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Stochastically switching diffusion with partially reactive surfaces
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In this paper we develop a hybrid version of the encounter-based approach to diffusion-mediated absorption
at a reactive surface, which takes into account stochastic switching of a diffusing particle’s conformational state.
For simplicity, we consider a two-state model in which the probability of surface absorption depends on the
current particle state and the amount of time the particle has spent in a neighborhood of the surface in each state.
The latter is determined by a pair of local times �n,t , n = 0, 1, which are Brownian functionals that keep track
of particle-surface encounters over the time interval [0, t]. We proceed by constructing a differential Chapman-
Kolmogorov equation for a pair of generalized propagators Pn(x, �0, �1, t ), where Pn is the joint probability
density for the set (Xt , �0,t , �1,t ) when Nt = n, where Xt denotes the particle position and Nt is the corresponding
conformational state. Performing a double Laplace transform with respect to �0, �1 yields an effective system of
equations describing diffusion in a bounded domain �, in which there is switching between two Robin boundary
conditions on ∂�. The corresponding constant reactivities are κ j = Dzj and j = 0, 1, where z j is the Laplace
variable corresponding to � j and D is the diffusivity. Given the solution for the propagators in Laplace space, we
construct a corresponding probabilistic model for partial absorption, which requires finding the inverse Laplace
transform with respect to z0, z1. We illustrate the theory by considering diffusion of a particle on the half-line
with the boundary at x = 0 effectively switching between a totally reflecting and a partially absorbing state. We
calculate the flux due to absorption and use this to compute the resulting MFPT in the presence of a renewal-
based stochastic resetting protocol. The latter resets the position and conformational state of the particle as well
as the corresponding local times. Finally, we indicate how to extend the analysis to higher spatial dimensions
using the spectral theory of Dirichlet-to-Neumann operators.
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I. INTRODUCTION

An important quantity characterizing single-particle dif-
fusion in a bounded domain � ⊂ Rd is the first-passage
time (FPT) for a particle to reach the boundary ∂� [1,2].
Mathematically speaking, one can model the stochastic dy-
namics using standard Brownian motion, supplemented by
the stopping condition that diffusion is terminated as soon
as the particle reaches the boundary. The FPT is defined
according to T = inf{t > 0, Xt ∈ ∂�}, where Xt is the po-
sition of the particle at time t . An alternative approach is to
consider the probability density p(x, t ) for particle position,
which satisfies the diffusion equation in � with a Dirichlet
(absorbing) boundary condition, namely, p(x, t ) = 0 for all
x ∈ ∂�.

One limitation of the above picture is that it ignores what
happens after the particle reaches the boundary surface. In
many applications, the surface acts as a reactive boundary
layer, within which the particle can bind, undergo a change
in conformational state, participate in a chemical reaction, be
transported to the exterior of the domain through a membrane
pore, or be destroyed. The particle could represent a protein
within a cell, a bacterium searching for some resource within
a confinement domain, or a chemical reactant interacting with
a catalytic substrate [3–5]. Irrespective of the details, a typical
surface reaction is unlikely to be instantaneous, but require an
alternating sequence of periods of bulk diffusion interspersed

with local surface interactions before the final “absorption”
event is realized. In other words, the boundary ∂� acts as a
partially absorbing surface [6].

The simplest mathematical implementation of partial ab-
sorption is to replace the Dirichlet boundary condition in
the diffusion equation by the Robin boundary condition
D∇p(x, t ) · n + κ0 p(x, t ) = 0 for all x ∈ ∂�. Here D is the
diffusivity, κ0 is a constant reactivity that characterizes the
rate at which absorption occurs, and n is the outward unit
normal at a point on the boundary. The Dirichlet boundary
condition is recovered in the limit κ0 → ∞, whereas the
boundary becomes totally reflecting when κ0 = 0. However,
to implement the Robin boundary condition at the level of
single-particle trajectories, it is necessary to modify the under-
lying stochastic differential equation. For example, the effects
of a totally reflecting boundary can be incorporated by consid-
ering so-called reflected Brownian motion. This involves the
introduction of a Brownian functional known as the boundary
local time �t , which characterizes the amount of time that a
Brownian particle spends in the neighborhood of points on the
boundary [7–9]. Heuristically speaking, the differential of the
local time generates an impulsive kick whenever the particle
encounters the boundary, leading to the so-called stochastic
Skorokhod equation [10]. It is also possible to construct a
probabilistic implementation of the Robin boundary condition
for partially reflected Brownian motion [11,12] and more gen-
eral continuous stochastic processes [13].
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The assumption that surface absorption can be modeled
in terms of a constant reactivity κ0 is itself an idealization
of more realistic surface-based reactions [14,15]. For exam-
ple, the surface may need to be progressively activated by
repeated encounters with a diffusing particle. Alternatively,
an initially highly reactive surface may become less active
due to multiple interactions with the particle (passivation).
Both cases can be modeled by taking the reactivity to be
a function of the boundary local time. Recently, a proba-
bilistic framework for analyzing this more general class of
partially absorbing boundary has been developed using a
so-called encounter-based approach [16,17]. The underlying
idea is that the Robin boundary condition is equivalent to
imposing a stopping condition for the local time �t of the
particle: T = inf{t > 0 : �t > �̂}, where �̂ is a stopping lo-
cal time with an exponential probability distribution. That is,
P [�̂ > �] ≡ �(�) = e−γ � with γ = κ0/D. The corresponding
probability density can then be written in the form p(x, t ) =∫ ∞

0 �(�)P(x, �, t )d�, where P(x, �, t ) is the joint probability
density or generalized propagator for the pair (Xt , �t ) in the
case of a perfectly reflecting boundary. The crucial obser-
vation is that the propagator P satisfies a boundary value
problem (BVP) that is independent of the details of the surface
reactions. (The propagator BVP can be derived using inte-
gral representations [16] or the Feynman-Kac formula [18].)
Hence, a much more general class of surface reactions can
be incorporated by considering appropriately defined non-
exponential distributions �(�). For example, in the case of
a reactivity κ (�) that depends on the local time, we have
�(�) = exp[−D−1

∫ �

0 κ (�′)d�′].
Another source of complexity in diffusion-mediated sur-

face reactions is stochastic switching. A classical example is
the membrane transport of charged particles via voltage-gated
or ligand-gated ion channels that randomly switch between
open and closed states [19–21]. Each channel effectively acts
as a semipermeable local boundary, which is absorbing (re-
flecting) whenever the channel is open (closed). Moreover,
the random switching could be due to intrinsic properties of
the channels or due to changes in the conformational state
of the diffusing molecules. The two scenarios are statisti-
cally equivalent at the single-particle level. (However, for
a population of independently diffusing particles, there are
additional correlations in the case of switching gates due
to the fact that all particles experience the same switching
environment [20].) Irrespective of the mechanism, randomly
switching boundary conditions can be modeled in terms of a
stochastic hybrid system involving a set of probability densi-
ties p j (x, t ), j = 1, . . . , N , where N is the number of discrete
states. The probability densities evolve according to a dif-
ferential Chapman-Kolmogorov (CK) equation that couples
diffusion with a Markov chain that takes into account transi-
tions between the states. Such transitions could occur during
bulk diffusion or be induced by surface-particle interactions.

In this paper we develop a hybrid version of the encounter-
based approach to partially absorbing surfaces that takes into
account stochastic switching of the diffusing particle’s confor-
mational state. For simplicity, we consider a two-state model
in which the probability of absorption at the boundary depends
on the current particle state Nt ∈ {0, 1} and the amount of time
the particle has spent in a neighborhood of the boundary in

each state. In addition, we assume that transitions between the
conformational states only occur when the particle is diffusing
in the bulk domain. We begin by briefly describing the BVP
for the generalized propagator without switching and showing
how to incorporate a probabilistic rule for partial absorption
(Sec. II), following along the lines of Ref. [16]. We then gener-
alize the theory to the case of switching boundary conditions,
at least one of which is partially absorbing (Sec. III). First,
we introduce a pair of local times � j,t , j = 0, 1, that keep
track of the time spent in a neighborhood of the boundary ∂�

while in state j. Second, we define a CK equation for a pair of
generalized propagators Pj (x, �0, �1, t ), where Pj is the joint
probability density for the set (Xt , �0,t , �1,t ) when Nt = j.
Performing a double Laplace transform with respect to �0, �1

yields a CK equation describing diffusion in a bounded do-
main in which there is switching between two Robin boundary
conditions on ∂� with constant reactivities κ j = Dzj , j =
0, 1, where z j is the Laplace variable corresponding to � j .
Third, given the solution of the propagator BVP in Laplace
space, we construct the corresponding probabilistic model for
partial absorption, which requires finding the inverse Laplace
transform with respect to z0, z1.

Next, we define various quantities of interest such as the
surface flux and the mean first-passage time (MFPT) for ab-
sorption when � is bounded (Sec. IV). We also consider the
complementary problem in which the particle diffuses in the
unbounded domain exterior to �, that is, �c = Rd\�. In this
case, the MFPT to be absorbed by ∂� is infinite. One mecha-
nism for obtaining a finite MFPT is to reset the particle state
at a random sequence of times, which is typically taken to be
a Poisson process with rate r (see the review in Ref. [22]). We
assume that the corresponding local times also reset, which
ensures that resetting is governed by a renewal process. This
then allows us to calculate the MFPT in terms of the surface
flux without resetting.

We illustrate the theory by considering diffusion of a par-
ticle on the half-line with the boundary at x = 0 effectively
switching between a totally reflecting and a partially absorb-
ing state (Sec. V). We solve the associated one-dimensional
(1D) BVP for the propagators in Laplace space, invert with
respect to the Laplace variables z j , and then determine the
effective flux due to absorption. The flux is then used to com-
pute the MFPT for absorption in the presence of stochastic
resetting. In particular, we explore how the MFPT depends on
various model parameters, including the resetting rate r, the
switching rates, and the surface reactivities. Finally, we indi-
cate how to extend the analysis to higher spatial dimensions
using the spectral decomposition of a pair of Dirichlet-to-
Neumann operators (Sec. VI). This generalizes the analysis
previously developed for nonswitching systems [16].

II. GENERALIZED PROPAGATOR BVP WITHOUT
SWITCHING

Consider a particle diffusing inside a bounded domain � ⊂
Rd with a totally reflecting boundary ∂�, see left-hand panel
of Fig. 1. Let Xt denote the position of the particle at time t
and denote the boundary local time by �t . The latter is defined
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FIG. 1. Schematic diagram of a Brownian particle diffusing in a bounded domain � and switching between two conformational states, such
that the boundary ∂� is either reflecting [N (t ) = 0] or partially absorbing boundary [N (t ) = 1]. Here N (t ) is a two-state Markov chain with
transition rates α, β. Prior to absorption, each encounter between the particle in state N (t ) = j and the boundary increases the corresponding
local time � j,t .

according to

�t = lim
h→0

D

h

∫ t

0
H[h − dist(Xτ , ∂�)]dτ, (2.1)

where H is the Heaviside function. Note that �t , which has
units of length due to the additional factor of D, specifies
the amount of time that the particle spends in an infinitesimal
neighborhood of the surface ∂�. Eq. (2.1) implies that �t is a
nondecreasing stochastic process, which remains at zero until
the first encounter with the boundary. Although each surface
encounter takes place over an infinitely short time interval, the
particle returns to the surface multiple times before reentering
the bulk, so that there is a measurable change in �t . It can be
shown that the propagator satisfies a BVP of the form [16,18]

∂P(x, �, t |x0)

∂t
= D∇2P(x, �, t |x0), x ∈ �, (2.2a)

−D∇P(x, �, t |x0) · n = DP(x, � = 0, t |x0) δ(�)

+ D
∂

∂�
P(x, �, t |x0), x ∈ ∂�.

(2.2b)

The unit normal n on ∂� is directed towards the exterior of �.
These equations are supplemented by the “initial conditions”
P(x, �, 0|x0) = δ(x − x0)δ(�) and

P(x, � = 0, t |x0) = −∇p∞(x, t |x0) · n for x ∈ ∂�, (2.2c)

where p∞ is the probability density in the case of a totally
absorbing surface ∂�: !

∂ p∞(x, t |x0)

∂t
= D∇2 p∞(x, t |x0), x ∈ �, (2.3a)

p∞(x, t |x0) = 0, x ∈ ∂�, p∞(x, 0|x0) = δ(x − x0).

(2.3b)

An intuitive interpretation of the boundary condition (2.2b) is
that the rate at which the local time increases is proportional to
the flux into the boundary when �t > 0. However, this process

only starts once the particle has reached the surface for the
first time, which is identical to the case of a totally absorbing
surface.

The construction of the marginal probability density
p(x, t |x0) in the case of a partially absorbing surface proceeds
as follows [16,17]. Introducing the double Laplace transform

P (x, z, s|x0) ≡
∫ ∞

0
e−z�

∫ ∞

0
e−st P(x, �, t |x0)dtd�, (2.4)

we have

D∇2P (x, z, s|x0) − sP (x, z, s|x0) = −δ(x − x0), x ∈ �,

(2.5a)

−∇P (x, z, s|x0) · n = zP (x, z, s|x0), x ∈ ∂�.

(2.5b)

If z ≡ γ0 = κ0/D for some constant κ0, then the BVP (2.5)
is identical to the s-Laplace transformed diffusion equation in
the case of a Robin boundary condition on ∂� with a con-
stant rate of reactivity κ0. In other words, the solution of the
classical BVP

∂ p(x, t |x0)

∂t
= D∇2 p(x, t |x0), x ∈ �, (2.6a)

−D∇p(x, t |x0) · n = κ0 p(x, t |x0), x ∈ ∂�, (2.6b)

can be expressed as

p(x, t |x0) =
∫ ∞

0
e−γ0�P(x, �, t |x0)d� = P̃(x, γ0, t |x0).

(2.7)
This, in turn, is equivalent to introducing an absorption stop-
ping time,

T = inf{t > 0 : �t > �̂}, (2.8)

with �̂ an exponentially distributed random variable that rep-
resents a stopping local time [16]. That is, �(�) ≡ P [�̂ >

�] = e−γ0�. The advantage of formulating the Robin boundary
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condition in terms of the generalized propagator is that one
can consider a more general probability distribution �(�) for
the stopping local time �̂ such that [4,16,17]

p(x, t |x0) =
∫ ∞

0
�(�)P(x, �, t |x0)d� for x ∈ �. (2.9)

This accommodates a much wider class of surface reactions
where, for example, the reactivity κ (�) depends on the local
time � (or the number of surface encounters):

�(�) = exp

[
− 1

D

∫ �

0
κ (�′)d�′

]
. (2.10)

Laplace transforming Eq. (2.9) with respect to t gives

p̃(x, s|x0) =
∫ ∞

0
�(�)L−1

� [P (x, z, s|x0)]d� for x ∈ �,

(2.11)

where P (x, z, s|x0) is the solution of the Robin BVP given by
Eq. (2.5). That is, the marginal density p̃(x, s|x0) for a general
distribution �(�) can be obtained by solving a classical Robin
BVP with effective reactivity κ = zD and then inverting the
Laplace transform with respect to z.

III. GENERALIZED PROPAGATOR BVP
WITH SWITCHING

Now suppose that the particle switches between two con-
formational states labeled by the discrete random variable
Nt ∈ {0, 1}. Moreover, we assume that the probability of ab-
sorption at the boundary depends on the current particle state
and the amount of time the particle has spent in a neigh-
borhood of the boundary in each state. In Fig. 1 we show
the example of switching between a totally reflecting state
(Nt = 0) and a partially absorbing state (Nt = 1), although
one could consider both states to be partially absorbing. The
state variable Nt evolves according to a two-state Markov
chain,

0
α
�
β

1,

with constant transition rates α, β. We introduce the pair of
boundary local times

� j,t = lim
h→0

D

h

∫ t

0
H[h − dist(Xτ , ∂�)]δNτ , jdτ. (3.1)

That is, � j,t is the local time accumulated over the interval
[0, t] when the boundary is in the state n ∈ {0, 1}. We also set
�t = (�0,t , �1,t ). We introduce a corresponding pair of propa-
gators

Pj (x, �, t )dx d�

= P [x < Xt < x + dx, � < �t < � + d�, Nt = j].
(3.2)

For notational convenience, we drop the explicit dependence
on the initial conditions

X0 = x0, �0 = 0, P [N0 = j] = ρ j, (3.3)

where ρ j , j = 0, 1, is the stationary distribution of the Markov
chain:

ρ0 = β

α + β
, ρ1 = α

α + β
. (3.4)

The pair of propagators satisfy the system of differential
CK equations

∂P0(x, �, t )

∂t
= D∇2P0(x, �, t ) − αP0(x, �, t )

+βP1(x, �, t ), x ∈ �, (3.5a)

∂P1(x, �, t )

∂t
= D∇2P1(x, �, t ) + αP0(x, �, t )

−βP1(x, �, t ), x ∈ �, (3.5b)

−D∇Pj (x, �, t ) · n = DPj (x, �, t ) δ(� j )

+D
∂

∂� j
Pj (x, �, t ), x ∈ ∂� (3.5c)

for j = 0, 1. The corresponding initial conditions are

Pj (x, �, 0) = ρ jδ(x − x0)δ(�), x ∈ �, j = 0, 1. (3.6)

Finally, we introduce the marginal propagator

P(x, �, t )dx d� = P [x < Xt < x + dx, � < �t < � + d�, ],

(3.7)

such that

P(x, �, t ) = P0(x, �, t ) + P1(x, �, t ). (3.8)

For simplicity, we assume that the diffusivity D is the same in
both conformational states.

Introducing the triple Laplace transform

P j (x, z, s) ≡
∫ ∞

0
e−z·�

∫ ∞

0
e−st Pj (x, �, t )dtd�, (3.9)

we have

D∇2P0(x, z, s) − (s + α)P0(x, z, s) + βP1(x, z, s)

= −ρ0δ(x − x0), x ∈ �, (3.10a)

D∇2P1(x, z, s) + αP0(x, z, s) − (s + β )P1(x, z, s)

= −ρ1δ(x − x0), x ∈ �, (3.10b)

−∇P j (x, z, s) · n = z jP j (x, z, s), x ∈ ∂� (3.10c)

for j = 0, 1. For fixed z j , the BVP (3.10) is precisely the CK
equation for a particle diffusing in a bounded domain where
there is switching between two Robin boundary conditions on
∂� with constant reactivities κ j = Dzj , j = 0, 1. In particular,
for the switching system shown in Fig. 1 we would have z0 =
0 and z1 > 0, and the corresponding pair of marginal densities
would be

p j (x, t ) =
∫ ∞

0
d�0

∫ ∞

0
d�1 e−z1�1 Pj (x, �, t )

= P j (x, 0, z1, t ). (3.11)

To generalize the switching Robin boundary conditions,
we assume that absorption occurs as soon as either local time
crosses its own independent threshold:

T = inf{t > 0 : {�0,t > �̂0} ∨ {�1,t > �̂1}}, (3.12)

where �̂ j is an independent random variable with
probability density ψ j (�). Since the local times are
nondecreasing, it follows that the condition t < T
is equivalent to the condition � j,t < �̂ j for j = 0, 1.
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This implies that

p(x, t )dx = P [Xt ∈ (x, x + dx), {�0,t < �̂0} ∧ {�1,t < �̂1}]

=
∫ ∞

0
du ψ0(u)

∫ ∞

0
du′ ψ1(u′)P [Xt ∈ (x, x + dx), �0,t < u, �1,t < u′].

That is,

p(x, t ) =
∫ ∞

0
du ψ0(u)

∫ ∞

0
du′ ψ1(u′)

∫ u

0
d�

∫ u′

0
d�′P(x, �, �′, t ), (3.13)

where P(x, �, t ) is the marginal propagator (3.8). Using the identity∫ ∞

0
du f (u)

∫ u

0
d� g(�) =

∫ ∞

0
d� g(�)

∫ ∞

�

du f (u) (3.14)

for arbitrary integrable functions f , g, we have

=
∫ ∞

0
du ψ0(u)

∫ u

0
d�

∫ ∞

0
d�′P(x, �, �′, t )

∫ ∞

�′
du′ ψ1(u′) =

∫ ∞

0
du ψ0(u)

∫ u

0
d�

∫ ∞

0
d�′�1(�′)P(x, �, �′, t )

=
∫ ∞

0
d�

∫ ∞

0
d�′�1(�′)P(x, �, �′, t )

∫ ∞

�

du ψ0(u) =
∫ ∞

0
d�

∫ ∞

0
d�′�0(�)�1(�′)P(x, �, �′, t ), (3.15)

where � j (�) = ∫ ∞
�

ψ j (u)du. Equation (3.15) can be rewritten
in the more compact form

p(x, t )=
∫

D��(�)P(x, �, t ),
∫

D�≡
∫ ∞

0
d�0

∫ ∞

0
d�1,

(3.16)

with �(�) = �0(�0)�1(�1). Laplace transforming with re-
spect to t shows that

p̃(x, s) =
∫

D��(�)L−1
�0
L−1

�1
[P (x, z, s)], (3.17)

where P (x, z, s) is the solution to the hybrid BVP (3.10), and
L−1 indicates the inverse Laplace transform operator.

IV. SURVIVAL PROBABILITY AND FIRST-PASSAGE
TIME (FPT) DENSITY

Let S(x0, t ) denote the survival probability that the particle
has not been absorbed in the time interval [0, t],

S(x0, t ) =
∫

�

p(x, t )dx. (4.1)

Differentiating both sides with respect to t and using
Eq. (3.16) gives

∂S(x0, t )

∂t
=

∫
�

{∫
D��(�)

∂P(x, �, t )

∂t

}
dx. (4.2)

Adding Eqs. (3.5a) and (3.5b) shows that the marginal propa-
gator P(x, �, t ) satisfies

∂P(x, �, t )

∂t
= D∇2P(x, �, t ). (4.3)

Assuming that we can reverse the order of integration in
Eq. (4.2),

∂S(x0, t )

∂t
=

∫
D��(�)

∫
�

∇2P(x, �, t )dx

=
∫

D��(�)
∫

∂�

∇P(x, �, t ) · ndx

= −
∫

D��(�)
∫

∂�

dx
∑
j=0,1

×
[

Pj (x, �, t ) δ(� j ) + ∂

∂� j
Pj (x, �, t )

]

=
∫

∂�

dx
∫

D�

×
[
∂�(�)

∂�0
P0(x, �, t ) + ∂�(�)

∂�1
P1(x, �, t )

]
≡ −J0(x0, t ) − J1(x0, t ), (4.4)

where Jj (x0, t ) is the probability flux due to absorption in state
n:

Jj (x0, t ) = −
∫

∂�

dx
∫

D�
∂�(�)

∂� j
Pj (x, �, t ). (4.5)

In the case of the product rule �(�) = �0(�0)�1(�1), we have

∂F (�)

∂� j
= −ψ j (� j )�1− j (�1− j ), j = 0, 1. (4.6)

The total probability flux is J (x0, t ) = J0(x0, t ) + J1(x0, t ).
Laplace transforming Eq. (4.4) with respect to t and noting

that S(x0, 0) = 1 gives

sS̃(x0, s) − 1 = −J̃ (x0, s). (4.7)
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FIG. 2. Same as described in the caption of Fig. 1 except that the particle diffuses in the unbounded domain exterior to �.

Since −∂S/∂t is the probability density of the stopping time
T , Eq. (2.8), we see that the MFPT (if it exists) is

T (x0) = −
∫ ∞

0
t
∂S(x0, t )

∂t
dt =

∫ ∞

0
S(x0, t )dt

= S̃(x0, 0) = − ∂ J̃ (x0, s)

∂s

∣∣∣∣
s=0

. (4.8)

Similarly, higher-order moments of the FPT density are given
by higher-order derivatives of J̃ (x0, s). We conclude that the
statistics of absorption can be determined from the Laplace
transformed fluxes

J̃ j (x0, s) =
∫

∂�

dx
∫

D�
∂�(�)

∂� j
L−1

�0
L−1

�1
[P j (x, z, s)]. (4.9)

In turn, the latter is computed by solving the propagator BVP
(3.10) for P0,P1 and then inverting the Laplace transforms
with respect to z0, z1.

So far we have assumed that the particle diffuses within
the bounded domain �. A complementary scenario is shown
in Fig. 2, where the particle now diffuses in the unbounded
domain exterior to �. The only modification of the propagator
BVPs (3.5) and (3.10) is that � is replaced by �c = Rd\�,
since ∂�c = ∂�. However, it is well known that the MFPT
for diffusion in an unbounded domain is infinite. One way to
obtain a finite MFPT is to introduce some form of stochastic
resetting (see the recent review [22]). In the case of diffusion
with resetting in Rd , one typically assumes that the position
of the particle is instantaneously reset to its initial position x0,
say, at a random sequence of times generated by a Poisson
process with rate r [23–25]. We have previously shown how
to modify the resetting rule in the case of a boundary that
randomly switches between a totally absorbing state and a
totally reflecting state [26], see also Ref. [27]. More recently,
we have also considered diffusion with resetting in a domain
with a partially absorbing boundary and no switching [28].
Based on these studies, suppose that prior to absorption, the
following resetting protocol occurs at a Poisson rate r [29]:

Xt → x0, �t → (0, 0), Nt → j with probability ρ j .

(4.10)

Using renewal theory, one finds that the Laplace transform
of the survival probability with resetting, which we denote
by Sr (x0, t ), is related to the corresponding function without
resetting according to [28]

S̃r (x0, s) = S̃(x0, r + s)

1 − rS̃(x0, r + s)
. (4.11)

Taking the limit s → 0 and denoting the corresponding MFPT
with resetting by Tr (x0), we have

Tr (x0) = S̃(x0, r)

1 − rS̃(x0, r)
= 1 − J̃ (x0, r)

rJ̃ (x0, r)
. (4.12)

Therefore, Eq. (4.9) can also be used to calculate Tr (x0).

V. DIFFUSION ON THE HALF-LINE

We now illustrate the basic theory developed in the previ-
ous sections by considering diffusion in the semifinite interval
� = [0,∞) with the boundary ∂� = {0} effectively switch-
ing between a totally reflecting and a partially absorbing state.
This is a 1D version of the scenario shown in Fig. 2. We first
solve the hybrid propagator BVP and then invert with respect
to z to determine the flux through x = 0 using Eq. (4.9). This
will then be used to calculate the MFPT with resetting accord-
ing to Eq. (4.12). Even for this relatively simple geometry, the
analysis is quite involved.

A. Calculation of the propagators

The 1D version of the Laplace transformed BVP (3.10)
takes the form

D
∂2P0(x, z, s)

∂x2
− (s + α)P0(x, z, s) + βP1(x, z, s)

= −ρ0δ(x − x0), 0 < x < ∞, (5.1a)

D
∂2P1(x, z, s)

∂x2
+ αP0(x, z, s) − (s + β )P1(x, z, s)

= −ρ1δ(x − x0), 0 < x < ∞, (5.1b)

∂P j (x, z, s)

∂x

∣∣∣∣
x=0

= z jP j (0, z, s), j = 0, 1. (5.1c)
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Set

P j (x, z, s) = ρ jG(x, s|x0) + F j (x, z, s), (5.2)

where G is the modified Helmholtz Green’s function with

D
∂2G(x, s|x0)

∂x2
− sG(x, s|x0) = −δ(x − x0) (5.3)

for 0 < x < ∞ and G(0, s|x0) = 0. It is straightforward to
show from the method of images that

G(x, s|x0) = 1

2
√

sD
[e−μ(s)|x−x0| − e−μ(s)(x+x0 )], (5.4)

with μ(s) = √
s/D. Given the definition of G, it follows that

F j (x, z, s), j = 0, 1, satisfy the system of equations and

D
∂2F0(x, z, s)

∂x2
− (s + α)F0(x, z, s) + βF1(x, z, s) = 0,

(5.5a)

D
∂2F1(x, z, s)

∂x2
+ αF0(x, z, s) − (s + β )F1(x, z, s) = 0,

(5.5b)

∂F j (x, z, s)

∂x

∣∣∣∣
x=0

− z jF j (0, z, s)

= −ρ j
∂G(x, s|x0)

∂x

∣∣∣∣
x=0

, x ∈ ∂�, j = 0, 1. (5.5c)

Adding Eqs. (5.5a) and (5.5b) implies that

D
∂2F (x, z, s)

∂x2
− sF (x, z, s) = −δ(x − x0) (5.6)

for 0 < x < ∞ and F = F0 + F1. However, we do not have
an explicit boundary condition for F . Therefore, we impose
the inhomogeneous Dirichlet boundary condition F (0, z, s) =
f (z, s) with f to be determined. The equation for F can then
be solved using Green’s second identity,

F (x, z, s) = D f (z, s)∂yG(y, s|x)|y=0 = f (z, s)e−μ(s)x. (5.7)

The next step is to set F0 = F − F1 in Eq. (5.5b):

D
∂2F1(x, z, s)

∂x2
− (s + α + β )F1(x, z, s) = −αF (x, z, s).

(5.8)

Imposing the Dirichlet boundary condition F1(0, z, s) =
f1(z, s) for a second unknown function f1, we obtain the
solution

F1(x, z, s) = f1(z, s)e−ν(s)x + α

∫ ∞

0
G(x, s + α + β|y)

× F (y, z, s)dy, (5.9)

with ν(s) = √
[s + α + β]/D. Substituting for F using

Eq. (5.7) gives

F1(x, z, s) = f1(z, s)e−ν(s)x + K (x, s) f (z, s), (5.10)

with

K (x, s) = α

∫ ∞

0
G(x, s + α + β|y)e−μ(s)ydy. (5.11)

The final step is to determine the unknown functions
f1(z, s) and f (z, s) by imposing the pair of boundary condi-
tions (5.5c). First consider the case j = 1. Since K (0, s) = 0,
it follows from Eq. (5.10) that F1(0, z, s) = f1(z, s) and thus

z1 f1(z, s) = ∂xF1(0, z, s) + ρ1∂xG(0, s|x0)

= −ν(s) f1(z, s) + ρ1

D
e−μ(s)x0 + K (s) f (z, s),

where ′ indicates differentiation with respect to x and K (s) ≡
K ′(0, s) with

K (s) = α

D

∫ ∞

0
e−ν(s)ye−μ(s)ydy = 1

D

α

μ(s) + ν(s)
. (5.12)

We thus obtain the first condition relating f and f1:

[z1 + ν(s)] f1(z, s) = ρ1

D
e−μ(s)x0 + K (s) f (z, s). (5.13)

The second condition is obtained by setting j = 0 and F0 =
F − F1 in Eq. (5.5c):

∂xF (0, z, s) − ∂xF1(0, z, s)

= z0[F (0, z, s) − F1(0, z, s)] − ρ0∂xG(0, s|x0),

which can be rearranged to give

∂xF (0, z, s) − z0F (0, z, s) = (z1 − z0) f1(z, s) − 1

D
e−μ(s)x0 .

(5.14)

Substituting for F using Eq. (5.7) then gives

1

D
e−μ(s)x0 − [μ(s) + z0)] f (z, s) = (z1 − z0) f1(z, s). (5.15)

Finally, combining Eqs. (5.13) and (5.15) yields the solutions

f (z, s) = D−1[ν(s) + z0]e−μ(s)x0

[ν(s) + z1][μ(s) + z0] + K (s)(z1 − z0)
, (5.16)

and

f1(z, s) = e−μ(s)x0

D

[
ν(s) + z1 − (z0 − z1)K (s)

μ(s) + z0

]−1

×
[
ρ1 + K (s)

μ(s) + z0

]
. (5.17)

B. Calculation of the absorption flux and the
MFPT with resetting

Since the boundary at x = 0 is totally reflecting when
Nt = 0, it follows that the stopping local time distribution
�0(�) = 1 for all � and J0(x0, t ) = 0. Hence, the total flux due
to absorption is

J (x0, t ) =
∫

D�ψ1(�1)P1(0, �, t ), (5.18)

where ψ1(�) = −� ′
1(�) is the stopping local time density for

the absorbing state. Laplace transforming with respect to time
t , we have

J̃ (x0, s) =
∫ ∞

0
d�1 ψ1(�1)L−1

�1
P1(0, z0 = 0, z1, s). (5.19)
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Substituting for P1 using Eq. (5.10) gives

J̃ (x0, s) =
∫ ∞

0
d�1 ψ1(�1)L−1

�1
f1(z0 = 0, z1, s). (5.20)

Setting z0 = 0 in Eq. (5.17) yields

f1(z0 = 0, z1, s) = �(s)

z1 + ν(s)
, (5.21)

where

�(s) =
[

1 + ρ1μ(s)

K (s)

]
e−μ(s)x0

D
, (5.22)

and

ν(s) = ν(s)μ(s)

μ(s) + K (s)
, ν(s) =

√
s + α + β

D
. (5.23)

Hence,

J̃ (x0, s) =
∫ ∞

0
d�ψ1(�)�(s)e−ν(s)� = ψ̃1(ν(s))�(s).

(5.24)

We can now investigate the behavior of the MFPT with
resetting Tr by substituting Eq. (5.24) into Eq. (4.12) for s = r,
where r is the resetting rate. For the sake of illustration, we
take ψ1 to be the γ distribution:

ψgam(�) = γ (γ �)a−1e−γ �

�(a)
, ψ̃gam(z) =

(
γ

γ + z

)a

, a > 0,

(5.25)
where �(a) is the γ function

�(a) =
∫ ∞

0
e−t t a−1dt . (5.26)

The parameter γ determines the effective absorption rate so
that the surface ∂� is totally reflecting in the limit γ → 0
and totally absorbing in the limit γ → ∞ when Nt = 1. (In
the latter case, if x0 > 0, then the particle is absorbed as
soon as it reaches x = 0.) If a = 1, then ψgam reduces to
the exponential distribution with constant reactivity γ , that
is, ψgam(�)|a=1 = γ e−γ �. The parameter a thus characterizes
the deviation of ψgam(�) from the exponential case. If a < 1
(a > 1), then ψgam(�) decreases more rapidly (slowly) as a
function of the local time �.

Clearly Tr is going to be an increasing function of a and
a decreasing function of γ . It will also decrease when the
relative amount of time that the boundary is in the partially
absorbing state (ρ1) increases. Since the domain � is un-
bounded, we also expect the MFPT Tr to be a unimodal
function of the resetting rate r with a minimum at some
optimal rate ropt. What is less clear is how ropt varies with
other model parameters. We also want to explore how the
MFPT depends on the relative rate of switching for fixed
ρ1, which is determined by � = α + β, and to compare the
results for a partially absorbing state (finite γ ) with a totally
absorbing state (γ → ∞). To perform the latter comparison,
we introduce the normalized MFPT

�Tr (x0) ≡ Tr (x0)

Tr,∞(x0)
, Tr,∞(x0) = lim

γ→∞ Tr (x0), (5.27)

where Tr,∞(x0) is the MFPT in the case of switching between
a totally reflecting and a totally absorbing boundary condition.
Since Tr,∞(x0) is independent of the parameters (a, γ ), this
essentially allows us to separate out the dependence on the
γ distribution. Moreover, although Tr and Tr,∞ blow up in
the limit ρ1 → 0 (no absorption), we find that their ratio
converges to a finite value. Therefore, we set

T r (x0) = �Tr (x0)

limρ1→0 �Tr (x0)
. (5.28)

Finally, we fix the length and time scales by setting D = 1 and
x0 = 1.

In Fig. 3 we plot Tr as a function of the resetting rate
for various combinations of (a, γ ) and α = β = 0.5. It can
be seen that Tr is indeed a unimodal function of r with a
minimum at an optimal rate ropt. Moreover, we find that ropt

is an increasing function of γ and a decreasing function of
a. The curves converge in the limit γ → ∞ for fixed a. In
Fig. 4(a) we plot the normalized MFPT T r as a function of ρ1

for different values of the parameter a. It can be seen that up to
a critical value of a (which depends on r and γ ), increasing ρ1

increases the normalized MFPT. This implies that the MFPT
Tr,∞ decreases more quickly than Tr as the relative time spent
in the state n = 1 increases. Beyond this critical value of
a, the normalized MFPT is a decreasing function of ρ1. It
also follows that the normalized MFPT T r is a nonmonotonic
function of a for fixed ρ1 as illustrated in Fig. 4(b). In Fig. 5(a)
we plot Tr as a function of r for different values of a and
�. We also take ρ1 = 0.5 so that α = 0.5�. We observe a
nontrivial crossover effect, namely, increasing the switching
rate � decreases Tr for small a but increases Tr for large a.
Finally, in Fig. 5(b) we plot the normalized MFPT T r as a
function of ρ1 for various �, showing a switch in behavior
as � increases. This is analogous to the switch in behavior in
Fig. 4(a).

C. Fast switching limit

One subtle feature of switching systems is what happens
in the fast switching limit α, β → ∞. To investigate such a
limit we introduce the scalings α, β → α/ε, β/ε with α, β =
O(1). The Laplace transformed BVP (3.10) for diffusion in
� ⊂ Rd becomes

D
∂2P0(x, z, s)

∂x2
−

[
s + α

ε

]
P0(x, z, s) + β

ε
P1(x, z, s)

= −ρ0δ(x − x0), 0 < x < ∞, (5.29a)

D
∂2P1(x, z, s)

∂x2
+ α

ε
P0(x, z, s) −

[
s + β

ε

]
P1(x, z, s)

= −ρ1δ(x − x0), 0 < x < ∞, (5.29b)

∂P j (x, z, s)

∂x

∣∣∣∣
x=0

= z jP j (0, z, s), j = 0, 1. (5.29c)

It is tempting to carry out an adiabatic approximation of
Eqs. (5.29a,b) by decomposing the density P j as

P j (x, z, s) = ρ jP (x, z, s) + εW j (x, z, s), (5.30)

where
∑

j=0,1 W j = 0 and P = P0 + P1 with

D∇2P (x, z, s) − sP (x, z, s) = −δ(x − x0). (5.31)
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FIG. 3. MFPT Tr for diffusion in the half-line with the boundary condition at x = 0 switching between a totally reflecting state and a
partially absorbing state governed by the γ distribution (5.25) with parameters (a, γ ). We take the switching rates α = β = 0.5 and set D = 1,
x0 = 1. (a) Plot of Tr as a function of r for various values of γ and a = 1, which corresponds to the exponential distribution (constant reactivity).
(b) Corresponding plots Tr for various values of a and γ = 1. The dotted curve corresponds to the totally absorbing case (γ → ∞).

The problem is that the leading order approximation P j =
ρ jP does not satisfy the pair of boundary conditions (5.29c)
when z0 �= z1. However, it is possible to satisfy the single
boundary condition that is obtained by summing with respect
to j:

∂P (x, z, s)

∂x

∣∣∣∣
x=0

=
∑
j=0,1

z jP j (0, z, s). (5.32)

Setting P j = ρ jP gives

∂P (x, z, s)

∂x

∣∣∣∣
x=0

= zP (0, z, s), z =
∑
j=0,1

ρ j z j . (5.33)

We thus have a closed equation for P given by Eqs. (5.31)
and (5.33). Finally, the solution for the individual compo-
nents Pn in the fast switching limit can be obtained using
matched asymptotics. That is, the outer solution P j (x, z, s) =
ρ jP (x, z, s) for x > 0 is matched with an inner solution that
holds within a boundary layer around x = 0 so that it satisfies
the remaining boundary condition. Analogous methods have

previously been applied to models of molecular motor trans-
port [30,31] and Brownian motion with switching diffusivities
[32]. The need for a boundary layer also arises when deriving
a Robin boundary condition via the temporal homogenization
of a stochastically switching boundary [33].

Rather than implementing the matched asymptotic analysis
here, we apply the fast switching limit directly to the solutions
(5.16) and (5.17). First, taking the limits α, β → ∞ with
ρ0, ρ1 fixed in Eq. (5.16) gives

f (z, s) ∼ 1

D

ν(s)e−μ(s)x0

ν(s)[μ(s) + z0] + α(z1 − z0)/ν(s)D

∼ 1

D

e−μ(s)x0

μ(s) + z
. (5.34)

We thus obtain the following adiabatic approximation [34]:

P (x, z, s) ∼ G(x, s|x0) + 1

D

e−μ(s)x0

μ(s) + z
e−μ(s)x, (5.35)

FIG. 4. Normalized MFPT T r for diffusion in the half-line with the boundary condition at x = 0 switching between a totally reflecting
state and a partially absorbing state governed by the γ distribution (5.25) with parameters (a, γ ). We take α + β = 1, D = 1, γ = 1, and
x0 = 1. (a) Plot of T r as a function of ρ1 = α/(α + β ) for various values of a and r = 1. (b) Corresponding plots of T r as a function of the
distribution parameter a for various values of r with ρ1 = 0.5.
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FIG. 5. (a) Plot of MFPT Tr as a function of the resetting rate r for various values of a and α with ρ1 = 0.5. (b) Plot of normalized MFPT
T r as a function of ρ1 for various values of � = α + β with r = 1 and a = 2. Other parameters are D = 1, γ = 1, and x0 = 1.

which is precisely the solution to Eqs. (5.31) and (5.33).
Similarly, taking the fast switching limit of Eq. (5.17) shows
that

P1(0, z, s) ≡ f1(z, s) ∼ ρ1

D

e−μ(s)x0

μ(s) + z
. (5.36)

That is, P1(0, z, s) = ρ1P (0, z, s). (However, ∂xP1(0, z, s) �=
ρ1∂xP (0, z, s), which reflects the existence of a boundary
layer of size 1/

√
ε that ensures the correct boundary condition

for P1 is satisfied.)
Given the approximation (5.36), the associated flux in

Eq. (5.19) becomes

J̃ (x0, s) = ρ1e−μ(s)x0

D

∫ ∞

0
d�1 ψ1(�1)L−1

�1

1

μ(s) + ρ1z1

= e−μ(s)x0

D
ψ̃1(μ(s)/ρ1). (5.37)

It can be checked numerically that the solution (5.24) con-
verges to the solution (5.37) in the fast switching limit.
We conclude that the only difference between the flux
into a partially absorbing surface without switching and
the corresponding flux due to fast switching between a to-
tally reflecting surface and a partially absorbing surface
is the scaling ψ̃1[μ(s)] → ψ̃1[μ(s)/ρ1], where ψ̃1 is the
Laplace transform of the stopping local time density and ρ1

is the relative amount of time that the boundary is partially
absorbing.

VI. SPECTRAL THEORY IN HIGHER
SPATIAL DIMENSIONS

It turns out the the analysis of the 1D BVP (5.1) devel-
oped in Sec. V can be extended to higher-dimensions using
spectral theory. It has previously been shown that in the ab-
sence of switching, one can use the spectral decomposition
of a so-called Dirichlet-to-Neumann operator defined on the
boundary ∂� [16]. The basic idea is to decompose the solution
of the propagator BVP (2.5) according to

P (x, z, s|x0) = G(x, s|x0) + F (x, z, s|x0), (6.1)

where G is the higher-dimensional version of the modified
Helmholtz Green’s function (5.3) and

D∇2F (x, z, s|x0) − sF (x, z, s|x0) = 0, x ∈ �, (6.2a)

∇F (x, z, s|x0) · n + zF (x, z, s|x0)

= −∇G(x, s|x0) · n, x ∈ ∂�. (6.2b)

Replacing the Robin boundary condition by the Dirichlet con-
dition F (x, z, s|x0) = f (x, z, s) leads to the equation

Ls[ f ](x, z, s) + z f (x, z, s) = −∂σ G(x, s|x0), (6.3)

where Ls is the Dirichlet-to-Neumann operator

Ls[ f ](x, s) = −D∂σ

∫
∂�

∂σ ′G(x′, s|x) f (x′, s)dx′, (6.4)

∂σ ≡ n · ∇x and ∂σ ′ ≡ n · ∇x′ . When the surface ∂� is
bounded, the Dirichlet-to-Neumann operator Ls has a discrete
spectrum. That is, there exist countable set of eigenvalues
λn(s) and eigenfunctions vn(x, s) satisfying (for fixed s)

Lsvn(x, s) = λn(s)vn(x, s), n � 0. (6.5)

It can be shown that the eigenvalues are nonnegative and
that the eigenfunctions form a complete orthonormal basis
in L2(∂�). Hence, we can solve Eq. (6.3) by introducing an
eigenfunction expansion

f (x, z, s) =
∞∑

m=0

fm(z, s)vm(x, s). (6.6)

This yields the result [16]

P (x, z, s|x0) = G(x, s|x0) + 1

D

∞∑
n=0

Vn(x, s)V∗
n (x0, s)

λn(s) + z
,

(6.7)
where

Vn(x, s) = −D
∫

∂�

vn(x′, s)∂σ ′G(x′, s|x)dx′. (6.8)

An analogous spectral decomposition can be performed in
the case of the solution of the switching system (3.10) by
following the same sequence of steps as the 1D case.
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(i) Set (after dropping the explicit dependence on initial
conditions)

P j (x, z, s) = ρ jG(x, s|x0) + F j (x, z, s), (6.9)

where

D∇2F0(x, z, s) − (s + α)F0(x, z, s) + βF1(x, z, s) = 0,

(6.10a)

D∇2F1(x, z, s) + αF0(x, z, s) − (s + β )F1(x, z, s) = 0,

(6.10b)

∇F j (x, z, s) · n + z jF j (x, z, s)

= −ρ j∇G(x, s|x0) · n, x ∈ ∂�. (6.10c)

Adding Eqs. (6.10a,b) and setting F = F0 + F1 gives

D∇2F (x, z, s) − sF (x, z, s) = 0, x ∈ �, (6.11)

which is supplemented by the Dirichlet boundary condition
F (x, z, s) = f (x, z, s) for x ∈ ∂� and an unknown function
f . We thus obtain the formal solution

F (x, z, s) = −D
∫

∂�

∂σ ′G(x′, s|x) f (x′, z, s)dx′. (6.12)

(ii) Set F0 = F − F1 in Eq. (6.10b) so that

D∇2F1(x, z, s) − (s + α + β )F1(x, z, s) = −αF (x, z, s)

(6.13)

for x ∈ �, and impose the second Dirichlet boundary condi-
tion F1 = f1 for x ∈ ∂�. This leads to the formal solution

F1(x, z, s)

= −D
∫

∂�

∂σ ′G(x′, s + α + β|x) f1(x′, z, s)dx′

+ α

∫
�

G(x, s + α + β|y)F (y, z, s)dy, for x ∈ �.

(6.14)

(iii) Derive a pair of self-consistency conditions for the
unknown functions f and f1 by imposing the Robin boundary
conditions (6.10c). First, substituting Eq. (6.14) into (6.10c)
with j = 1, we have

z1 f1(x, z, s) + α

∫
�

∂σ G(x, s + α + β|y)F (y, z, s)dy

− D∂σ

∫
∂�

∂σ ′G(x′, s + α + β|x) f1(x′, z, s)dx′

= −ρ j∂σ G(x, s|x0), x ∈ ∂�. (6.15)

Denote the integral on the first line by I. Substituting for F
using Eq. (6.12) then implies that

I = −D
∫

�

∂σ G(x, s + α + β|y)

×
∫

∂�

∂σ ′G(x′, s|y) f (x′, z, s)dx′dy

= −D∂σ

∫
∂�

∂σ ′H (x′, s|x, s + α + β ) f (x′, z, s)dx′

≡ Ls,s+α+β [ f ](x, z, s), x ∈ ∂�,

where

H (x′, s|x, τ ) ≡
∫

�

G(x′, s|y)G(x, τ |y)dy, (6.16)

and Ls,τ is a second Dirichlet-to-Neumann operator on ∂�.
We can thus write Eq. (6.15) in the more compact form

αLs,s+α+β [ f ] + Ls+α+β [ f1] + z1 f1 = −ρ1∂σ G. (6.17)

(iv) The second self-consistency condition is obtained by
setting F0 = F − F1 in Eq. (6.10c) with j = 0:

∂σF (x, z, s) − ∂σF1(x, z, s) + z0[F (x, z, s) − F1(x, z, s)]

= −ρ0∂σ G(x, s|x0), x ∈ ∂�. (6.18)

This can be rearranged to give

∂σF (x, z, s) + z0F (x, z, s)

= (z0 − z1) f1(x, z, s) − ∂σ G(x, s|x0), x ∈ ∂�. (6.19)

Finally, using Eq. (6.12) and the definition (6.4) of the
Dirichlet-to-Neumann operator Ls, we have

Ls[ f ] + z0 f = (z0 − z1) f1 − ∂σ G. (6.20)

(v) In the 1D case the boundary ∂� is a single point so
the resulting operator equations are simply scalars. Equa-
tions (6.17) and (6.20) thus reduce to Eqs. (5.13) and (5.15),
respectively, and we can solve for f and f1 without the need
for any spectral decompositions. For d > 1, we substitute the
eigenvalue expansions (6.6) and

f1(x, z, s) =
∞∑

m=0

f1,m(z, s)vm(x, s) (6.21)

into Eqs. (6.17) and (6.20) and take the inner product with the
adjoint eigenfunction v∗

n (x, s). First, Eq. (6.20) reduces to the
form

(λn(s) + z0) fn(s) = (z0 − z1) f1,n(s) + 1

D
Vn(s), (6.22)

with Vn defined in Eq. (6.8). Second, Eq. (6.17) becomes

[λn(s + α + β ) + z1] f1,n(s) +
∑
m�0

Hnm(s) fm(s) = ρ1

D
Vn(s),

(6.23)
where

Hnm(s) = −D
∫

∂�

v∗
n (x, s)∂σ

×
{∫

∂�

vm(x′, s)∂σ ′H (x′, s|x, s + α + β )dx′
}

dx.

(6.24)

The orthogonality condition∫
∂M

v∗
n (x, s)vm(x, s)dx = δm,n (6.25)

means that v∗
n and vm can each be taken to have dimensions of

[Length]−(d−1)/2. It also follows that Hnm(s) has dimensions
of inverse length.
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(vi) Use Eq. (6.22) to express fn(s) in terms of f1,n(s) and
substitute the result into Eq. (6.23):

[λn(s + α + β ) + z1] f1,n(s) +
∑
m�0

Hnm(s)

× (z0 − z1) f1,m(s) + Vm(s)/D

λm(s) + z0
= ρ1

D
Vn(s). (6.26)

Finally, introducing the vectors f1(s) = ( f1,n(s), n � 0) and
g(s) = (Vn(s)/D, n � 0), we can formally write the solution
for f1(s) as

f1(s) = [M(s + α + β, z1) + (z0 − z1)H(s)M(s, z0)−1]−1

× [ρ1I − H(s)M(s, z0)−1]g(s), (6.27)

where H(s) is the matrix with elements Hnm(s) and M(s, z) =
diag[λ1(s) + z, λ2(s) + z, . . .]. Note that Eq. (6.27) is the
higher-dimensional version of the solution (5.17).

A. Partially absorbing sphere

One example where the spectral decompositions of the
Dirichlet-to-Neumann operator Ls is known exactly is a par-
tially absorbing sphere. Let � = {x ∈ R3, 0 < |x| < R} so
that ∂� = {x ∈ R3, |x| = R}. The rotational symmetry of �

implies that if Ls is expressed in spherical polar coordinates
(ρ, θ, φ), then the eigenfunctions are given by spherical har-
monics, and are independent of the Laplace variable s and the
radius ρ:

vnm(θ, φ) = 1

R
Y m

n (θ, φ), n � 0, |m| � n. (6.28)

From orthogonality, it follows that the adjoint eigenfunctions
are

v∗
nm(θ, φ) = v∗

nm(θ, φ) = (−1)m 1

R
Y −m

n (θ, φ). (6.29)

[Note that eigenfunctions are labeled by the pair of indices
(nm).] The corresponding eigenvalues are [35]

λn(s) = μ(s)
i′n[μ(s)R]

in[μ(s)R]
, (6.30)

where μ(s) = √
s/D and in is a spherical modified Bessel

function of the first kind. Since the nth eigenvalue is inde-
pendent of m, it has a multiplicity 2n + 1. It is also possible
to compute the projection of the boundary flux in Eq. (6.8)
by using appropriate series expansion of the corresponding
Green’s function. In particular, one finds that [16,35]

−D∂σ G(x′, s|x) =
∞∑

n=0

2n + 1

4πR2
Pn[x′ · x/(ρR)]

in[μ(s)ρ]

in[μ(s)R]
,

(6.31)

with |x′| = R, |x| = ρ < R, and Pn(x) a Legendre polynomial.
Hence, since ∂σ ′ = −∂/∂ρ ′, we have

Vnm(x, s) ≡ D
∫

|x′|=R
vnm(θ ′, φ′)

∂

∂ρ ′ G(x′, s|ρ, θ, φ)dx′

= −vnm(θ, φ)
in[μ(s)ρ]

in[μ(s)R]
, (6.32)

with x = (ρ, θ, φ), x′ = (ρ ′, θ ′, φ′), and ρ < R. Finally, the
matrix H(s) in Eq. (6.24) becomes, after setting y = (ρ̄, θ̄ , φ̄),

Hnm,n′m′ (s) = −D
∫

�

dy
{∫

∂�

dx v∗
nm(θ, φ)

∫
∂�

dx′ vn′m′

× (θ ′, φ′)
∂

∂ρ ′ G(x′, s|y)
∂

∂ρ
G(x, s + α + β|y)

}

= −D
∫

�

dy
{
vnm(θ̄ , φ̄)vn′m′ (θ̄ , φ̄)

× in[ν(s)|y|]
in[ν(s)R]

in′[μ(s)|y|]
in′[μ(s)R]

}

= −D
∫ R

0

{
in[ν(s)ρ̄]

in[ν(s)R]

in′[μ(s)ρ̄]

in′[μ(s)R]

}
ρ̄2d ρ̄

×
[∫

∂�

v∗
nm(θ̄ , φ̄)vn′m′ (θ̄ , φ̄)dx

]

= −Dδn,n′δm,m′

∫ R

0

{
in[ν(s)ρ̄]

in[ν(s)R]

in[μ(s)ρ̄]

in[μ(s)R]

}
ρ̄2dρ̄.

(6.33)

That is, H is a diagonal matrix.
We conclude that in the case of a sphere, one can obtain

explicit expressions for the doubly Laplace-transformed prop-
agators. However, to incorporate a nonexponential local time
distribution � j (� j ) for partial absorption in the state Nt = j,
it is necessary to invert the Laplace transform with respect to
z. In general, this would have to be implemented numerically.

VII. DISCUSSION

In this paper we combined two distinct sources of complex-
ity in diffusion-mediated surface absorption. The first involves
a general probabilistic rule for partial absorption, in which
the surface reactivity depends on the number of encounters
between a diffusing particle and the surface. The encounter
rate is determined by the boundary local time, and partial
absorption can be formulated mathematically in terms of the
generalized propagator P(x, �, t ). The second type of com-
plexity arises when there is random switching between two
distinct surface boundary conditions, which we assume is due
to the particle switching between two different conformational
states labeled by j = 0, 1. If at least one of the boundary
conditions is partially absorbing, then it is necessary to intro-
duce a pair of boundary local times � = (�0, �1), which keep
track of surface-particle encounters in each of the discrete
states, and a corresponding pair of generalized propagators
Pj (x, �, t ), j = 0, 1. The latter evolve according to a system
of differential CK equations that can be solved by performing
a double Laplace transform with respect to �0 and �1.

One major assumption of the hybrid model was that the
surface-particle interactions in the different discrete states
were statistically uncorrelated. This allowed us to define a
probabilistic rule for partial absorption in which the stop-
ping local time distribution decomposed into the product
�(�0, �1) = �0(�0)�1(�1). That is, the probability of absorp-
tion when the particle was in the discrete conformational state
j ∈ {0, 1} only depended on the local time accumulated whilst
in that state. Such a rule reduced to switching Robin boundary
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conditions in the case of constant reactivities. In future work
it would be interesting to explore probabilistic rules for which
�(�0, �1) �= �0(�0)�1(�1). However, the physical interpreta-
tion of the resulting switching absorption process is less clear.

Another possible extension of the theory would be to
treat the interior of the bounded domain � in Fig. 2 as
a partially absorbing substrate or trap. The diffusing par-
ticle can now freely enter and exit �, and the probability
of being absorbed depends on the amount of time spent
within � (in the absence of switching). The latter is speci-
fied by another Brownian functional known as the occupation
time At [9]. We have recently shown how to extend the
encounter-based approach to partially absorbing substrates
without switching by constructing the generalized propagator
for the occupation time At rather than the local accumulation
time �t [18]. Moreover, the corresponding propagator BVP
can be solved by computing the spectral decomposition of
an associated Dirichlet-to-Neumann operator [36]. Follow-
ing along analogous line to partially absorbing surfaces, we
could take into account stochastic switching between differ-
ent conformational states by introducing a corresponding set

of state-dependent occupation times and generalized prop-
agators. The latter would evolve according to a system of
differential CK equations that is the analog of Eqs. (3.5).

Finally, a number of recent statistical analyzes of single-
particle tracking (SPT) experiments [37–39] suggest that
proteins within living cells can switch between different
discrete states with different diffusivities. Such switching
could be due to interactions between proteins and the actin
cytoskeleton [37] or due to protein-lipid interactions [40].
These observations have motivated several analytical studies
of Brownian particles with switching diffusivities [32,41–43].
It is typically assumed that when a particle is in the dis-
crete conformational state Nt = j ∈ {0, 1}, its corresponding
diffusivity is Dj with D0 �= D1. One can then introduce a
corresponding pair of probability densities p j (x, t ), j = 0, 1,
which evolve according to a differential CK equation that
takes into account transitions between the discrete states.
However, such models do not incorporate the effects of
particle-surface interactions that may play a role in such
switching. A modified version of our switching propagator
model could be one way to take into account such interactions.
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