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One-dimensional particle chains are fundamental models to explain anomalous thermal conduction in low-
dimensional solids such as nanotubes and nanowires. In these systems the thermal energy is carried by phonons,
1.e., propagating lattice oscillations that interact via nonlinear resonance. The average energy transfer between
the phonons can be described by the wave kinetic equation, derived directly from the microscopic dynamics.
Here we use the spatially nonhomogeneous wave kinetic equation of the prototypical S-Fermi-Pasta-Ulam-
Tsingou model, to study thermal conduction in one-dimensional particle chains on a mesoscale description. By
means of numerical simulations, we study two complementary aspects of thermal conduction: in the presence
of thermostats setting different temperatures at the two ends and propagation of a temperature perturbation over
an equilibrium background. Our main findings are as follows. (i) The anomalous scaling of the conductivity
with the system size, in close agreement with the known results from the microscopic dynamics, is due to
a nontrivial interplay between high and low wave numbers. (ii) The high-wave-number phonons relax to local
thermodynamic equilibrium transporting energy diffusively, in the manner of Fourier. (iii) The low-wave-number
phonons are nearly noninteracting and transfer energy ballistically. These results present perspectives for the

applicability of the full nonhomogeneous wave kinetic equation to study thermal propagation.

DOI: 10.1103/PhysRevE.106.034110

I. INTRODUCTION

That heat conduction in three-dimensional macroscopic
solids is described effectively by Fourier’s law has been
known for two centuries [1]. This law establishes the existence
of a size-independent property of the material, the heat con-
ductivity IC, as a finite proportionality constant between the
heat flux and its driving thermodynamic force, the temperature
gradient [2]. In low-dimensional solids this proportionality
may break down and size-dependent conduction effects arise.
One-dimensional (1D) particle chains characterized by har-
monic potential have a conductivity proportional to the chain
length L, that is, KC oc L! [3]. The lattice excitations propagate
unperturbed as noninteracting wave packets; this implies the
absence of relaxation. Therefore, energy is transported by
advection (or ballistically [4]), rather than by diffusion as
prescribed by Fourier’s law. Intermediate behaviors in which
IC o LY, with 0 < o < 1, are observed both in numerical
simulations of more realistic particle chains [5,6] and in exper-
iments involving nearly 1D systems such as carbon nanotubes
and silicon nanowires [7—12]. This type of transport, which is
neither diffusive nor ballistic, is referred to as anomalous and
its investigation, motivated by the relevance of the widespread
technological applications, has generated a large body of lit-
erature in the past two decades [13].
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A minimal model displaying anomalous transport is the
Fermi-Pasta-Ulam-Tsingou (FPUT) chain [14,15], in which
a cubic (a-FPUT) or quartic (8-FPUT) anharmonic term is
added to the harmonic potential. Physically, this term repre-
sents the lowest-order nonlinear correction to the linearized
harmonic system, in a power-law expansion of the poten-
tial around the equilibrium point. Weak nonlinearity plays a
crucial role in the derivation of the so-called phonon Boltz-
mann equation, or wave kinetic equation (WKE) [16-20].
The WKE is the statistical closure of the deterministic equa-
tions of motion, for the spectral action density n(k,t), i.e.,
the second moment of the random wavefield in Fourier space;
n(k,t) is related to the spectral energy density e(k) via
e(k) = w(k)n(k), where w(k) is the linear dispersion relation.
The WKE contains the statistical description of the action
or energy transfers between the various wave modes. These
transfers are mediated by the collision integral, which in-
corporates the nonlinear terms in the WKE as wave-wave
resonant interactions between the eigenstates of the harmonic
chain, i.e., the linear waves. The timescales of the resonant
transfers, the kinetic timescales, are much longer than the
linear timescale of wave propagation, where the scale sep-
aration is tied to the smallness of the nonlinearity. For the
B-FPUT chain. in the thermodynamic limit (large system),
the quartic term in the potential yields a collision integral en-
coding four-wave resonant interactions [21-23] that exchange
energy between quartets of wave modes and ultimately lead to
relaxation over the Kinetic timescales [24].

©2022 American Physical Society
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A kinetic interpretation of the numerically observed
anomalous exponent & 2~ 0.4 [25] in the B-FPUT system was
proposed in [26] and given rigorous justification in [27,28].
The result is based on the relaxation-time approximation of
the collision integral for the acoustic modes, as k — 0, and
on a subsequent heuristic cutoff applied to the linear-response
Kubo integration of the correlation function [5]. In [29] an
analogous asymptotic result was exploited to identify a critical
scale k. determining a separation between two sets of modes:
Those with |k| < k. essentially behave as ballistic modes in a
harmonic chain, as they lack a sufficient level of interaction,
and the modes with |k| > k. are diffusive and relax locally to
the expected Fourier profile. In this interpretation, the anoma-
lous exponent is due to how the separation between the two
sets scales with the chain length, given by a certain function
k.(L). Rather than from an anomalous type of diffusion (such
as fractionary diffusion), the anomalous transport properties
thus arise from the coexistence of regular diffusion and ad-
vective effects that persist on macroscopic scales due to the
properties of the collision integral.

Here we go beyond the asymptotic result for the acoustic
modes and fully exploit the mesoscopic picture, by direct nu-
merical integration in time of the spatially nonhomogeneous
WKE associated with the S-FPUT model. We show that the
first-principles description of the WKE is able to reproduce
accurately the anomalous transport properties observed in the
direct numerical simulations of the microscopic dynamics
[13]. We also confirm results previously conjectured on the
separation between ballistic modes and diffusive modes [29]
and characterize the respective transport coefficients. Finally,
we exploit the higher-level and computationally much cheaper
picture of the WKE to investigate in detail the local relaxation
properties of the different modes.

II. MODEL

To simulate thermal energy transfers through a one-
dimensional particle chain, we solve the following space-
dependent WKE, written in nondimensional form (see the
Appendix for its nondimensionalization), associated with the
B-FPUT model in the thermodynamic limit [24], for the spec-
tral action density ny = n(x, k, t) [19,30-32]:

ank 8nk

o tue =I. (1)
We denote by x € [0, L], k € [0, 27), and ¢ > O the (macro-
scopic) physical space, the Fourier space, and the time
variables, respectively. The second term on the left-hand side
of (1) represents the advection of n; due to spatial inho-
mogeneities, where w; = 2sin(k/2) is the linear dispersion
relation and vy = dwy/dk = cos(k/2) is the group velocity;
the right-hand side of (1) is the four-wave collision integral
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where the arguments of the Dirac § functions are defined
as AK=k+ky —ky—kz and AQ = wy + w; — wy — w3,

|Tk123|2 = wrwiwrw3/16 is the matrix element associated
with the 8-FPUT model [28,33], and v is a nondimensional
parameter that weights the collision integral defined as

B*h -

V= nggrz, 3)
where T is the mean temperature of the chain, kg is the
Boltzmann constant, A a typical macroscopic scale, a is the
equilibrium interparticle distance, and x and g are the co-
efficients of the quadratic (Hooke’s law) and quartic terms
of the interparticle potential in the microscopic description,
respectively.

The integration of (2) has only one degree of freedom,
since the resonance conditions imposed by the & functions
constrain the integration to the so-called resonant manifold,
i.e., the subset of possible combinations of &, k;, and k3 that
are in resonance with mode k, representing all the resonant
wave quartets. We provide an explicit expression of this one-
dimensional integration in the Appendix.

The resonant interactions contained in the collision integral
represent the mechanism responsible for the local (i.e., at fixed
x) relaxation to the equilibrium distribution of n; which, given
the two conserved quantities of (1), is given by the Rayleigh-
Jeans (RJ) solution

n) = r )
W+ [

Here T plays the role of a nondimensional temperature of the
system and p of the chemical potential; these quantities are
associated with the conservation of the harmonic energy and
of the action (or number of particles), respectively. The spatial
energy density profile can be computed by multiplying n; by
wy and integrating in k:

2
e(x,t):/ win(x, k, t)dk. )
0

To avoid confusion, we recall that due to the discreteness of
the physical space the Fourier space is periodic and therefore
the modes in the interval [, 277) can be equivalently inter-
preted as in [—r, 0). For this reason, hereafter we refer to the
modes near 0 or 27r as the low wave numbers and to the modes
near 7 as the high wave numbers.

III. RESULTS

In what follows we discuss results achieved from two types
of numerical simulations of the nonhomogeneous wave ki-
netic equation: Case A corresponds to the classical problem of
a chain in between two thermostats at different temperatures
and case B corresponds to the free evolution of an initial
energy density narrow Gaussian profile in x. The latter is the
typical experiment used to assess the diffusive (or nondiffu-
sive) properties of the system.

A. Anomalous conduction

To demonstrate numerically anomalous conduction, we
consider a domain of size L with two thermostats at its ends
at different temperatures 77 and 7,. For normal conduction,
at the steady state one expects a linear temperature 7' profile
(Fourier’s law) and the conductivity /C to be independent of
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FIG. 1. (a) Thermal conductivity K as a function of nondimensional time for several values of L and (b) steady-state thermal conductivity
K as a function of L. For small L most of the modes are noninteracting and the ballistic scaling K oc L! is recovered. For larger L we observe
excellent asymptotic agreement with the scaling K oc L%*. The inset in (b) shows the thermal conductivity K in (a) normalized by L%* as a

function of nondimensional time.

the size of the domain L. By defining the net spectral energy
current as

Jjlk,x,t) = opvg[nk, x,t) — n(—k, x,1)]/2, (6)

the conductivity can be computed as

JL
K=ar @
with
1 L 2
J= _/ / jk, x, t)dk dx (8)
LJy Jo

the spatial average of the integral of j(k,x,7) and AT =T, —
T, the temperature difference between the two thermostats.
The term AT /L represents the mean temperature gradient and
one can recognize the definition of IC as given by Fourier’s
law. Note that, at the steady state, the energy current is inde-
pendent of x.

In Fig. 1(a) we show the time history of the conductivity
for several values of the domain size L, keeping AT fixed.
The initial (r = 0) distribution is set to be a RJ distribu-
tion at the average temperature between the two thermostats;
subsequently, there is an initial transient during which the
energy flux starts growing (and consequently also K), until
a stationary state is reached. Note that time is scaled with the
reference time L/V, with V = v;—o = 1 the maximal ballistic
velocity. In Fig. 1(b) we show the measured conductivity as a
function of the domain size L. The results clearly indicate that
for small L the stationary value of the conductivity tends to be
proportional to L, as in the purely harmonic system. In con-
trast, for L — oo the exponent « tends to the constant value
of 0.4, consistent with the value measured in the microscopic
simulations [25]. In the inset of the figure, the time history of
the conductivity K divided by L%* is drawn to highlight that
for large values of L the curves overlap.

Via integration of the deterministic microscopic equations,
arecent work [29] provided evidence that the collision integral

Ty brings the system to local equilibrium down to a critical
k., whereas for lower k advection is predominant and waves
travel in the domain transported by the group velocity vy
interacting too weakly to relax locally to a RJ spectrum. Here
we observe this clearly by looking at the evolution of the
colormap of the temperature in Fig. 2, where the temperature
spectral density T (x, k, t) = (wr + pu)n(x, k, t) is defined by
inverting (4), using the fact that p is constant throughout the
evolution. Note that for k < 7 the velocity vy is positive, while
it is negative for k > . The initial condition at r =0 is a
homogeneous field, with n(x, k,t = 0) = n,(cRJ) at temperature
(Ty + T»)/2. Due to the presence of the thermostats, as ¢ > 0
the waves going to the right start to propagate a hot front
from the left thermostat, while the waves going to the left start
propagating a cold front from the right thermostat. The edge
of the front propagates at the maximal speed allowed, which is
the speed of the acoustic modes v(k — 0*)=+1.ForL =1,
the energy flows in a ballistic way for almost the entire domain
and the collision integral is not strong enough to bring the
system to local equilibrium. As a result, at large times and at
any fixed point x, the right-going waves are at temperature 7}
and the left-going waves are at temperature 75, far from local
equipartition. For larger system size L = 10 instead, advection
is predominant only in a small range of k, with the remaining
part of the domain dominated by diffusion: In this region, at
large time and at any fixed point x, the energetic content of
the left- and right-going waves is equipartitioned and there
is a constant smooth temperature gradient between the two
thermostats. This is reflected in the profile in k of the spatial
integral of the spectral energy current (j), = % fx jk, x)dx,
once a steady state is reached [see Fig. 3(a)]. For modes
with small k, (j), is independent of the system size since
the behavior is purely ballistic [3]. For modes with large k
the energy current flattens as L increases, accompanied by a
reduction of the peak value. In particular, Fig. 3(b) shows how
for these modes the energy current is inversely proportional to
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FIG. 2. Colormap of T'(x, k,t) = (w; + p)n(x, k,t) for L =1 (top row) and L = 10 (bottom row). Color ranges from 7, (white) to T}
(red). For t > 0, two fronts start propagating the temperature of the thermostats, perturbing the initial homogeneous state. The modes in [0, 7]
propagate to the right (v, > 0) and the modes in [7, 277 ] propagate to the left (v, < 0). The top panels depict a predominantly ballistic situation
also at the stationary state (rightmost panel), since L is not sufficiently large for most of the modes to interact. For the larger system in the
bottom panels, once a steady state is reached the diffusive modes (around k = ) have equipartitioned at fixed x and are accompanied by a
k-independent constant gradient between the two thermostats. On the other hand, the ballistic modes (around k = 0 and k = 2x) carry the
energy density of their originating thermostat all the way to the opposite side without interactions with other modes. Here we observe that the
width of the ballistic region becomes thinner as L increases (see Fig. 4).

the chain length L, as one would expect from Fourier’s law, that at equilibrium the transport term and the collision integral
i.e., (7) when KC does not depend on L. There should then should balance and using dimensional arguments, one can find
be a critical value k. above which the evolution of the en-  that k. &~ L=3/10 [29]. Note that this estimation relies on an
ergy is diffusion dominated and below which the predominant ~ asymptotic approximation of the collision integral for small
transport mechanism is the purely ballistic one. Considering k&, since the lack of scale invariance in the operator (2) does
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FIG. 3. (a) Energy current (j), as a function of k for different domain sizes, once a steady state has been reached. While for the high wave
numbers the energy current contribution decreases as L increases, the low-wave-number contribution is independent of L, in agreement with
ballistic behavior. In the inset, one can appreciate this invariance as k — 0. (b) Energy current (j), multiplied by the size of the domain L.
Now the renormalized curves tend to converge onto each other independently of L for the high wave numbers. This behavior is in agreement
with Fourier’s law [see (7)] prescribing inverse proportionality between energy current and system size.
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FIG. 4. Scaling of k(max(j),) [defined as the point of maximum
in Fig. 3(a)] as a function of L. The observed scaling is consistent
with L3, which implies an anomalous exponent o = 0.4.

not allow one to find simpler solutions as in [34]. A scaling
consistent with the estimation in [29] can be found, in our
simulations, for the value of k for which (), is maximal, as
shown in Fig. 4, suggesting that this criterion could be used as
a proxy for the determination of k.(L) to distinguish between
diffusive and ballistic modes.

B. Ballistic and diffusive propagation

In nonequilibrium statistical physics, the transport coef-
ficients characterizing nonequilibrium steady states that are
not too far from equilibrium can be computed in terms of
space-time correlations in an equilibrium ensemble of re-
alizations of the microscopic dynamics [2,5,27,35,36], via
the so-called Kubo integral. Likewise, for the mesoscopic
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model of (1), let us now consider an initial background
equilibrium state with constant 7 = T and chemical poten-
tial w. Let us then consider an initial narrow bell-shaped
perturbation 87 (x) in the center of the domain such that
8T « Ty. We initialize n(x, k, t = 0) with a RJ distribution
[see (4)] with T(x) = Ty + 6T (x), in a domain going from
—LtoL.

The evolution of (n),(x,t) = fozn n(x, k, t)dk is shown in
Fig. 5, where we consider a perturbation having an initial
amplitude of §T (x = 0)/Tp = 0.1. One can recognize the fa-
miliar behavior of a central peak (heat peak) and two traveling
peaks (acoustic peaks) which correspond to the emission of
the second sound. This configuration has been studied using
microscopic dynamics [5,35] and the stochastic model known
as fluctuating hydrodynamics [36]. For ¢ > 0, two peaks
separate and propagate in opposite directions with constant
velocity about £1; the central peak instead evolves diffusively
in time [Fig. 5(a)]. This is clearly visible by looking at the
time evolution of the variance of the distribution, computed as
follows:

[ n(k, x, D (k)x*dx dk

= otk % Dotodxdk ©)

2

Indeed, as shown in Fig. 5(b), after the acoustic peaks exit the
domain (at about 1} /L = 1) and the central peak is left alone,
the variance starts to grow linearly in time. The time evolution
of the central peak follows regular diffusion, with the diffusion
coefficient given by half the slope of the asymptote on the
right-hand side of Fig. 5(b). This particular result may seem
controversial in the face of notable results advocating for a
heat peak that follows fractional diffusion (of superdiffusive
type). We address this further in Sec. IV.

We can therefore identify the second sound emission with
the nondecaying transport of the ballistic modes and the heat
peak with the regular diffusion of the modes that thermal-
ize locally. Further confirmation of this is found in Fig. 6,
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FIG. 5. (a) Spatial distribution of (n);(x, ¢) (integrated in k) at different times. An initial spatially localized perturbation over a uniform
background propagates as two ballistic peaks moving in opposite directions at constant velocity and a central decaying peak. (b) Time history
of the variance of the temperature distribution. After the ballistic peaks exit the system, the broadening of the central peak (also known as the

heat peak) shows agreement with diffusive behavior.
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FIG. 6. Heat peak evolution as predicted by WKE (-) and pure diffusion (- -) for (a) #1V/L = 0.6, (b) tV/L = 1.0, and (c) tV/L = 2.0.

where we plot the time evolution of the small initial Gaussian
perturbation on a homogeneous background and we show
that the numerical simulation of the WKE follows closely a
diffusive solution with diffusion coefficients around 0.24 for
this condition. Thus, we can simply refer to the heat and the
acoustic peaks as the diffusive and the ballistic (or second
sound) peaks, respectively, without ambiguity. Figure 7 shows
the energy density e(x, k, ¢) at various times of the evolution
of the perturbation. The low modes, with k & 0 and k ~ 27,
are the ones with the highest ballistic velocity. Hence, they
will leave the domain in a timescale of the order of L/V.
For longer times, the higher modes start to diffuse due to
the collision integral and the distribution will start to follow
a diffusive evolution.

IV. DISCUSSION

Our direct numerical simulation of the WKE shows that
two phononic states coexist in the §-FPUT chain. The first,
involving the low modes, is equivalent to the emission of
second sound; the second, involving the higher modes, is
purely diffusive. This has been analyzed from the following
different points of view.

(i) The anomalous scaling of the energy conductivity /C o
L%, with « ~ 0.4, was confirmed in Fig. 1. This is due to the
scaling k.(L) of the separation between the ballistic modes
(low wave numbers) and the diffusive modes (high wave

(a) (b)

27

—1 0 1
x/L

—1 0 1
/L

numbers), individually contributing towardse¢ = 1 and o = 0,
respectively. We found that k. varies consistently with L by the
scaling k.(L) o< L=3/19, as shown in Fig. 4.

(i1) The spatial integral of the spectral energy current modal
density (j).(k) is independent of L for the low modes, as
predicted for the purely harmonic chain [3], while it is pro-
portional to L~! for the higher modes, in agreement with
Fourier’s law. This was shown in Fig. 3.

(iii) A complementary way to analyze energy transport is to
look at the evolution of a small localized perturbation of the
thermal equilibrium condition. By doing that, we confirmed
the presence of two acoustic peaks shooting off in opposite
directions and a central heat peak [Fig. 5(a)] evolving in
agreement with standard Fourier diffusion, as confirmed in
Figs. 5(b) and 6(a)-6(c).

(iv) The existence of two types of heat transfer, ballistic
and diffusive, was cleanly demonstrated in Figs. 2 and 7. In
Fig. 2 the qualitative difference between these two types is
most evident near the stationary nonequilibrium state, where
the horizontal separation between the two different regions
gives an intuitive visualization of k.. Finally, in Fig. 7 we
saw an x-k representation of the evolution of a perturbed
equilibrium state. Again, the sharp separation wave number
k. could be observed by eye. Not surprisingly, we discovered
that the acoustic peaks are made exclusively of noninteracting
ballistic modes with low wave number, while the heat peak is
made exclusively of modes with high wave number.

(c) ()

N}
=

—1 0 1
x/L

—1 0 1
x/L

FIG. 7. Colormap of e(x, k, t) = wyn(x, k, t) at four nondimensional time instants: (a) tV/L =0, (b) tV/L = 0.2, (c) tV/L = 1.0, and
(d) tV/L = 2.0. The second sound emission is clearly seen in the central maps where perturbations at k >~ 0 and k ~ 27 (the low modes) are
detaching from the central diffusive peak involving the high modes. The interacting and diffusive character of these modes is evident from the
fact that the shape of the central peak remains close to a rectangle during the evolution, tending to populate all modes k& with the same energy

density at fixed position x.
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Although the separation of scales at k. observed in the x-k
plots was slightly smeared, the two-state ballistic-diffusive
picture analyzed above under these four different angles is
robust and does not include superdiffusive propagation with
fractionary exponents. A fractionary diffusion equation with
space derivative of order % instead of 2 is an alternative
explanation compatible with the conductivity scaling K o
L*3, rigorously derived in [37]. However, this scaling would
predict the propagation of a single peak that does not find
correspondence in our observations. The apparent disagree-
ment may have different origins. For example, the assumption
of having only two conserved quantities (energy and action)
made in [37] is partially violated by the ballistic modes, which
effectively preserve momentum and whose propagation is not
a part of the heat peak. Although we have assessed overall
compatibility of the heat peak evolution with diffusive be-
havior, providing a definitive study of this issue is not the
aim of the present paper. In close analogy with second sound
propagation in superfluids [38], our results show that if the
ballistic phonons are recognized as noninteracting traveling
waves [29,39,40], the two-state ballistic-diffusive picture is
compatible with the main observable aspects of energy trans-
port.

One important aspect to stress is the computational and
practical convenience of the wave kinetic equation. When
studying the system on a microscopic level (i.e., solving the
bare equations of motion of B-FPUT chains) it is necessary
to perform simulations for a large number of different initial
conditions to get converged ensemble statistics. In contrast,
the simulation of the wave kinetic equation allows one to
directly obtain results for the deterministic average spectral
density, on a mesoscopic scale.

Finally, it is worth noting that second sound in dielectric
solids was predicted a long time ago [41-43] and later ob-
served, for instance, in solid *He and *He below 4 K and
in NaF below 20 K, at extremely low temperature. In a di-
electric crystal, second sound can be observed when umklapp
resonances are very small, and by lowering the temperature
enough, the scattering level is reduced to a point where nonin-
teracting wavelike transport becomes visible on macroscopic
scales. It is now well known that reducing the dimensionality
of the material is another way to reduce drastically the number
of interactions, in part explaining why it was recently possible
to observe second sound propagation in 2D graphite at tem-
peratures above 100 K [44,45]. Our results further indicate
that reducing the dimensionality to (quasi-)1D structures such
as nanotubes may allow for the possibility to finally observe
second sound propagation at room temperature.
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APPENDIX

1. Physical dimensions

We refer to the Hamiltonian equations for the g-FPUT
chain derived in [33]. The Hamiltonian of the microscopic
system in dimensional form is given by

N—1
1 X B
H= ; (ﬁpi +350 - qj-1)° + 7~ 61j1)4),
(AD)

where the g; and p; variables are the positions (more pre-
cisely, the displacements from the equilibrium positions) and
momenta. The angular frequency and phase velocity are given
in dimensional form by

. [x . (ak o dd [x ak
o =2, /=sin|{— ), Uyr=-—=a,/—cos|—],
m 2 dk m 2
(A2)
respectively, where we use tildes to indicate dimensional vari-

ables. The WKE associated with the Hamiltonian in Eq. (A1)
is

o7y, o7y, -
— 4+ U— =TI, A3
of | Tax T (&3)
where
2 2 B 1
Iy =4mr—; | Tirs |2 igig, Tig, ik, (T +—
N Nk,
1 1 . e e~
— — — 2 \SARS(AD) IR dRodls,  (A)
nk2 nk3
with
T3 |? = L5 a1 @2@3. (AS)

Let us introduce the following dimensionless variables (de-
noted without a tilde):

1_ 1 [m_ a |x.
X=—-X, Vg=—[—V, t=—.]—1,
A a\ AV m
1 X . m _ -
ny = = — Ny, Wy = — Wk, k = ak. (A6)
kgTa\ m X

Plugging these nondimensional variables in Egs. (A3)—(AS),
we obtain Egs. (1)—(3), now in a nondimensional form.

2. Integration on the resonant manifold

In (2), the equality coming from the momentum Dirac §
has to be interpreted as mod/, I = [0, 27), to include possible
umklapp resonances. The resonant manifold is the subset of
I x I x I x I satisfying at the same time the two conditions

k3 = (k + ki1 — ky)modl.
(A7)

wy + wy, — wy, — wi, =0,

The constraint imposed by integration on the resonant man-
ifold reduces the triple integral of (2) to a one-dimensional
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integral. Here we briefly report some important rigorous re-
sults from Ref. [28] (see also [26,35]). The solutions of the
collisional constraints (A7) are of three types (i) k; = k3 and
ky = ky, (i1) k; = k4 and ky = k3, and (iii) k, = h(k, k3)modI,
where

h(x,y) = T + 2 arcsin (tan |y+x| cos #) (A8)

The first two types (perturbative solutions) are trivial res-
onances that contribute to nonlinear frequency shift and
broadening [24]. The third type of solutions (nonperturbative)
represents nontrivial resonances that are responsible for irre-
versible spectral transfers. By integrating analytically in k3,
the collision integral of (2) can be written as

2
A=/ dkidioglk, ki, k)8Q ki, k), (A9)
0

with

2
8k, k1, k2) = 47| Tie by ko ks o | 770000 Pty P ey —

( 1 1 1 1 )
x(—+—-—-——)
ny ng, N, Ntk —ky

Qk, ki, k) = wp + o, — ©p, — Ok —k, - (A10)

In order to integrate out the frequency 8, we exploit the fol-
lowing property of the Dirac § function:

/dx G(x)8(f(x)) = /de( )Z ‘S'(;, o (A11)

Here x7 are all the zeros of f. In (A9), integrating in the
variable ki, we know that all of the zeros of Q = 2[sin(k/2) +
sin(k;/2) — sin(kp /2) — sin(|lk + k1 — kz|/2)] are of one of
the three types above. The trivial solutions give Q'(k;) =0
identically, which implies singular denominators. However,,
as discussed in Ref. [28], these terms come in pairs of opposite
sign [this can be seen easily looking at the symmetries of
the integrand of (2)], which cancel each other and do not
contribute. Therefore, the nonvanishing contributions come
from the nontrivial resonances and we obtain

2 e 8(ky — h(k, k
@=/zm/dmwnm (s = 1k, ka))
0 0

|0k, S2(k, h(k, k2), k2)|
2
= f dky
0 \/(

g8k, h(k, ky), ko)

(A12)

cos— +cosk22) +4sm—sm%

3. Numerical details

Equation (1) is solved by finite-difference approximation in
time and space, using the expression of Z; given in (A12). In
all simulations, we used 100 grid points in x and 1001 points
in k; the chemical potential is set to . = 0.05. Without loss of
generality, for the purpose of our work we have set v = 1. The
adopted discretization guarantees the conservation of energy
and wave action. In case A of Sec. III we used 77 = 0.4 and
T, = 0.2. In case B of Sec. III we used Ty = 0.3 and 6T (x =
0)/Tp = 0.1.
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