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Site percolation in a distorted simple cubic lattice is characterized numerically employing the Newman-Ziff
algorithm. Distortion is administered in the lattice by systematically and randomly dislocating its sites from their
regular positions. The amount of distortion is tunable by a parameter called the distortion parameter. In this
model, two occupied neighboring sites are considered connected only if the distance between them is less than
a predefined value called the connection threshold. It is observed that the percolation threshold always increases
with distortion if the connection threshold is equal to or greater than the lattice constant of the regular lattice.
On the other hand, if the connection threshold is less than the lattice constant, the percolation threshold first
decreases and then increases steadily as distortion is increased. It is shown that the variation of the percolation
threshold can be well explained by the change in the fraction of occupied bonds with distortion. The values of
the relevant critical exponents of the transition strongly indicate that percolation in regular and distorted simple
cubic lattices belong to the same universality class. It is also demonstrated that this model is intrinsically distinct

from the site-bond percolation model.
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I. INTRODUCTION

Percolation is a fundamental model of statistical physics
introduced in 1957 [1]. It is perhaps the simplest model to
exhibit a nontrivial and rich critical behavior [2]. Its appealing
features have been continuously attracting researchers since
its inception. Not surprisingly, therefore, the research in per-
colation has flourished in exploring its potential applications
in many fields [3—15]. At the same time, the model has given
ample opportunities to theorists and mathematicians to ad-
dress fundamental questions and resolve elusive challenges
[16].

Two basic variants of this model are site percolation and
bond percolation. In a classic site (bond) percolation problem,
the sites (bonds) of a lattice can either be empty or occupied.
Initially, a lattice with all empty sites (bonds) is considered,
and the sites (bonds) are then occupied one by one with a
probability p, called the occupation probability. If two neigh-
boring sites (bonds) are occupied, they are said to be linked
to each other. All these linked sites (bonds) form a cluster.
For low p, many clusters of small size exist in the lattice. The
clusters grow larger as p increases, and at a sufficiently high
occupation probability, a giant cluster spans the lattice. For
an infinitely large lattice, the spatial extent of the spanning
cluster is also infinite. The first occurrence of such a cluster
marks a phase transition, and the corresponding occupation
probability is called the percolation threshold p.. There is also
another model called site-bond percolation [17,18], in which
both the sites and bonds are considered together and occupied
independently to achieve spanning. Apart from these basic
models, there exist numerous other models in literature such
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as directed percolation [1,13], bootstrap percolation [19], ex-
plosive percolation [20,21], first passage percolation [22], and
many more. The value of the percolation threshold depends on
the type of the lattice (or network), as well as on the predefined
rules of the process.

Physicists are generally more interested in characterizing
phase transitions by determining relevant critical exponents.
It is often observed that the different variants of percolation
share almost the same values for the critical exponents, de-
spite having very different percolation thresholds [23-26].
These models are then said to belong to the same universality
class. Although these results indicate that the values of the
exponents depend primarily on the dimension of the lattice,
there are instances of nonuniversality, too, in two dimensions
[27,28].

Natural systems are hardly perfectly ordered ones. There-
fore studying the percolation properties of regular lattices
leaves a gap between ideal and real situations. To incorporate
natural irregularities, a new percolation model in a distorted
square lattice was proposed [29]. In that model the sites of
a regular lattice are systematically but randomly dislocated
from their original positions in a regular lattice. The nearest-
neighboring sites are connected only if their distance is less
than a predefined value, called the connection threshold. It
was found that spanning becomes difficult with distortion, and
spanning is not possible even with 100% sites occupied if the
connection threshold is less than the lattice constant of the
regular lattice.

In this work we extend this model for a simple cubic lattice
(SCL) with distortion. The simulations are performed with
the Newman-Ziff algorithm [30,31], which is more powerful
in characterizing the critical behavior of the percolation tran-
sition. It is observed that when the connection threshold is
set equal to or greater than the lattice constant of the regular
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FIG. 1. (a) A realization of a 5 x 5 distorted SCL. This lattice has been constructed from a regular lattice of unit lattice constant by
dislocating the sites following o = 0.05. The viewing angle has been adjusted so that each row can be identified. (b) Magnified view of a pair
of nearest neighbors in a distorted lattice. Each of them may be dislocated within a cube of length 2« centered at the regular lattice positions.
The distance between these two centers is 1, while the distance between the sites is &, which lies in the range §,, < § < dy.

lattice, the percolation threshold of a distorted SCL increases
with distortion. This behavior is similar to that of the distorted
square lattice. However, when the connection threshold is
less than the lattice constant, the percolation threshold first
decreases and then increases with distortion. This is the most
striking difference with the distorted square lattice, for which
no spanning is possible if the connection threshold is less than
the lattice constant. The similarity in the values of the critical
exponents strongly suggests that the percolation in regular and
distorted SCLs belong to the same universality class. We also
demonstrate that percolation in distorted lattices cannot be
thought of as another manifestation of site-bond percolation;
these two models are distinct.

The paper is organized as follows: In Secs. IT A and II B,
we describe the method of generating the distorted SCL and
the process of cluster building, respectively, in our model.
Section III illustrates the central result of this paper—the im-
pact of distortion on the percolation threshold p.. In Sec. IIT A
we calculate p. of a finite lattice and show how it varies with
the distortion parameter and the connection threshold. This is
followed by the determination of an estimate of the percola-
tion threshold of an infinite lattice p2° for some combinations
of these two parameters (Sec. III B). Next we characterize the
percolation transition by determining the critical exponents in
Sec. IV and conclude that percolation in distorted and regular
SCLs belong to the same universality class. Finally, in Sec. V
we demonstrate that the present model is distinct from the
site-bond percolation model before summarizing our findings.

II. THE MODEL

A. Generation of a distorted simple cubic lattice

In this model, site percolation is studied for a collection
of sites arranged in a fashion that is nearly but not exactly
an SCL. We call this a distorted simple cubic lattice. The
lattice is distorted, because the positions of the sites are not
in general on the regular lattice points but are slightly dislo-
cated. Although the amount and direction of these dislocations
are random and independent for each lattice point, control
over the distortion has been enabled through the distortion

parameter «. The process of generating such a lattice is ex-
plained below.

To begin with, a regular SCL of sites with lattice constant 1
is considered. A small cube of length 2« is considered around
each site, keeping the site at the center of the cube. A given
site is then dislocated to any position randomly within this
small cube. This mechanism of shifting the positions of the
sites is ensured by the following process. For each lattice point
three separate random numbers, 7y, ry, and r;, each within the
range {—o, o}, are generated for the shift of locations along
x,y, and z directions, respectively. Each site is then shifted
accordingly so that the regular lattice position (x, y, z) of a site
changes to (x + ry, y + 7y, 7 + 7). A distorted SCL is thereby
realized. The amount of distortion can therefore be tuned by
the parameter .

Natural systems almost always have imperfections in
their lattice structures. The idealized treatment of regular
site percolation is therefore incomplete. The purpose of this
study is to investigate the impact of these imperfections on
percolation, and the focus is therefore at low to moderate
distortion (o < 0.4). Larger values of « would lead to almost
a randomized array that falls outside the zone of interest of
this work.

Figure 1(a) shows a schematic representation of a small
distorted SCL. Note that the distance § between a pair of
nearest-neighbor sites is not a constant. As shown in Fig. 1(b),
this distance may vary within the range §,, < § < 8y, where

8m=1—201, (])

and

Sy =+v1+4o + 12a2. 2)

The variation of the nearest-neighbor distance ¢ is a key factor
in the cluster building process, which is explained next.

B. Cluster building process

In usual percolation, if two neighboring sites of a regular
SCL are occupied, they are automatically directly linked and
are always considered to be in the same cluster. In contrast,
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this is not guaranteed in a distorted SCL, since the distances
between the nearest-neighbor pairs are not the same anymore.
The connection criterion for two occupied neighbors is set by
introducing a connection threshold d. A direct link between
two occupied neighboring sites exists only if they are close
enough to ensure § < d. Otherwise, the connection is broken
even if both of them are occupied. Two limiting cases can
readily be visualized from this criterion—if d < §,,, no cluster
formation is possible, and if d > 8y, the usual site-percolation
scenario is restored. Therefore the relevant ranges for § and d
are the same.

In this work, cluster numbering and identification have
been done by the elegant Newman-Ziff (NZ) algorithm, which
is known to give faster and more precise results as compared
to other algorithms.

III. EFFECT OF DISTORTION ON THE
PERCOLATION THRESHOLD

One of the major goals of this study is to observe how the
percolation threshold p. of an SCL is affected by distortion.
It is anticipated that p. should depend on the distortion pa-
rameter « as well as the connection threshold d. To determine
pe(a, d), a distorted lattice with a given « needs to be gen-
erated, and a connection threshold d needs to be set a priori.
To demonstrate the variation of the percolation threshold with
distortion, numerous combinations of o and d must be taken
into account, and p.(«,d) must be calculated for each of
them.

All the existing rigorous and detailed methods to calculate
a precise value for the percolation threshold p¢° of an infi-
nite lattice require a significant amount of computation time
(see, for example, [26,32,33]). It is therefore impractical to
go through one of these procedures to determine p2° for a
large number of combinations of « and d. As a possible way
out, we calculate p, for a finite distorted SCL using the NZ
algorithm. This enables us to show the variation of the perco-
lation threshold in distorted SCLs with much less difficulty.
Later, p>°(«, d) for some of the combinations of « and d
have been calculated. It has been revealed that these values
are satisfactorily close enough to the corresponding estimates.
We reiterate that the goal of this study is not to calculate very
precise percolation thresholds up to several decimal places but
to understand the impact of o and d on p.. This simple and
quick estimation could therefore be very useful in gathering
basic information of many other systems as well, before going
for a detailed and rigorous method to obtain precise results for
an infinite lattice.

A. Determination of p (o, d) for a finite lattice

First, a distorted SCL is generated with a fixed value of «.
As explained earlier, the distances § between the neighboring
sites are not fixed anymore. A connection threshold d is then
set to determine whether a given pair of occupied neighbors
should be considered as directly connected (when § < d) or
not (when § > d). Starting with an empty distorted SCL, the
following sequence of steps is executed. These operations
follow the basic structure of the NZ algorithm:

(1) Each site is marked with a specific number and its
position is recorded.

(2) A randomized list is prepared to fix the order in which
the sites are going to be occupied.

(3) The sites are then occupied one by one as per the
prepared list.

(4) After occupying each site, the existence of links be-
tween occupied nearest neighbors is tested concerning the
connection threshold d previously set. The cluster structure
and root pointing are also examined and adjusted accordingly.
(See Ref. [31] for the details of the NZ algorithm.)

(5) A checking is performed to detect the existence of a
spanning cluster connecting two opposite sides of the lattice.

(6) If a spanning cluster is not found, the next site of the
list is occupied and the last two steps are repeated.

(7) If a spanning cluster is found, no further sites are occu-
pied and the occupation probability (the number of currently
occupied sites divided by the total number of sites) is noted.

The above scheme is repeated for several independent
realizations of the distorted SCL with the same « and
keeping the same d for the connection criterion. The occupa-
tion probability p for which the spanning cluster first appears
is recorded for each of the realizations. After averaging over
all the recorded values of p, an estimated value of p. is
obtained for a fixed set of values of @ and d. Since this method
involves considerably less computation time, we could esti-
mate p. for nearly a thousand combinations of « and d. The
calculations are done for distorted SCLs having L = 27 sites
along each side. This means that the occupation probability
changes by an amount Ap = 1/L3 =4.77 x 1077 when a
new site is occupied. The results are illustrated in Figs. 2(a)
and 3. Every displayed point for p. has been obtained by
averaging over 1000 independent realizations of the distorted
lattice with the same « and d.

Figure 2(a) shows 12 curves, one each for a fixed value
of d, with o varying in the range {0, 0.3}, since we are in-
terested in the low-to-moderate distortion regime. It is clear
from the curves with d > 1 that distortion causes difficulty
in spanning, and as a consequence the percolation threshold
is increased. Although this feature is somewhat similar to
that of the distorted square lattices, some crucial facts and
distinctions should be mentioned here.

A very reliable estimate of the percolation threshold for a
regular SCL is known to be p.,, = 0.311 607 68(15) [26]. The
curves with d > 1 start at this value (or, rather close to this
value, as our calculation is for finite lattice) when o = 0. This
is expected—change in the connection threshold should not
be manifested when distortion is absent. A glance at Eq. (2)
reveals that §,; = 1 for « = 0, and the condition d > §y; to
retain the regular percolation threshold is satisfied. This is also
the reason why the curves for larger values of d stay at p,
until o becomes large enough to ensure d < §y.

A striking fact is noticed for d = 1.0 (i.e., the connection
threshold is equal to the lattice constant): even a slight distor-
tion makes a huge impact on the percolation threshold. The
value of p. stays close to p., when o = 0, but it jumps to
nearly twice of this value for a very small value of «. After
this initial jump, however, p. increases steadily with .

We wish to remark here that no spanning cluster can be
found for a distorted square lattice with d < 1.0, even when
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FIG. 2. (a) Variation of the percolation threshold p,. for a finite lattice with distortion parameter «. Each data point has been obtained by
averaging over 10° realizations of a distorted SCL of L = 27. The curves are obtained simply by joining the points. Twelve curves are displayed
for twelve different values of the connection threshold d. The five values of p>°(«, d) in Table I are indicated by stars. The natures of the curves
are clearly different when d > 1 and d < 1. (b) Plots of fraction of occupied bonds with & show exactly the opposite nature for the same set
of values of d. Each data point has been obtained by averaging over 10° realizations of a distorted SCL of L = 27. Occupancy of the bonds
depends only on the construction of the lattice and is independent of the occupancy of the sites.

all the sites are occupied [29]. Although there exist some pair
of occupied neighboring sites for which § < 1 (since §,, =
1 — 2a), the fraction of occupied bonds can never become
large enough to span a distorted square lattice. In contrast,
for a distorted SCL, we do obtain spanning for d < 1 since
a much lower fraction of occupied bonds (compared to a
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FIG. 3. The (approximate) percolation threshold p. decreases
with the connection threshold d. Each data point has been obtained
by averaging over 10° realizations of a distorted SCL of L = 27. The
curves are obtained simply by joining the points. Four curves are
displayed for four different values of «. Spanning becomes easier as
d increases, since more links are allowed.

distorted square lattice) is required for spanning. In Fig. 2(a),
five curves of p.(a) are shown for d = 0.99, 0.98, 0.97, 0.96,
and 0.95. These curves are of similar nature: an initial decline
followed by a steady increment as « increases. This nature
can be explained from Eq. (1), which says that the minimum
distance §,, between the nearest neighbors decreases with «.
For extremely low values of o [¢ < (1 — d)/2 in particular],
d < §,,. Therefore no bonds are occupied. As o becomes big-
ger than this value, some of the bonds start to be occupied. At
a certain value of «, the fraction of occupied bonds becomes
sufficiently large enough to span the lattice, and we do obtain
a finite value of p.. When « is increased further, this fraction
also increases [see Fig. 2(b)], which results in a decline in p,.
On the other hand, the average distance between the nearest
neighbors slowly increases with «, since 8y, increases with
« faster than §,, decreases. This reduces bond occupancy.
Therefore the decreasing trend cannot continue, and p.(«)
starts to increase steadily after forming a minimum. Note that
no curves in Fig. 2(a) cross each other, and the curves for
d < 1 always stay above the curves ford > 1.

As explained earlier, two neighboring sites are directly
linked, or, in other words, the bond between them is “oc-
cupied” only if the distance between them is less than the
connection threshold d. It should be noted that the occupancy
of the bonds is fixed by the structure of the distorted lattice
and is independent of whether the sites are occupied or not.
Once a configuration is generated with fixed values of & and d,
the number of occupied bonds gets fixed automatically. Thus
a spanning path is formed through collaboration between the
occupied sites and the occupied bonds. Consequently, when
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FIG. 4. (a) Variation of p. with o and d. The magnitude of p, is illustrated by color variation. The black dashed curve shows 8y (c)
[Eq. (2)]. In the region on the left of this curve, d > §),. Consequently, p. remains constant at the value p,, in this region. The colorless portion
at the bottom-left corner indicates that no spanning cluster can be found in this range. (b) Variation of fraction of occupied bonds with « and
d. The low-valued yellow patch at the bottom-left corner explains the absence of spanning cluster in this regime.

more bonds are occupied, the site percolation threshold p,.
reduces. Therefore the variation of the percolation threshold
with distortion has a direct correspondence with the variation
of the fraction of occupied bonds. Figure 2(b) shows this
dependence for the same set of values of d. It is clear that
the nature of the curves for the corresponding values of d
is exactly reversed. For d > 1, p. always increases with «,
while the fraction of occupied bonds always decreases. The
jump for d = 1is also present. Whend < 1, p, first decreases,
forms a minimum, then increases steadily. Correspondingly,
the fraction of bonds increases, forms a maximum, and then
decreases steadily. Variation of p, with the connection thresh-
old d for different fixed values of « is shown in Fig. 3. Increase
in d means more connections are allowed and consequently,
existence of spanning cluster is more likely. It is therefore
not surprising that p, reduces with d. Here also p, falls back
to pey for low o and high d range when d > §y, is satisfied
(the curve for o = 0.1). There exist some crossings between
the curves in the d < 1 range. This can be anticipated by
carefully observing the curves of Fig. 2(a). For example, it
is clear that p.(¢ = 0.1,d = 0.97) > p.(« =0.2,d = 0.97),
while p.(¢ =0.1,d =1.1) < p.(¢ =0.2,d = 1.1). There-
fore a crossing between the p.(d) curves for « = 0.1 and
o = 0.2 is inevitable.

Figure 4(a) shows the dependence of the percolation
threshold on both « and d. The magnitude of p,. is repre-
sented by the color of the region—a darker shed means a
higher value. As expected, p. is high in the lower part of
the figure where d is low. At the other extreme, p. remains
close to the value p.,. The black dashed curve, showing &,
as a function of « [see Eq. (2)], marks the boundary of this
region. On the left of this curve d > §), so every connection
between the nearest neighbors is allowed. When this happens,
the percolation thresholds of the distorted and regular SCLs
must be the same. The colorless portion at the bottom-left

corner reveals the fact that no spanning cluster can be found
in this range of values of @ and d. The variation of the fraction
of the occupied bonds is shown in Fig. 4(b). As expected,
colors are reversed, since an increase in the number of bonds
results in a lower percolation threshold. The yellow patch at
the bottom-left corner means that the fraction of occupied
bonds is small in this region. This explains why no spanning
cluster is found for very small values of « whend < 1.

B. Estimation of p2°(c, d)

The percolation threshold of an infinite lattice p° marks
the occupation probability p at which there is a sudden
occurrence of an infinite cluster spanning the lattice. We cal-
culate p%° through the information of the spanning probability
S(p)—the probability of occurrence of a spanning cluster
for a given occupation probability p. For finite lattices, the
monotonically increasing curves of S(p) become steeper as
lattice size is increased, and finally, for an infinite lattice, the
curve approaches the shape of a step function jumping from
0 to 1 at p = p2°. Therefore these curves of spanning proba-
bility for different lattice sizes should intersect each other at
p=rp.

To find p2° exploring the above concept, we generate N =
10° independent realizations of a lattice of size L with a fixed
set of @ and d. For each realization, some of the sites are oc-
cupied according to the occupation probability p. The number
of realizations n; having spanning cluster (with free boundary
conditions) is counted. The fraction ny/N approximately gives
the spanning probability S(p). In this way, the plots of S(p) for
lattice sizes L = 32, 48, 64, 96, and 128 have been generated.
The obtained data points are interpolated to generate plots
S(p), and from the information of intersection points, p>° has
been estimated. Figure 5 shows the plots of S(p) for « = 0.2
and d = 1.1, the step size of p being Ap = 0.002. Other
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FIG. 5. Interpolated plots of spanning probability for five differ-
ent sizes of distorted SCL with « = 0.2 and d = 1.1. The obtained
pe = 0.44342 from all the intersection points is indicated by the
vertical dashed line.

combinations are not shown, as they are similar in nature. It
should be mentioned here that the accuracy is dependent on
the sample size N, the number of lattice sizes considered, and
the step size Ap.

Using the above method, p%° for a regular lattice has been
found to be 0.311 562(18), which is satisfactorily close to the
currently accepted values [32,33]. Table I shows p2°(«x, d)
for five combinations of o and d. These values are promi-
nently indicated in Fig. 2(a). Note that in Fig. 2(a) the
variation of p. with « is shown, and separate curves are
obtained for different values of d. While plotting the points
of Table I, only the values of p%° and « have been pro-
vided.

IV. CRITICAL EXPONENTS AND UNIVERSALITY CLASS

Although the mechanism of connectivity in distorted lat-
tices is not the same as the ordinary percolation, and the
percolation threshold is also different, it is expected that the
values of the critical exponents would remain the same as
long as the modified mechanisms are short range. Neverthe-
less, it is worthwhile to verify this for the present model.
Using the NZ algorithm, we focus on two important critical
exponents B and v, which are usually explored to decide
on the universality class. Specifically, we determine the ratio
B/v and v separately by two different methods. The obtained
results indeed indicate that the values of these exponents do
not depend on « and d. Also, these values are very close to

those for ordinary percolation. Therefore we conclude that
percolation in distorted SCLs belongs to the same universality
class as standard percolation. The same conclusion has been
reached for percolation in distorted square lattices [29,34]. It
may therefore be stated that the distance-dependent spanning
process of distorted lattices does not change the universality
class.

A. Determination of v

The critical exponent v can be estimated by evaluating the
wrapping probability W(p), which is defined as the prob-
ability of finding a cluster that wraps around the lattice.
Depending on the direction of wrapping, a few variants of
W (p) are usually calculated [30,31,33,35]. In this work, three
such variants have been used for the estimation of v. At a
given occupation probability p, these three variants are de-
fined as (i) Wi (p): the probability that a cluster wraps around
the lattice along a specified axis; (ii)) W,(p): the probability
that a cluster wraps around the lattice along any one axis;
and (iii) W3(p): the probability that a cluster wraps around the
lattice along all three axes. The exponent v can be found out
from these wrapping probabilities through the scaling relation

To find any of the above wrapping probabilities W (p) at a
given occupation probability p, one can use the convolution

]max « LV 3)

N
wip =3 (O)ra-p e, @

n=0

where W(n) is the wrapping probability when n sites are
occupied [31]. An advantage of this approach is that one
can immediately find the first derivative without having to
numerically differentiate. Differentiating Eq. (4),

dW(p) < (N - o
TP = 3 ()= N A= W), )

n=0

We evaluate Wy (n), Ws(n), and W,(n) numerically using the
NZ algorithm with periodic boundary conditions. Hence using
Egs. (4) and (5) we calculate the derivatives. The plots of
dW,/dp for system sizes L = 16, 24, 32, and 48 are shown for
o = 0.2 and d = 1.1 [Fig. 6(a)]. Plots of the other two wrap-
ping probabilities look very similar. Locating (dW/d p)max
and taking logarithm of Eq. (3), v can be evaluated from the
gradient of the straight line [see Fig. 6(b)]. Obtained values
of v from the three types of wrapping probabilities for five

TABLE I. The values of the percolation threshold for infinite lattice and the critical exponents for five different combinations of « and d.
Note that the critical exponents are essentially the same while the percolation threshold varies significantly.

o d P B/v dy v from [dW; /d plimax v from [dW, /d plmax v from [dW, /d p]max
0.05 1.0 0.60254(3) 0.468 2.532 0.889 0.883 0.883
0.1 1.00625 0.58688(4) 0.473 2.527 0.892 0.880 0.891
0.15 1.025 0.55075(2) 0.473 2.527 0.889 0.886 0.886
0.175 1.05 0.50645(5) 0.470 2.530 0.877 0.886 0.884
0.2 1.1 0.44342(3) 0.471 2.529 0.876 0.874 0.882
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FIG. 6. (a) The plots of (dW,/dP) for L = 16, 24, 32, 48. The maximum points used in the topmost line of (b) are shown by dots. (b) The
log-log plot of (dW/dP),,.« With L for the three wrapping probabilities W, W,, and Wj. For all the plots of this figure, « = 0.2 andd = 1.1.

combinations of « and d are summarized in Table 1. These
are close to the values found for a regular SCL [26,33,36].
The fluctuations are caused by the fact that W (n), W3 (n), and
W,(n) are evaluated only over 10° configurations. However,
even with this small sample size, the obtained values clearly
suggest that v has no dependence on « and d.

B. Determination of 8/v

The percolation order parameter is defined as

{Smax )
T (6)

where Sp.x is the size of the largest cluster at occupation
probability p, L is the lattice size, and d,, is the dimension
of the space. Here () denotes the configurational average. It
is known that (Spax) is a fractal object at p = p2° with fractal
dimension dy. Therefore,

(Smax (P°)) o< LY. (7)

The order parameter at the transition point is known to obey
the scaling relation

Q(L, p) =

Q(L, p°) o« L7P/V, ®)
Using Egs. (6), (7), and (8) one can readily find
dy =dyn— B/v. 9)

With the information of p%° for five combinations of o and
d, the ration B/v is determined in the following manner. A
distorted lattice of length L with a given combination of o
and d is generated. To reduce the finite size effect, a periodic
boundary condition needs to be enabled. Sy« (p) is calculated
for different occupation probabilities p. After averaging over
10° such lattices, (Smax), and hence Q2(L, p) are determined.
Variation of Q(L, p) for L = 16, 24,32, and 48 are shown
in Fig. 7(a) for « = 0.175 and d = 1.05. The curves are ob-
tained by connecting closely spaced data points. p%° for this
combination has already been determined to be 0.50645 and
shown by the dashed vertical line. Points of the intersection of
this line and the curves of Q(L, p) give Q(L, p2°). The plot of

log Q(L, p°) with log L should be a straight line with gradient
B/v [Eq. (8)]. In Fig. 7(b), five straight lines are shown for five
{or, d} pairs of Table I. Each line is constructed by obtaining
linear fit of four data points corresponding to L = 16, 24, 32,
and 48. B/v can now be easily evaluated from the gradients
of these lines. The lines of Fig. 7(b) are visibly parallel. It is
not surprising, therefore, that the values of /v are very close
to each other. Table I shows these five values. The values of
dr have been obtained from Eq. (9) using d,, = 3 for SCLs.
These values are close to their corresponding values for a
regular SCL [26,32,33,37].

It is known that the plots of Q2(L, p) of Fig. 7(a) should be
collapsed when the horizontal and the vertical axes are scaled
as L'V (p — p.) and LB/"Q(L, p), respectively. The exponent
v has been calculated in the previous section. Using 8/v =
0.47, and one of the obtained values v = 0.877 fora = 0.175
and d = 1.05 (see Table I), we indeed get a nice data collapse
[see the inset of Fig. 7(a)].

The results of the critical exponents thus strongly indicate
that the percolation in a regular and a distorted SCL belong to
the same universality class.

V. DISTINCTION WITH SITE-BOND PERCOLATION

In site percolation, all the bonds are assumed to be preoccu-
pied while a fraction of the sites is occupied as per occupation
probability. Spanning occurs when a sufficient number of sites
are occupied. The scenario is the opposite in the case of bond
percolation, where all the sites are preoccupied and spanning
is achieved by occupying bonds. There is another well-studied
model called site-bond percolation, where neither all the sites
nor all the bonds are preoccupied. Here, spanning is realized
by randomly occupying a sufficient number of sites and bonds.
Therefore occupation probability for sites and bonds need to
be specified separately.

The present model appears to be somewhat similar to the
site-bond percolation model. The only difference is that the
occupation of the bonds in distorted lattices is conditional,
while for site-bond percolation it is random. In a distorted
lattice, the number of links connecting the nearest neighbors
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FIG. 7. (a) Plot of the order parameter (L, p) for L = 16, 24, 32, and 48 with = 0.175 and d = 1.05. The corresponding pZ° is indicated
by the dashed vertical line. Inset: Data collapse using p. = 0.50645, /v = 0.470, and v = 0.877. (b) The log-log plot of the order parameter
at percolation threshold Q(L, p°) with lattice size L. The five straight lines correspond to the five sets of values of « and d in Table I. The four
points in each line correspond to L = 16, 24, 32, and 48. The lines are parallel since 8/v does not depend on « and d.

is fixed by the two parameters o and d. But in site-bond
percolation, the fraction of the occupied bonds is specified
by the bond occupation probability p,. A natural question
therefore arises: Are the site percolation thresholds of these
two models the same when the same fraction of bonds are
occupied (either randomly or conditionally)? If the answer
is yes, one should conclude that the percolation in distorted
lattices is just another manifestation of the site-bond percola-
tion model. But we find that this is not the case. To establish
this fact, we plot the site percolation thresholds for these two
models with the fraction of the bonds (links) occupied (Fig. 8).
As expected, the results of these two models coincide when all
the bonds are occupied. However, for fewer occupied bonds,
the site percolation thresholds (in Fig. 8 it is written as p;) are
clearly different for these two models. It should be understood

TS
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FIG. 8. Demonstration of distinction between site-bond perco-
lation in regular SCL and site percolation in distorted SCL. The
site percolation thresholds for these two models are not the same
when same fraction of bonds is occupied. Each data point reflects
an average over 10° realizations of a regular or distorted SCL with
L =128.

that, in a distorted lattice, the same fraction of links may be
occupied for different combinations of « and d. We observe
that p; is the same for all of them. But when the same fraction
of bonds is occupied for site-bond percolation, p; is lower. So
if a fraction fj of bonds or links are occupied, one may write

distorted
(p

d )fo 2 (piite—bond

)fo’ (10)

where the equality stands for fy = 1. To obtain the results of
Fig. 8, the quick estimation method described in Sec. III A has
been used for both models. The lattice size is L = 128, and
each point is obtained after averaging over 10° configurations.
The results of site-bond percolation are very close to those
obtained by Gonzélez et al. [38] through a more rigorous
method. This confirms that percolation in distorted lattices is
distinct from the site-bond percolation model.

VI. SUMMARY

To summarize, we have studied site percolation in distorted
SCLs. A distorted SCL is prepared from a regular SCL (lattice
constant = 1) by dislocating its sites randomly but system-
atically. The amount of distortion is tuned by the distortion
parameter «. The distances between the neighboring sites of
the distorted lattice are no longer the same, and two occupied
neighboring sites are directly linked to each other if their
distance is less than the connection threshold d. We develop
a method to find the percolation threshold p. for a finite
lattice (plots are shown for L =27) and later confirm that
this estimate is satisfactorily close to the actual percolation
threshold p2°. The results are obtained by incorporating the
distance-dependent connectivity of the neighboring sites into
the Newman-Ziff algorithm. Our major findings are listed
below.

(1) When the connection threshold d is fixed at a value
>1, the presence of distortion makes spanning difficult, as
manifested by the increment in p. with «. In particular, when
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d is set to be equal to the lattice constant of the regular
SCL, a discontinuous jump in p. is noted for a very small
distortion.

(2) However, for d < 1, p. first decreases then increases
steadily with «. This is a prominent difference with the results
of a distorted square lattice, where no spanning cluster can be
found ford < 1.

(3) On the other hand, p. always decreases with d for
a fixed value of «. Therefore the percolation threshold in
distorted SCL depends heavily on the interplay between the
two parameters « and d.

(4) To characterize the percolation transition, we calcu-
late the critical exponents 8, v, and dy, and find that they
are very close to their currently accepted values for regular
lattices. Although a considerable modification is enforced in
the percolation process, and there is a significant change in
the percolation threshold, the critical exponents remain es-
sentially the same. Therefore we conclude that percolation in
regular and distorted SCLs belong to the same universality
class.

(5) Percolation in a distorted lattice appears to have some
similarity with the site-bond percolation model. We have con-
clusively demonstrated that these two models are distinct from
each other.

The goal of this study is to correctly characterize the
percolation transition under the influence of distortion. Deter-
mination of the accurate percolation threshold and the critical
exponents up to several decimal places is not aimed. We be-
lieve that the obtained results are sufficiently precise to reach
the conclusions of this work.

The fact that distortion significantly impacts the perco-
lation process has the potential to generate considerable
scientific interest in the future. To proceed further with this
model, distorted versions of other Bravais lattices may be
investigated. It would also be interesting to see the effects
of relaxing the number of nearest neighbors of a site and
identifying them only in terms of their distances from the site.
This scenario will be prominent in highly distorted 2D and
3D lattices, as well as in networks such as random geometric
graphs. The works on percolation with extended neighbor-
hood [39—41] may be useful in this regard.
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