = 0.

APPENDIX B: EUCLIDEAN TRACE FORMULA

We follow Ref. [48]. We apply Poisson’s formula∑
s∈Z2

f (s) =
∑
n∈Z2

∫ ∞

−∞
ds1

∫ ∞

−∞
ds2 e2π i(n1s1+n2s2 ) f (s) (B1)

to the density of states

Dk(E ) =
∑
s∈Z2

δ(E − Es,k ). (B2)

Here, Es,k = ( 2π
L s + 1

L k)2 from Eq. (18) and k = (k1, k2) is
an external parameter. We obtain

Dk(E ) =
∑
n∈Z2

∫
d2s e2π in·sδ

[
E −

(
2π

L
s + 1

L
k
)2]

= L2

4π2

∑
n∈Z2

∫
d2 p eiLn·pδ

[
E −

(
p + 1

L
k
)2]

= L2

4π

∑
n∈Z2

e−in·kJ0(
√

EL|n|), (B3)

where

J0(y) =
∫ 2π

0

dϕ

2π
eiy cos ϕ (B4)

is a Bessel function. We split off the contribution from n =
(0, 0) and write

Dk(E ) = L2

4π
+ L2

4π

∑
n∈Z2\(0,0)

e−in·kJ0(
√

EL|n|). (B5)
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TABLE II. Number of times ν
(a)
n,Q that W (a)

Q appears in Vn for even n; see Eq. (76). The nonvanishing entries in the table are those ν
(a)
n,Q that

are nonzero, whereas all entries not displayed or not included in the table are zero.

ν
(a)
n,Q for n even

n 2 6 10 38 42 46 50 54 58 82 86 90 94 98 102 130 134 138 142 146 150

W2 1 2 2 4 8 8 8 8 4 10 14 8 8 12 8 24 16 16 16 12

W (1)
10 1 2 2 2 2 2 2 2 2

W (2)
10 2 1 2 2 4 4 2

n 4 12 20 28 36 44 52 60 68 76 84 92 100 108 116 124 132 140 148

W4 2 2 4 4 4 4 8 4 8 4 8 8 4 8 8 8

W (1)
12 1

W (2)
12 2 2

n 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144

W0 8 12 32 48 48 48
W8 2 2 4 4 8 4 4 4 4

n 14 18 22 26 30 34 62 66 70 74 78 106 110 114 118 122 126

W (1)
6 1 2 2 4 4 4 6 4 2 8 4 4 7

W (2)
6 2 2 2 2 2 4 4 4 2 6 6 4 4 4

For a suitable test function H (E ) = h(p) we have∑
s∈Z2

H (Es,k ) =
∫ ∞

0
dE H (E )Dk(E )

= L2

2π

∫ ∞

0
d p′ p′h(p′) +

∑
n∈Z2\(0,0)

e−in·k L2

2π

×
∫ ∞

0
d p′ p′

∫ 2π

0

dϕ

2π
eip′Ln cos ϕh(p′)

= L2
∫

d2 p

(2π )2
h(p) + L2

∑
n∈Z2\(0,0)

e−in·k h̃2(Ln),

(B6)

which equals Eq. (19). Equation (13) is obtained in the limit
k = 0.

APPENDIX C: BOLZA SURFACE

In this section we discuss some properties that specifically
apply to the Bolza surface and its underlying Fuchsian group
� defined in Eq. (6). Tables II and III collect the numbers
ν

(a)
n,Q defined in Eq. (76), and Table IV displays the numbers

d0,1,2(n) that enter Eq. (40) for n � 150. We describe the algo-
rithm to obtain the primitive periodic orbits on this surface and
the associated sets of integer vectors Vn that enter the Selberg
trace formula (30).

1. Arithmetic Fuchsian group

In this section, we closely follow Ref. [42]. The Fuchsian
group � ⊂ PSU(1, 1) of the Bolza surface is generated by
products of four generators and their inverses according to
the presentation in Eq. (6). An explicit representation of the
generators is

γμ = R(π/4)μ−1γ1R(−π/4)μ−1, (C1)

with

γ1 =
(

1 + √
2

√
ζ (2 + √

2)√
ζ (2 + √

2) 1 + √
2

)
, (C2)

where

ζ =
√

2 − 1 (C3)

and

R(α) =
(

eiα/2 0
0 e−iα/2

)
. (C4)

Note that γ5 = γ −1
1 , γ6 = γ −1

2 , and so on. We observe that
det(γμ) = 1 for all μ, and so det(γ ) = 1 for all γ ∈ �.

The group � is an arithmetic Fuchsian group, which means
that it is generated from a quaternion algebra over an algebraic
number field [47,48]. In this case, this implies that besides
the representation of every group element γ in terms of a
product of the generators {γμ}, there exists another repre-
sentation where every γ ∈ � is identified by four integers
�n = (n1, n2, n3, n4) and a parity. This representation reads

γ =
(

N1 + iN2
√

ζ (N3 + iN4)√
ζ (N3 − iN4) N1 − iN2

)
, (C5)

where Nμ ∈ Z[
√

2] are specific algebraic integers. For exam-
ple, the matrix γ1 from Eq. (C2) corresponds to N1 = 1 + √

2,
N2 = 0, N3 = 2 + √

2, N4 = 0. To define the relation between
Nμ and nμ, we introduce me(n) and mo(n) as the even and odd
integers m that best approximate m ≈ n

√
2. Thus,

|m − n
√

2|m=me (n) even
!= min, (C6)

|m − n
√

2|m=mo(n) odd
!= min. (C7)

We then define the algebraic integers

Ne(n) = me(n) + n
√

2, (C8)

No(n) = mo(n) + n
√

2. (C9)
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TABLE III. Number of times ν
(a)
n,Q that W (a)

Q appears in Vn for odd n, see Eq. (76). The nonvanishing entries in the table are those ν
(a)
n,Q that

are nonzero, whereas all entries not displayed or not included in the table are zero.

ν
(a)
n,Q for n odd

n 1 11 17 27 29 39 41 57 67 69 79 85 95 97 107 125 135 137 147

W1 1 4 2 4 8 12 2 10 12 8 8 8 16 12 12 24 16 12 16

W (2)
5 2 2 4 4 4 4 6 4 4 6 6 8 4 4

W (2)
9 2 1 4 4 4 4 2 4

W (3)
9 1 2 2 4 4 4 1 2

W (5)
9 4 4 8 2 4

W (1)
13 1

W (3)
13 2

W (4)
13 2

n 3 13 15 25 43 53 55 65 71 81 83 93 99 109 111 121 123 139 149

W (1)
3 1 2 4 4 5 10 4 8 6 8 2 4 8 12 4 12 14

W (1)
7 1 2 2 3 2 4 2 4 2 4 4 8 2 2

W (3)
11 2 2 4 1 1

W (4)
11 2 1 2 2 4

n 5 7 23 33 35 45 51 61 63 73 91 101 103 113 119 129 131 141

W (2)
3 2 1 3 4 4 6 4 4 5 8 12 6 8 4 10 12 12 12

W (2)
7 2 2 1 1 2 2 2 3 4 4 2 2 6 3 4

W (1)
11 2 2 1 2

W (2)
11 1 2 2 2 2 2

n 9 19 21 31 37 47 49 59 75 77 87 89 105 115 117 127 133 143 145

W (1)
5 1 2 2 2 2 2 4 4 2 6 4 1 3 6 8 4 2 4 6

W (1)
9 1 2 2 2 2 4 2 2 2 2 4

W (4)
9 2 2 2 1 2 2 2 3 2 1 4

W (2)
13 1

We have

2n
√

2 − 1 � Ne/o(n) � 2n
√

2 + 1 (C10)

for all n � 1. We say that the algebraic integers Ne(n) and
No(n) have even and odd parity, respectively. The matrices of
form γ from Eq. (C5) that comprise the group � are such that

(i) N1 has odd parity,
(ii) N2 has even parity,
(iii) N3 and N4 have equal parity.
Consequently, matrices γ ∈ � are specified by four

integers �n = (n1, n2, n3, n4) ∈ Z4 and the parity of the off-
diagonal entries, yielding two possibilities

γe =
(

No(n1) + iNe(n2)
√

ζ [Ne(n3) + iNe(n4)]√
ζ [Ne(n3) − iNe(n4)] No(n1) − iNe(n2)

)
,

(C11)

γo =
(

No(n1) + iNe(n2)
√

ζ [No(n3) + iNo(n4)]√
ζ [No(n3) − iNo(n4)] No(n1) − iNe(n2)

)
.

(C12)

Only those sets of integers �n ∈ Z4 that yield det(γ ) = 1
are allowed. Since the matrices γ and −γ are identified in
PSU(1, 1), we can always assume that n1 � 0.

Fuchsian group elements acquire a geometric interpreta-
tion through their action on the Poincaré disk in Eq. (A5).
Each 1 �= γ ∈ � is hyperbolic, i.e., satisfies |tr(γ )| > 2, and
leaves two points on the boundary ∂D invariant. These two
points are connected by a unique geodesic in D that is left
invariant under the action of γ , i.e., points on the geodesic are
mapped to points on the geodesic. Writing z = x + iy ∈ D, the
geodesic is given by the circular arc

x2 + y2 − 2
√

ζ

N2
(N3y − N4x) + 1 = 0 (C13)

if N2 �= 0, or by the straight line

N3y − N4x = 0 (C14)

if N2 = 0. Furthermore, given that |tr(γ )| > 2, we call the
positive number

�(γ ) = 2κ arcosh

( |tr(γ )|
2

)
(C15)

the length of γ (κ = 1). For a group element represented in
the form of Eq. (C5), the length is given by

�(γ ) = �n1 = 2κ arcosh[mo(n1) + n1

√
2], (C16)
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TABLE IV. Number of primitive periodic orbits of length �n, d0(n), and coefficients d1(n) and d2(n) in Eq. (40) for 1 � n � 150. These
numbers can be obtained from Eqs. (79)-(81). The values of d0(n) agree with those determined in Refs. [40,42].

n d0(n) d1(n) d2(n) n d0(n) d1(n) d2(n) n d0(n) d1(n) d2(n) n d0(n) d1(n) d2(n)

1 24 1 1 39 576 88 536 77 864 228 1572 115 1152 336 2544
2 24 2 4 40 48 16 128 78 384 96 576 116 96 16 64
3 48 6 18 41 96 20 164 79 384 48 208 117 1248 340 2420
4 0 0 0 42 288 56 432 80 48 0 0 118 384 96 576
5 96 12 36 43 432 86 482 81 768 192 1504 119 768 160 1056
6 48 4 8 44 96 16 64 82 96 8 16 120 96 32 256
7 48 6 18 45 288 36 108 83 768 192 1376 121 1728 472 3720
8 8 0 0 46 192 16 32 84 192 32 128 122 384 96 576
9 96 20 100 47 384 112 848 85 384 80 656 123 384 112 1040
10 48 4 8 48 0 0 0 86 432 100 840 124 192 32 128
11 192 24 104 49 576 152 1048 87 768 224 1696 125 1152 208 1648
12 48 8 32 50 288 56 432 88 96 32 256 126 528 132 792
13 96 12 36 51 288 52 268 89 288 92 748 127 768 224 1696
14 48 12 72 52 96 16 64 90 528 108 856 128 96 32 256
15 288 52 268 53 672 116 572 91 1056 244 1772 129 1344 328 2360
16 12 0 0 54 192 16 32 92 96 16 64 130 480 136 1232
17 48 2 2 55 480 108 660 93 768 192 1504 131 864 156 804
18 96 24 144 56 48 16 128 94 384 96 832 132 192 32 128
19 192 40 200 57 672 140 1020 95 768 160 1312 133 480 148 1172
20 48 8 32 58 48 20 200 96 48 0 0 134 864 168 1296
21 192 40 200 59 576 152 1048 97 768 160 1184 135 1152 240 1712
22 96 24 144 60 192 32 128 98 384 96 832 136 96 32 256
23 336 74 446 61 480 124 948 99 144 34 278 137 672 124 860
24 0 0 0 62 288 72 432 100 192 32 128 138 576 112 864
25 192 24 72 63 528 130 966 101 768 192 1376 139 960 216 1576
26 192 48 288 64 96 32 256 102 288 24 48 140 0 0 0
27 192 24 104 65 192 56 392 103 1008 270 2138 141 1152 272 1968
28 96 16 64 66 384 96 576 104 192 64 512 142 768 192 1664
29 384 48 208 67 576 88 536 105 576 184 1624 143 576 152 1048
30 96 24 144 68 48 24 288 106 192 48 288 144 96 32 256
31 192 40 200 69 576 120 984 107 960 248 2312 145 1344 408 3192
32 32 0 0 70 384 96 576 108 288 80 704 146 672 152 1264
33 384 80 464 71 384 112 784 109 576 136 856 147 960 200 1512
34 96 24 144 72 0 0 0 110 288 72 432 148 288 80 704
35 288 52 268 73 576 104 536 111 768 160 928 149 1056 228 1612
36 96 16 64 74 288 72 432 112 48 0 0 150 288 24 48
37 288 76 524 75 384 112 848 113 576 168 1432
38 96 8 16 76 96 16 64 114 672 168 1008

which only depends on n1. For every n ∈ N, we can then de-
termine the number d0(n) of distinct primitive group elements
(modulo conjugacy) of length �n and their representative
group elements γ ∈ �. In the main text, we therefore write
n instead of n1.

2. Primitive periodic orbits

In this section we describe the algorithm for finding all
distinct primitive periodic orbits on the Bolza surface with
length �n for a given value of n � 1.

We first clarify what the geometric notion of a primitive pe-
riodic orbit means algebraically, i.e., when expressed in terms
of group elements γ ∈ �. Recall that we only consider those
geodesics that go through the fundamental domain or central
octagon D. One periodic orbit typically consists of several
geodesic segments; see Fig. 4. Each such geodesic segment is
uniquely associated to a group element γ ∈ �. Consequently,

an orbit that consists of NO segments corresponds to a collec-
tion of NO group elements {γ (1), . . . , γ (NO )}. Each element of
this set is conjugate to the others, and so every one of them is
a suitable representative of the orbit as a whole. Of course, the
length of all elements is �(γ (1) ) = · · · = �(γ (NO ) ) = �n.

Let us give some meaningful examples for n = 1. The three
orbits that are shown for n = 1 in Fig. 4, from left to right, are

{γ1},
{
γ2γ

−1
3 , γ −1

3 γ2
}
,
{
γ2γ

−1
1 γ −1

4

}
. (C17)

Hence, the first and third orbit consist of one segment, the sec-
ond one consists of two segments. We readily verify that the
length of every segment is �1 = 3.05714. The two segments
of the second orbit are conjugate to each other, because

γ2γ
−1
3 = γ3

(
γ −1

3 γ2
)
γ −1

3 . (C18)

The remaining 21 orbits for n = 1 are related to the three in
Eq. (C17) by successive rotations by π/4 using R(π/4) from
Eq. (C4). For instance, from the first orbit {γ1} we generate
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eight orbits given by

{γ1},
R(π/4){γ1}R(π/4)−1 = {γ2},
R(2π/4){γ1}R(2π/4)−1 = {γ3},
...

R(7π/4){γ1}R(7π/4)−1 = {
γ −1

4

}
. (C19)

Hence, the set of representative elements is simply
γ1, γ2, γ3, γ4, γ

−1
1 , γ −1

2 , γ −1
3 , γ −1

4 , corresponding to eight
straight lines connecting opposite sites of the octagon. Repeat-
ing this procedure for the other two orbits, a complete set of
representative elements of the 24 distinct primitive orbits for
n = 1 is found to be

γ1, γ2, γ3, γ4, γ
−1
1 , γ −1

2 , γ −1
3 , γ −1

4 ,

γ2γ
−1
3 , γ3γ

−1
4 , γ4γ1, γ

−1
1 γ2, γ

−1
2 γ3, γ

−1
3 γ4, γ

−1
4 γ −1

1 , γ1γ
−1
2 ,

γ2γ
−1
1 γ −1

4 , γ3γ
−1
2 γ1, γ4γ

−1
3 γ2, γ

−1
1 γ −1

4 γ3, γ
−1
2 γ1γ4,

γ −1
3 γ2γ

−1
1 , γ −1

4 γ3γ
−1
2 , γ1γ4γ

−1
3 . (C20)

The vectors v that are associated to the representative group
elements can be read off from the factorization into group
generators. We have

V1 = W1 =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

±1
0
0
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
±1
0
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
0

±1
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
0
0

±1

⎞
⎟⎟⎠,

±

⎛
⎜⎜⎝

0
1

−1
0

⎞
⎟⎟⎠, ±

⎛
⎜⎜⎝

0
0
1

−1

⎞
⎟⎟⎠, ±

⎛
⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎠, ±

⎛
⎜⎜⎝

−1
1
0
0

⎞
⎟⎟⎠,

±

⎛
⎜⎜⎝

−1
1
0

−1

⎞
⎟⎟⎠, ±

⎛
⎜⎜⎝

1
−1
1
0

⎞
⎟⎟⎠, ±

⎛
⎜⎜⎝

0
1

−1
1

⎞
⎟⎟⎠, ±

⎛
⎜⎜⎝

−1
0
1

−1

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭.

(C21)

Paralleling the construction in Eq. (C19), these vectors are
related to the three vectors that are obtained from Eq. (C17),
namely ⎛

⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
1

−1
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

−1
1
0

−1

⎞
⎟⎟⎠ (C22)

by successive application of the rotation R ∈ G in the four-
dimensional representation from Eq. (60).

We now describe how all distinct primitive periodic orbits
can be obtained for a given value of n � 1 and �n. This
algorithm has been developed in Refs. [40,42].

(I) In the first step, we generate a large list of candidate
matrices γe(n, n2, n3, n4) and γo(n, n2, n3, n4) with the correct
value of n and arbitrary values of n2,3,4; see Eqs. (C11) and
(C12). One can derive bounds on the number of candidates

that need to be sampled, which puts upper limits on n2,3,4,
but we do not discuss them here. For practical purposes it
is sufficient to say that the number of candidates is finite.
In our implementation, we choose 0 � n4 � n3 � nmax and
−nmax � n2 � nmax and choose nmax sufficiently large in de-
pendence of n. The restriction of n3,4 being nonnegative can
always be achieved by suitable rotations with R(π/4) and so
does not constitute a bias.

(II) Among this initial draft of candidates, which we write
as

M =
(

N1 + iN2
√

ζ (N3 + iN4)√
ζ (N3 − iN4) N1 − iN2

)
, (C23)

we choose those which satisfy two conditions: First, they need
to be elements of � with unit determinant, which yields the
condition

N2
1 + N2

2 − ζ 2
(
N2

3 + N2
4

) != 1. (C24)

Second, their associated geodesics need to pass through the
central octagon D. This can be shown to be equivalent to the
condition

ρ(M ) = |N2|
(2 − √

2)(|N3| + ζ |N4|)
!
< 1. (C25)

For this equation to be true, we used that n3 � n4 � 0 so that
|N3| � |N4|. Note that if ρ(M ) = 1 occurred in Eq. (C25),
then the geodesic would touch a corner of the octagon, but
not go through the interior. We can exclude these candidates
for the initial draft.

(IIIa) Let us denote the candidate matrices that passed the
tests in (I) and (II) by

L ⊂ �. (C26)

By construction we have �(γ ) = �n for all γ ∈ L. The set
L is finite. But not every element γ ∈ L is representative
of a distinct primitive orbit, since orbits can consist of sev-
eral segments or group elements, such as the second orbit in
Eq. (C17), which consists of the segments γ2γ

−1
3 and γ −1

3 γ2.
Therefore, the next task is to group those entries of L together
that belong to the same orbit, and then count the number of
distinct groups or orbits to obtain d0(n).

(IIIb) The grouping into orbits is achieved as follows. We
chose the first element γ (1) ∈ L from the list and construct
the associated orbit through a method described below. Af-
ter this is accomplished, we have a list of matrices L1 =
{γ (1), . . . , γ (NO )} that comprises the NO segments of this
orbit—this list contains at least one element, namely γ (1).
Importantly though, if the list contains more than one el-
ement, then these elements also appear in L because they
would have passed all the tests in (I) and (II). To proceed,
we chose another element from the list η(1) ∈ L. There are
two possibilities: Either η(1) is one of the elements in L1,
in which case its orbit is already accounted for; we can
then discard η(1). If η(1) is not in L1, then it is part of a
distinct orbit and we construct the list L2 = {η(1), . . . , η(N ′

O )}
of its segments. We update the list of known orbit segments
to L1 ∪ L2. Choosing a third element κ (1) ∈ L, we have to
check whether it is already contained in L1 ∪ L2 or not,
and so on. At the end of the procedure, choosing every
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element of L, we have a list of d0(n) mutually exclusive
sets

L1 ∪ L2 ∪ · · · ∪ Ld0(n) ⊂ �, (C27)

where each Li represents one periodic orbit. A representative
element for each orbit can be chosen arbitrarily from the Li.

(IIIc) Let us now describe how the orbit for an individual
element γ (1) ∈ L is constructed. We know that M1 = γ (1) is
the first segment of the orbit. Any other segment connected to
M1 needs to be of the form

M (μ)
1 = γμM1γ

−1
μ (C28)

with μ = 1, . . . , 8, because the connection needs to be
through one of the eight side-pairing of the octagon. The
matrices {M (μ)

1 } are not necessarily in L: Although they
have unit determinant, we need to pick those that pass through
the central octagon. To do so, we first test if any of the eight
matrices satisfies

ρ
(
M (μ)

1

)
< 1. (C29)

(This will be satisfied by none or two of the eight matrices.)
If Eq. (C29) is true for any particular matrix, then we chose
this matrix as M2 = γ (2). If Eq. (C29) is not satisfied for any

μ, then we test whether

ρ
(
M (μ)

1

) = 1 (C30)

is true for any of the eight matrices. If this is true, then we
choose this matrix as M2. (The segment goes through a corner
of the octagon if Eq. (C30) but not Eq. (C29) is satisfied.)
In most cases, Eqs. (C29) or (C30) will have yielded a new
matrix M2. We then construct the matrix M3 that connects to
M2 by considering the eight matrices

M (μ)
2 = γμM2γ

−1
μ (C31)

subject to the test ρ < 1 or ρ = 1. Importantly, M3 cannot
be chosen among the segments {M1, M2} that we already
have. We continue this procedure to eventually obtain a list
of distinct matrices {M1, M2, . . . , MNO} which is such that
considering the eight matrices M (μ)

NO
in Eqs. (C29) and (C30)

does not yield any matrices not yet contained in the list. This
means that we have found all NO segments of the orbit, and

L1 = {
M1, M2, . . . , MNO

} = {γ (1), γ (2), . . . , γ (NO )}. (C32)

(IIId) We comment here on the fact that achieving N3 �
N4 � 0 through suitable rotation of M by π/4 in ρ(M ) in
Eq. (C25) can be avoided by considering the following modi-
fied function: Write M as in Eq. (C23) and define

ρ̄(M ) = min
μ=1,...,8

[
|N2|

(2 − √
2)(|Re[(N3 + iN4)eiμπ/4]| + ζ |Im[(N3 + iN4)eiμπ/4]|)

]
. (C33)

Instead of ρ(M (μ)
1 ) < 1 and ρ(M (μ)

1 ) = 1 in Eqs. (C29)
and (C30), we can equivalently consider ρ̄(M (μ)

1 ) < 1 and
ρ̄(M (μ)

1 ) = 1, respectively.
(IV) At last we have to find the factorization of the rep-

resentatives taken from the Li in Eq. (C27) to construct the
vectors v ∈ Vn. The remarkable feature of the algorithm just
described is that it yields this factorization in almost all
cases. We explain the procedure on the example of L1 =
{M1, . . . , MNO}. The construction in (IIIc) implies that

M2 = γμ1 M1γ
−1
μ1

,

M3 = γμ2 M2γ
−1
μ2

= γμ2γμ1 M1
(
γμ2γμ1

)−1
,

...

MNO = (
γNO−1 · · · γμ2γμ1

)
M1
(
γNO−1 · · · γμ2γμ1

)−1
(C34)

for some set of indices (μ1, μ2, . . . , μNO−1) determined by the
algorithm. The fact that the algorithm stops at MNO implies
that there is a μ′ such that

M1 = γμ′MNOγ −1
μ′ , (C35)

yielding a closed orbit eventually. Together with Eq. (C34),
this implies that γμ′γNO−1 · · · γμ2γμ1 commutes with M1. Since
M1 is primitive, however, the only group elements commuting
with M1 are powers of M1 [51], and so we obtain

M1 = ±(γμ′γNO−1 · · · γμ2γμ1 )n, (C36)

with n ∈ Z. Testing all possibilities for μ′ and the overall sign
±, and using small values of n, the factorization of M1 is easily
found. We found in our numerics that, if none of the segments
go through the corners of the octagon, then Eq. (C36) is
always solved by n = 1. If some segments go through the
corners, then additionally considering n = −1 often gives the
correct factorization. In the very few cases where Eq. (C36)
with n = ±1 does not yield the right result, more direct but
computationally more expensive methods can be used to find
the factorization of M1.

(V) At last let us comment on the role of nonprimi-
tive orbits. If γ represents a periodic orbit of length �n,
then γ m represents a periodic orbit of length m�n. Conse-
quently, for a given n � 1, there might be pairs (n1, m1) such
that

�n = m1�n1 . (C37)

The algorithm described in (I)–(IV) does not distinguish
these orbits and so would yield the corresponding matrices
of the nonprimitive pair (n1, m1) as well. Since all prim-
itive orbits are still determined correctly, we can simply
eliminate the nonprimitive ones by hand. Nonprimitive con-
tributions for n � 150 appear very rarely. They only occur
for

n = 4 : (n1, m1) = (1, 2), (C38)

n = 17 : (n1, m1) = (1, 3), (C39)
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n = 24 : (n1, m1) = (2, 2), (C40)

n = 60 : (n1, m1) = (3, 2), (C41)

n = 80 : (n1, m1) = (1, 4), (C42)

n = 140 : (n1, m1) = (5, 2). (C43)

The values of d0(n) in Table IV have been corrected for the
nonprimitive orbits and thus solely count the primitive contri-
butions.
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