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Kinematics of persistent random walkers with two distinct modes of motion
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We study the stochastic motion of active particles that undergo spontaneous transitions between two distinct
modes of motion. Each mode is characterized by a velocity distribution and an arbitrary (anti)persistence.
We present an analytical formalism to provide a quantitative link between these two microscopic statistical
properties of the trajectory and macroscopically observable transport quantities of interest. For exponentially
distributed residence times in each state, we derive analytical expressions for the initial anomalous exponent,
the characteristic crossover time to the asymptotic diffusive dynamics, and the long-term diffusion constant. We
also obtain an exact expression for the time evolution of the mean square displacement over all timescales and
provide a recipe to obtain higher displacement moments. Our approach enables us to disentangle the combined
effects of velocity, persistence, and switching probabilities between the two states on the kinematics of particles
in a wide range of stochastic active or passive processes and to optimize the transport quantities of interest with
respect to any of the particle dynamics properties.
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I. INTRODUCTION

Transport processes and active motion in nature often
consist of more than one motility state. Examples in biolog-
ical systems include swimming of bacteria [1], migration of
dendritic cells [2], chemical signal transport in neuronal den-
drites [3], searching for specific target sites by DNA-binding
proteins [4,5], growth of biopolymers [6,7], and motion of
molecular motors along a cytoskeleton [8]. While two-state
transport processes are ubiquitous in nature, stochastic pro-
cesses with multiple states have also been observed in natural
systems, such as the three-state motion of E. coli near surfaces
[9].

The dynamics of active particles is often described by the
interplay between propulsion and stochastic forces. However,
the origin of the exerted forces may be unknown in general.
Moreover, the particle dynamics does not necessarily always
originate from external fields, e.g., in robotics the occurrence
of reorientation events is controlled by the internal robot
dynamics [10,11] and the motion should be described by con-
necting the space of internal states of the robot to the physical
space in which it moves. Instead of describing the particle
dynamics based on the exerted forces, one can alternatively
obtain the macroscopically observable transport quantities of
interest from the microscopic statistical properties of the tra-
jectory, such as the velocity and turning-angle distributions
of the particle and the transition probabilities between the
possible states of motion. The solvability of such models how-
ever depends on the mathematical form of the statistics of the
particle trajectories (e.g., its turning-angle distribution), which
usually restricts the analysis to specific regimes of motion
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such as the asymptotic long-term dynamics. Nevertheless, the
intermediate- and short-time regimes of motion are often of
particular interest and the observation time of (biological) ex-
periments is typically not long enough to realize the long-term
regime. Moreover, the information extracted from trajectories,
such as the turning-angle distribution, may have a complex
form in general. Thus, a general formalism to derive the time
evolution of the transport quantities over all timescales for ar-
bitrary forms of particle trajectory statistics is required, which
is technically challenging.

To model active dynamics with multiple states, simple
combinations of stochastic processes, such as a ballistic flight
and diffusion, have been widely employed to capture some
of the specific features of these systems [12–19]. A pertinent
example is the bacterial dynamics, often modeled as ballis-
tic run phases interrupted by periods of diffusion or random
reorientation events, the so-called run-and-tumble dynamics
[20–24]. The run trajectories are however curved (even spiral
trajectories may form near surfaces [9]) and the run-phase per-
sistence, duration, and velocity vary with structural properties
of bacteria or in response to environmental changes [1,25,26].
Also, tumbling is not a diffusion but rather an active phase
with a reduced persistence; the flagellar bundles are only
partially disrupted and there remains a weak swimming power
to proceed forward [26,27]. Therefore, a simplified ballistic-
diffusive model for the bacterial dynamics is inadequate. A
full description of such multistate stochastic processes re-
quires a more complete formalism to consider underlying
correlations and memory effects and combine multiple states
of motion with arbitrary persistencies and velocities, and gen-
eral transitions between the states.

Here we present a theoretical approach to combine two
distinct stochastic processes with arbitrary persistencies and
velocity distributions. The formalism can be extended to
processes with multiple states in general. To be analytically
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tractable, we ignore possible underlying correlations and
memory effects and consider spontaneous transitions between
the two states, leading to exponential residence times in each
state. The formalism is capable of handling correlations in
general, though one should then resort to numerical methods
to extract the transport quantities. We adopt a discrete-
time process to be directly applicable to the experimental
data, which usually consist in particle positions recorded at
equidistant times. We derive an exact expression for the time
evolution of the mean square displacement (MSD) over all
timescales (with the lower time resolution being limited by the
frequency of the particle position recording, i.e., the camera
frame rate, in experiments). We also provide the recipe to
calculate higher displacement moments. The formalism pre-
sented here enables us to link macroscopically observable
transport properties, such as the asymptotic diffusion coef-
ficient D∞, to two microscopic statistical properties of the
trajectory: the velocity distribution and persistence.

Functioning in an optimal way is ubiquitously observed
in biological systems. A pertinent example is the optimiza-
tion of the escape or search times [4,9,28,29]. Minimizing
search times often corresponds to maximizing the asymptotic
diffusion coefficient D∞, as they are conversely related to
each other [30,31]. We show how D∞ depends on several
key factors, including the velocity and persistence of each
state and the switching statistics between the two states. In
practice, a biological agent may be able to vary only a few
of these parameters. For instance, bacteria can adapt their run
persistence or run-to-tumble switching frequency to enhance
their diffusivity [1]. By obtaining the derivative of D∞ with
respect to any influential parameter and maximizing it, we
can verify whether an optimal diffusion coefficient can be
achieved by varying that specific parameter and how much
the diffusivity can be enhanced.

II. MODEL

We consider a stochastic active process with two different
modes I and II of motion. Each mode is characterized by the
statistics of its velocity and persistence, as described below.
Whereas a two-state process is chosen as the most frequent
multistate process in natural systems, the formalism can be
generalized to processes with multiple states. We also note
that a two-dimensional (2D) active motion is studied here
for brevity, but nonetheless extension to three dimensions
is straightforward (see, e.g., [32] for a 3D treatment of a
single-state active process). Using a discrete-time approach,
we describe the motion by a discrete set of particle positions
recorded after successive time intervals of size �t . By setting
the time step �t to the inverse frame rate of the camera
in experiments, our formalism and results can be directly
applied to the analysis of experimental data. Note that the
time resolution in our model is restricted and the results are
applicable to timescales equal to or larger than �t . Similarly,
the temporal coarse graining imposed by the camera frame
rate in experiments discretizes the particle dynamics; the dy-
namics on timescales smaller than �t cannot be captured by
interpolation since the information is lost.

For generality, we assume that the particle moves with
a variable instantaneous velocity. At each time step, the

FIG. 1. Sketch of a sample trajectory with two states of motion.
The selected directional changes along the trajectory represent the
four possible turning angles introduced in the model: the directional
changes within the states [characterized by the turning-angle dis-
tributions RI (φ) and RII (φ)] and the changes in the direction of
motion at the switching events [characterized by the turning-angle
distributions RI→II (φ) and RII→I (φ)]. The inset magnifies the trajec-
tory around the successive time steps t − �t and t . After a change
φ = γ − β in the direction of motion at t − �t , the particle arrives
at position (x, y) along the direction γ at time t .

instantaneous velocity is drawn from an arbitrary velocity
distribution FI (v) or FII (v) for state I or II of motion, re-
spectively. The nth velocity moment in the jth state is given
as 〈vn〉 j = ∫∞

0 vnFj (v)dv. For the calculation of the MSD
presented in the Appendix, the relevant velocity moments
are only the mean and the second moment, denoted by 〈v〉I,
〈v〉II, 〈v2〉I, and 〈v2〉II. However, higher-velocity moments also
appear in the calculation of higher displacement moments as
well as other transport quantities of interest.

We introduce four turning-angle distributions for the direc-
tional change φ of the particle between successive time points
of the random walk [33,34]: RI (φ) and RII (φ) for turning
events within the states and RI→II (φ) and RII→I (φ) for changing
the direction of motion when switching between the states (see
Fig. 1). We quantify the persistence in each state by

aI =
∫ π

−π

eiφRI(φ)dφ, aII =
∫ π

−π

eiφRII(φ)dφ. (1)

In many applications, turning-angle distributions are symmet-
ric and the persistencies reduce to real numbers aI = 〈cos φ〉RI

and aII = 〈cos φ〉RII in the interval [−1, 1]. According to this
generalized definition of the persistence, one obtains a posi-
tive a j if Rj (φ) is peaked around forward directions (persistent
random walk). An isotropic Rj (φ) leads to a j = 0 (diffusion)
and a distribution which is peaked around backward directions
leads to a negative a j (antipersistent random walk). The ex-
treme values a j = +1 and −1 correspond to a ballistic motion
and a pure localization, respectively. For the general case of an
asymmetric Rj (φ), a j has a nonzero imaginary part in the ab-
sence of the left-right symmetry (a j = 〈cos φ〉Rj ± i〈sin φ〉Rj )
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which leads to a spiral trajectory [32] (as observed, e.g., for
the dynamics of E. coli near surfaces [9]).

The particle switches stochastically between the two states
with asymmetric probabilities fI→II and fII→I . Assuming con-
stant transition probabilities fI→II and fII→I leads to exponential
residence time distributions

FI(τ ) ∼ eln(1− fI→II )τ , FII(τ ) ∼ eln(1− fII→I )τ , (2)

with the mean residence times

〈τ 〉I = 1/ fI→II , 〈τ 〉II = 1/ fII→I . (3)

For nonexponential residence-time distributions see, e.g.,
[35,36]. For generality, we assume that each switching event is
accompanied by a change in the direction of motion according
to the turning-angle distribution RI→II (φ) or RII→I (φ). Similar
to the persistence of each state, the persistence at each state-
switching event can be quantified as

aI→II =
∫ π

−π

eiφRI→II (φ)dφ,

aII→I =
∫ π

−π

eiφRII→I (φ)dφ, (4)

and assuming symmetric distributions RI→II (φ) and RII→I (φ),
the above equations reduce to real numbers aI→II = 〈cos φ〉RI→II

and aII→I = 〈cos φ〉RII→I . A turning measure a j→ j′ close to
1, −1, or 0 corresponds, respectively, to slightly chang-
ing, reversing, or randomizing the direction of motion when
switching from state j to j′.

III. EVOLUTION OF THE MEAN SQUARE
DISPLACEMENT

We introduce PI
t (x, y|γ ) and PII

t (x, y|γ ) for states I and
II of motion as the joint probability density functions to
find the particle at time t at position (x, y) provided the
particle has reached this position along the direction γ (see
Fig. 1). We assume that a turning angle φ = γ − β has oc-
curred after leaving the old position (x′ = x−v�t cos γ , y′ =
y−v�t sin γ ) at the previous time step t − �t . The total
probability density Pt (x, y|γ ) is then given by Pt (x, y|γ ) =
PI

t (x, y|γ ) + PII
t (x, y|γ ). The stochastic process sketched in

Fig. 1 is described by the master equation for the probability
densities PI

t (x, y|γ ) and PII
t (x, y|γ ):

(
PI

t (x, y|γ )

PII
t (x, y|γ )

)
=
∫

dv

∫ π

−π

dβ

[
(1− fI→II )FI (v)RI (γ−β ) fII→I FI (v)RII→I (γ−β )

fI→II FII (v)RI→II (γ−β ) (1− fII→I )FII (v)RII (γ−β )

](
PI

t−�t (x
′, y′|β )

PII
t−�t (x

′, y′|β )

)
. (5)

Each of the master equations consists of two terms on the
right-hand side, which represent the possibility of being in
each of the two states in the previous time step. The change
in the direction of motion φ = γ − β is randomly chosen
from the four turning-angle distributions. Here the velocity
and turning-angle distributions are independent but they can
be correlated in general [37,38]. Also, successive velocities
are assumed to be uncorrelated for simplicity, but they can be
correlated in general. In such a case, F (v) can be replaced
with a velocity-change distribution similar to R(γ − β ). This
would lead to a convolution form after a Fourier transform,
which cannot be solved in the general form. However, it is
possible to solve the problem for at least some explicit forms
of the velocity-change distribution. Using the Fourier trans-
form of the probability density function

P̃t (k|m) =
∫ π

−π

dγ eimγ

∫
dy

∫
dx eik·rPt (x, y|γ ), (6)

the displacement moments can be extracted as

〈xayb〉(t ) = (−i)a+b ∂a+bP̃t (kx, ky|m = 0)

∂ka
x ∂kb

y

∣∣∣∣
(kx,ky )=(0,0)

. (7)

For example, using the polar representation of k as (k, α), the
x component of the MSD can be calculated as

〈x2〉(t ) = (−i)2 ∂2P̃t (k, α = 0|m = 0)

∂k2

∣∣∣∣
k=0

. (8)

We present a Fourier-z-transform technique in the Ap-
pendix to obtain analytical expressions for arbitrary displace-
ment moments for the stochastic process described by the
master equations (5) (see also [32,39]). The recipe to obtain

an arbitrary displacement moment is provided and the calcu-
lations are shown in detail to obtain an exact expression for
the time evolution of the MSD, which is of broad interest. The
formalism can be extended to extract other transport quantities
such as the first-passage properties.

The initial probabilities qI
0 and qII

0 of starting in state I or
II influence the short-time dynamics, but after some time the
probabilities qI

t and qII
t eventually converge to their steady-

state values qI
steady and qII

steady, which are not only independent
of the initial probabilities (qI

0 and qII
0 ) but also independent of

time. Note that the process of being in each state is different
from the original process defined by the particle positions
and directions. Thus, the steady state of qI

t and qII
t differs

from the long-time diffusive dynamics regime of Pt (x, y|γ ).
To estimate the timescale for reaching the steady state, the
sequence of being in state I or II can be considered as a
restricted Markov chain with transition probabilities fI→II and
fII→I . By solving

(
qI

t

qII
t

)
=
(

1 − fI→II fII→I

fI→II 1 − fII→I

)t(qI
0

qII
0

)
, (9)

it can be verified that the time evolution of the restricted
Markov chain follows

qI
t = fII→I

fI→II + fII→I

+ (1 − fII→I − fI→II )
t

fI→II + fII→I

(
fI→II q

I
0 − fII→I q

II
0

)
,

qII
t = fI→II

fI→II + fII→I

+ (1 − fII→I − fI→II )
t

fI→II + fII→I

(
fII→I q

II
0 − fI→II q

I
0

)
.

(10)
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Thus, the restricted Markov process described by the tran-
sitions between states I and II exponentially approaches the
steady-state probabilities

qI
steady = fII→I

fI→II + fII→I

, qII
steady = fI→II

fI→II + fII→I

. (11)

If the process initially starts with the steady-state probabili-
ties, i.e., qI

0 = qI
steady and qII

0 = qII
steady, the term in the last set

of parentheses on the right-hand side of Eqs. (10) will be zero
and the restricted Markov process is immediately in the steady
state. Similarly, for the specific choice of fI→II + fII→I = 1,
the exponential terms on the right-hand side of Eqs. (10)
will be zero and again the the restricted Markov process is
immediately in the steady state. The characteristic time to

exponentially approach the steady state can be obtained from
Eqs. (10) as

ts = −1

ln |1 − fI→II − fII→I |
. (12)

By choosing steady-state initial conditions, i.e., qI
0 =

qI
steady and qII

0 = qII
steady, we exclude the role of the initial con-

ditions and reduce the complexity of the short-time dynamics.
For this choice and an isotropic initial orientation, after some
calculations (see the Appendix) we obtain the following exact
expression for the time evolution of the MSD

〈r2〉(t ) = A + Bt + Ce−t/tc+ + De−t/tc− , (13)

with characteristic times

tc± = −1

ln
∣∣ aI (1− fI→II )+aII (1− fII→I )±

√
(aI (1− fI→II )−aII (1− fII→I ))2+4aI→II aII→I fI→II fII→I

2

∣∣ , (14)

which reduce to tc = −1
ln |a| for a single-state persistent ran-

dom walk (i.e., for fI→II = 0 and fII→I = 1) with persistence
a. The time-independent term A and the prefactors B, C,
and D are functions of the persistencies (aI , aII , aI→II , and
aII→I ), the switching probabilities ( fI→II and fII→I ), and the
first two velocity moments (〈v〉I, 〈v〉II, 〈v2〉I, and 〈v2〉II) (see
the Appendix). Equation (13) shows that the MSD consists
of exponentially decaying terms with t , a time-independent
term, and a term which grows linearly with t . The short-time
dynamics is mainly controlled by the exponentially decaying
and time-independent terms, whereas the linear term domi-
nates at long times. Note that only the first Fourier mode of
each turning-angle distribution, i.e., 〈cos φ〉, appears in the
calculation of the MSD and the overall form of the distribution
plays no role. Higher Fourier modes of the turning-angle dis-
tribution appear in the calculation of the higher displacement
moments. For example, 〈cos(2φ)〉 appears in the expression
for 〈r4〉(t ) [32]. Although Eq. (13) is a profitable expression
to compare with the experimental data, we advise (especially
for non-steady-state initial conditions) inserting the parameter
values into the much shorter form of the MSD before the
inverse z transform, i.e., 〈r2〉(z) given in Eq. (A25), and then
using Mathematica or any other software to apply the inverse
z transform and obtain the analytical form of the MSD as a
function of t .

Figure 2 shows the time evolution of MSD over a wide
range of timescales. Various types of anomalous diffusion,
i.e., MSD 〈r2〉(t ) not proportional to t , can be observed upon
varying the key parameters. For simplicity, we have presented
the results for aI→II = aII and aII→I = aI at the switching events,
a constant velocity in each state, and steady-state initial con-
ditions (solid lines and symbols), unless specified otherwise.
For visibility, different velocity values are used to separate the
curves from each other. The shape of the MSD profile strongly
depends on the choice of persistence parameters and switch-
ing probabilities. For a combination of two persistent random
walks, the crossover from the initial superdiffusive to the

asymptotic diffusive dynamics can be delayed by increasing
the persistencies or the residence time in the more persistent
state. A mixture of a persistent and a slightly antipersistent
walk results in a subdiffusive dynamics at short times. How-
ever, by choosing a strongly antipersistent state, an oscillatory
dynamics at short timescales emerges [40,41]. In some pa-
rameter regimes, the exponential terms of the MSD rapidly
decay and time-independent terms develop a plateau regime
over intermediate timescales; see, e.g., the red (lower) dashed
curve obtained by choosing qI

0 = 1 instead of steady-state
initial conditions. The initial conditions influence the time-
independent and exponentially decaying terms of the MSD
and diversify the anomalous diffusion on short timescales.
However, the term which grows linearly with t is independent
of the initial conditions; thus, the profiles for different initial
conditions eventually merge at long times when the crossover
to asymptotic diffusive dynamics occurs.

We present the formalism in the Appendix for an arbitrary
choice of the initial condition until Eq. (A25) for the MSD
in the z space, but then solve the inverse-z-transform problem
for the specific choice of steady-state initial conditions. Thus,
by inserting any desired initial condition into Eq. (A25) and
calculating the inverse z transform, the time evolution of MSD
can be obtained [as we did for the red (lower) dashed curve in
Fig. 2].

To see how the velocity variations influence the MSD pro-
file, we present an example of variable velocities in Fig. 2
[blue (upper) dashed curve]: A wide velocity distribution in
each state is chosen (〈v2〉I = 20〈v〉2

I and 〈v2〉II = 20〈v〉2
II). It

can be seen that the broadening of the velocity distributions
unexpectedly pushes the initial slope towards the diffusion
line by increasing the role of the linear term of the MSD.

To confirm the validity of the analytical predictions, we
perform extensive Monte Carlo simulations of the stochastic
process. We consider a 2D persistent random walk with two
different modes of motion and allow the walker to spon-
taneously change the mode of motion at each time step
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FIG. 2. Time evolution of the MSD in log-log scale. The sym-
bols denote simulation results and the lines correspond to analytical
predictions via Eq. (13). A rich variety of dynamical regimes
of anomalous motion can be observed at short and intermediate
timescales. The velocity of each state is constant except for the
blue (upper) dashed curve, which is obtained for broad uniform
velocity distributions (with 〈v2〉 = 20〈v〉2 in both states). All the
MSD profiles belong to steady-state initial conditions except for the
red (lower) dashed curve, which is obtained for the initial condition
qI

0 = 1, i.e., starting the motion in state I. In all plots we have chosen
aI→II = aII and aII→I = aI for the directional changes at the switching
events. An ensemble of 105 realizations has been considered for the
simulations and the four turning-angle distributions are uniformly
distributed around the zero change in the turning angle.

according to given asymmetric transition probabilities. By
choosing an arbitrary length unit, the step size varies within
the range [0.01,100] depending on the choice of the veloc-
ity distributions. Periodic boundary conditions are imposed
and the results are shown for the system size L = 105. The
walker starts at the center of the simulation box and the initial
orientation of motion is randomly drawn from an isotropic
distribution. For the velocity and turning-angle distributions,
we choose uniform distributions which are symmetric around
the mean velocity of each state or the turning angle φ = 0,
respectively. However, we note that choosing other arbitrary
distributions with the same first two velocity moments and
mean persistence 〈cos φ〉 leads to exactly the same MSD
profile (though higher displacement moments would differ
from those of the uniform distribution choice). Figure 2 shows
the simulation results, averaged over an ensemble of 105

realizations. The simulation results agree perfectly with the
analytical predictions.

IV. INITIAL ANOMALOUS EXPONENT

The transient dynamics is of particular interest as the time
window of experiments is practically limited. To characterize
and compare the initial growth rate of the MSD profiles, one
can assign an initial anomalous exponent to each MSD curve
by fitting it to a power law 〈r2〉(t ) ∼ tν . To this aim, we
obtain the MSD of the first two points along the curve from
Eq. (13) as 〈r2〉(t = 1) = A + B + Ce−1/tc+ + De−1/tc− and
〈r2〉(t = 2) = A + 2B + Ce−2/tc+ + De−2/tc− . The power-law
fit passes both of these points leading to ln〈r2〉(t = 2) −
ln〈r2〉(t = 1) = ν(ln 2 − ln 1), from which the initial anoma-
lous exponent can be obtained as

ν = ln

( 〈r2〉(t = 2)

〈r2〉(t = 1)

)/
ln 2. (15)

By replacing the MSD from Eq. (13) and after some algebra,
we derive the initial anomalous exponent

ν = 1 + ln

(
1 + fI→II fII→I〈v〉I〈v〉II(aI→II + aII→I ) + aI〈v〉2

I (1 − fI→II ) fII→I + aII〈v〉2
II fI→II (1 − fII→I )

fI→II〈v2〉II + fII→I〈v2〉I

)/
ln 2. (16)

For a single-state active motion, i.e., fI→II = 0 and fII→I = 1,
with persistence a and constant velocity, the above equation
reduces to ν = 1 + ln(1+a)

ln 2 [33]. Since all four persistence
parameters appear linearly and with similar prefactors, we
choose aI→II = aII and aII→I = aI at the switching events for
simplicity. In the phase diagrams presented in Fig. 3, we
show how ν depends on the remaining key parameters. The
ν ranges from 2 for ballistic motion to 1 for diffusion and 0
for zero net displacement. The onset of oscillatory dynamics
for a strongly antipersistent random walk can be identified by
setting ν = 0. Figure 3(a) shows that ν varies symmetrically in
the (aI , aII ) plane for symmetric transitions between the states,

i.e., for fI→II = fII→I . However, for an asymmetric choice of
the switching probabilities fI→II < fII→I , ν is more sensitive
to the persistence of state I, which has a longer mean resi-
dence time according to Eq. (3) [see Fig. 3(b)]. Using broad
velocity distributions as in Fig. 3(c) increases the denominator
in Eq. (16) and results in considerably smaller anomalous
exponents, which is consistent with the short-time behavior
of the MSD in Fig. 2 [blue (upper) dashed curve vs blue
(upper) solid curve]. For a mixture of persistent (aI > 0) and
antipersistent (aII < 0) states in Fig. 3(d), the combination of
switching probabilities that increases the residence time in the
persistent state, i.e., a smaller fI→II and a larger fII→I , enhances
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FIG. 3. Phase diagrams of the initial anomalous exponent according to Eq. (16). The color intensity reflects the magnitude of ν, with red
(blue) meaning superdiffusion (subdiffusion). The dotted regions denote oscillatory subdomains. We consider aI→II = aII and aII→I = aI in all
panels and choose a constant velocity (〈v〉 = 〈v2〉 = 1) in both states, except for (c). The initial anomalous exponent ν is plotted in the (aI , aII )
plane for (a) fI→II = fII→I = 0.5 and (b) fI→II = 0.1 and fII→I = 0.9. By the asymmetric choices of fI→II and fII→I , ν is influenced more strongly
by the persistence of the state with a longer mean residence time. (c) Similar parameter values as in (b) but with broad velocity distributions
(〈v〉 = 1 and 〈v2〉 = 3 in both states). Broader velocity distributions push the initial slope of the MSD towards ν = 1 (diffusion). The initial
anomalous exponent ν in the ( fI→II , fII→I ) plane for a combination of persistent and antipersistent motions characterized by (d) aI = 0.6 and
aII = −0.6 and (e) aI = 0.9 and aII = −0.9. Here ν is enhanced by the switching probabilities that lead to a longer stay in the persistent mode.

the anomalous exponent. The effect becomes stronger with in-
creasing magnitude of the persistencies aI and aII in Fig. 3(e).

V. CROSSOVER TIME TO ASYMPTOTIC
NORMAL DIFFUSION

Asymptotically, the stochastic process considered here is
described by normal diffusion, i.e., a nonpersistent motion,
since it gradually loses its memory of the initial direction and
state of motion, and the trajectory eventually gets randomized.
It can be seen from Eq. (13) that while the contribution of
the term linear in t dominates at large times, the exponential
terms decay. To estimate the crossover time to the asymp-
totic diffusive regime one can, e.g., measure the instantaneous
anomalous exponent (similar to the procedure explained in the
preceding section for the calculation of the initial anomalous
exponent ν) and follow its convergence towards 1. Alterna-
tively, the characteristic times of the exponentially decaying
terms of the MSD, i.e., tc+ and tc− , reflect the timescale to
approach the long-term dynamics. We follow the later choice
and use Eq. (14) to show how the crossover time depends on
the key parameters of the particle dynamics. Both tc+ and tc−
depend on the four persistencies aI , aII , aI→II , and aII→I and the
switching probabilities fI→II and fII→I but are independent of
the initial conditions and the velocity distributions.

To reduce the degrees of freedom, we set aI→II = aII→I = 1
(corresponding to moving straight forward at the switching
events). Figure 4 shows the behavior of tc+ as an example.
Similar results can be deduced for tc− as well. The charac-
teristic time can vary by several orders of magnitude upon
changing the remaining control parameters. For a given set
of fI→II and fII→I and a combination of two persistent random
walks, it is shown in Fig. 4(a) that tc+ grows with increasing
aI and aII . For a mixture of persistent aI and antipersistent
aII states, Fig. 4(b) reveals that the switching probabilities
that lead to a longer residence in the persistent mode, i.e.,
a larger fII→I or a smaller fI→II , enhance tc+ even by orders
of magnitude. We note that the velocity moments may also

influence the crossover time through the prefactors C and D in
Eq. (13).

VI. ASYMPTOTIC DIFFUSION CONSTANT

According to Eq. (13), the exponential terms of the MSD
gradually decay and the time-independent term also becomes
negligible compared to the linear term at long times. As the
linear term eventually dominates, the process is asymptoti-
cally diffusive and the MSD follows 〈r2〉(t→∞) ∼ Bt . By
writing the MSD in the diffusion regime as 〈r2〉(t→∞) =
2dD∞t (with d = 2 the dimension of the system), the

FIG. 4. Characteristic time tc+ via Eq. (14) in terms of (a) aI and
(b) fII→I . The switching persistencies are chosen as aI→II = aII→I = 1
in both panels. The crossover time grows by several orders of mag-
nitude by increasing the persistence of the states or increasing the
residence time in the more persistent mode. (a) Results for several
values of aII for a given set of fI→II and fII→I parameters. (b) The aI

and aII are fixed and tc+ is shown vs fII→I for several values of fI→II .
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FIG. 5. Plot of D∞ in the (a) (aI , aII ) and (b) ( fI→II , fII→I ) planes, scaled by v2�t , for a constant velocity vI = vII = v and the parameter
values (unless varied) fI→II = 0.1, fII→I = 0.9, aI = 0.9, aII = −0.9, aII→I = aI , and aI→II = aII . By the chosen asymmetric switching probabil-
ities in (a), the walker spends longer times in state I and D∞ is more sensitive to aI . (b) Tuning the residence time in each state via fI→II and
fII→I in a combination of persistent and antipersistent motions dramatically influences D∞. (c) Variations of D∞ and tc+ in a run-and-tumble
process in terms of the mean tumble-to-run turning angle 〈φ〉tumble→run (correspondingly atumble→run = 〈cos φ〉tumble→run). The other parameter
values are frun→tumble = ftumble→run = 0.1, arun = 0.9, atumble = 0, arun→tumble = 1, and constant velocities vrun = 2vtumble.

long-term diffusion coefficient can be deduced as

D∞ =�t

4

fII→I (e2 − 1)〈v2〉I + fI→II (e1 − 1)〈v2〉II − 2e4〈v〉I〈v〉II − fII→I [(e2 − 1)e1 − e3]�vI − fI→II [(e1 − 1)e2 − e3]�vII

( fI→II + fII→I )[e3 − (e1 − 1)(e2 − 1)]
,

(17)

with �vj = 〈v2〉 j − 2〈v〉2
j
, e1 = (1 − fI→II )aI , e2 = (1 −

fII→I )aII , e3 = fI→II fII→I aI→II aII→I , and e4 = fI→II fII→I (aI→II +
aII→I ). For a single-state persistent random walk, i.e., fI→II = 0
and fII→I = 1, with persistency a, the above equation reduces
to D∞ = �t

4 (〈v2〉 + 2a
1−a 〈v〉2) [33].

To visualize D∞ in terms of the key parameters, we
consider a process in which aII→I = aI and aI→II = aII at the
switching events. As shown in Figs. 5(a) and 5(b), D∞ varies
by several orders of magnitude by changing the key parame-
ters aI and aII or fI→II and fII→I . Equation (17) describes D∞
for any arbitrary combination of the stochastic processes. For
instance, for a simple combination of diffusion (with con-
stant DI) and waiting, Eq. (17) reduces to D∞ = DI

fII→I
fI→II + fII→I

,

which was originally shown by Lennard-Jones for surface
diffusion with traps [42]. The D∞ is independent of the initial
conditions qI

0 and qII
0 , implying that the history of the process

is only carried by exponential and time-independent terms of
the MSD that are negligible at long times as the linear term
eventually dominates.

VII. APPLICATIONS AND SPECIAL CASES

The broad applicability of our formalism allows generic
predictions about the dynamics of various systems. In this
section we present a few applications and the reduced form
of the general analytical expressions for a couple of specific
choices for the states of motion.

A. Bacterial dynamics

Bacterial species that swim by the rotation of flagella expe-
rience an alternating sequence of run-and-tumble phases. An
abrupt directional change often occurs when switching back
from the tumble to the run phase [1,26], which is caused by
the torque exerted on the cell body during the reformation of
the bundle [43]. It is hypothesized that the bacteria benefit
from this feature to slow their spreading and explore the local
environment more precisely. Since in our model the statis-
tics of the turning angles at the switching events are chosen
to be independent of the turning angles within the states in
general, we can directly check how directional changes at the
switching events influence the crossover time to the long-term
diffusive dynamics and the asymptotic diffusion coefficient.
Figure 5(c) shows that increasing the mean directional change
at switching from tumble to run 〈φ〉tumble→run helps the bac-
teria to randomize their path: A stronger kick, i.e., a larger
turning angle 〈φ〉tumble→run, can reduce the crossover time
tc+ and the diffusion coefficient D∞ by more than 10% for
the given set of parameters in Fig. 5(c); for a higher run
persistence arun = 0.96, the percentage of reduction can even
exceed 25%.

B. Spiral trajectories

The turning-angle distributions RI(φ), RII(φ), RI→II (φ), and
RII→I (φ) can be asymmetric in general. For any asymmet-
ric distribution R(φ), the persistence introduced in Eqs. (1)
or (4) has a real part aRe = ∫ π

−π
dφ cos φR(φ) = 〈cos φ〉 and
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FIG. 6. (a) Typical trajectory of a single-state persistent walker
with an asymmetric turning-angle distribution uniformly distributed
over the range φ∈[− π

6 , 2π

6 ]. The asymmetry of the turning angles
leads to a trajectory with frequent clockwise spirals. The resulting
persistence parameter has real and imaginary parts aRe
0.9 and
aIm
0.2, respectively. (b) Subset of optimal switching probabilities
f opt

I→II
and f opt

II→I
that maximize the asymptotic diffusion constant ac-

cording to Eqs. (20) and (21) in the ( fI→II , fII→I ) plane for various
choices of the velocity moments in a combination of ballistic and
diffusive processes.

a nonzero imaginary part aIm = ∫ π

−π
dφ sin φR(φ) = 〈sin φ〉.

If we consider a single-state 2D motion for simplicity, an
asymmetric R(φ) means that the left-right symmetry does
not hold and the particle turns more frequently either to the
right or to the left, leading to the emergence of clockwise
or counterclockwise spiral trajectories. For example, motion
with a uniform distribution R(φ) = 1

π/2 but over an asym-

metric range [−π
6 , 2π

6 ] of φ corresponds to a trajectory with
frequent clockwise spirals [see Fig. 6(a)]. Following the ana-
lytical approach presented in the Appendix, one can choose
the conditions for a single state [and also set α = m = 0
in Eq. (A19)] to obtain the expansion coefficient that is re-
quired to extract the MSD. Because of the asymmetry of
the turning-angle distribution, R̃(m = 1) = aRe + iaIm and
R̃(m = −1) = aRe − iaIm, i.e., R̃(m = 1) �=R̃(m = −1) [see
Eq. (A6)]. By inserting these quantities into Eq. (A19) and
following the rest of the procedure, the MSD can be obtained.
From the linear term of the MSD in t , the asymptotic diffusion
constant can be deduced as

D∞ = 1

4
v2�t

aRe(1 − aRe) − a2
Im

(1 − aRe)2 + a2
Im

, (18)

where we choose a constant velocity v for simplicity. It can be
seen that the asymmetric contribution reduces the asymptotic
diffusion coefficient. If we define the diffusion coefficient of a
diffusion process (aRe = aIm = 0) with D0 = 1

4v2�t , D∞ can
be even smaller than D0 despite having a positive real part of
the persistence (aRe > 0). A constraint for a pure localization
(D∞ = 0) can be obtained as a2

Re + a2
Im = aRe.

C. Run-and-tumble dynamics

A subclass of two-state processes of particular interest is a
combination of fast and slow dynamics, described by the so-
called run-and-tumble models [20–23]. The modeling of such
processes has been often limited either to extract the long-term
dynamics of the particle or to simplify the states with stochas-
tic processes such as ballistic motion and diffusion. However,
as we described in the previous sections, our formalism en-
ables us to combine two states with arbitrary persistencies and
describe the particle dynamics over all timescales. The general
form of the expressions presented in the previous sections can
be reduced to shorter formulas for specific choices of the two
processes. Here we choose a diffusive dynamics (aII = 0) for
the dynamics of the slow state. The process can be further
simplified by choosing constant velocities and also aI→II = aII

and aII→I = aI at the switching events. Using these specific
parameter choices leads to a reduced form of the MSD, as
presented in Eq. (A27). Then the related transport quantities
of interest can be extracted. The advantage of our formalism is
that any desired feature of the motion can be kept in its general
form. In particular, the fast relocation mode is a persistent
motion described by aI (and not a simple ballistic motion nec-
essarily). For instance, we obtain from Eq. (17) the following
reduced form for the asymptotic diffusion coefficient in the
case of aI→II = aII and aII→I = aI and diffusive dynamics in
state II (aII = 0)

D∞ = �t

4

(
fII→I

fI→II + fII→I

〈v2〉I + fI→II

fI→II + fII→I

〈v2〉II

− 2
fI→II fII→I aI〈v〉I〈v〉II + (1 − fI→II ) fII→I aI〈v〉2

I

( fI→II + fII→I )(aI (1 − fI→II ) − 1)

)
.

(19)

For the explicit form of D∞ in a ballistic-diffusive process,
one readily replaces aI = 1 in the above equation. Note that
Eq. (19) also describes a combination of diffusion and subdif-
fusion for −1 < aI < 0.

D. Optimization of transport quantities

We have focused on the calculation of the displacement
moments in this study. However, general conclusions may be
also drawn for other transport quantities of interest, such as the
mean-first-passage time (MFPT) to find a randomly located
target. The MFPT is minimized in various biological systems
to execute certain functions in an optimal way [4,9,28,29].
Since the MFPT is conversely related to the asymptotic dif-
fusion coefficient [30,31], achieving a minimum search time
often corresponds to maximizing the diffusivity through D∞.
However, the optimization is only relevant with respect to
those key factors that are accessible and can be varied by the
biological agent.

The advantage of having the explicit analytical form of the
transport quantities of interest is that analytical expressions
can be also extracted for the derivatives with respect to any
control parameter, which makes the optimization of the trans-
port quantities feasible. For example, the asymptotic diffusion
coefficient given in Eq. (19) can be optimized with respect to
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the switching probabilities using, e.g.,

∂D∞
∂ fI→II

∣∣∣∣
fI→II = f opt

I→II

= 0, (20)

to obtain the relation between the optimal switching probabil-
ities f opt

I→II
and f opt

II→I
in a combination of ballistic (aI = 1) and

diffusive (aII = 0) processes

f opt
I→II

=
−2 f opt

II→I
〈v〉2

I + f opt
II→I

√
B − 2〈v〉2

I

B
, (21)

with B = f opt
II→I

(〈v2〉I − 2〈v〉2
I ) + 2 f opt

II→I
〈v〉I〈v〉II + 〈v2〉II. We

find the necessary condition B � 4〈v〉4
I + 2〈v〉2

I to have an
optimal solution. Figure 6(b) shows a few optimal paths in the
( fI→II , fII→I ) plane for various choices of velocity distribution
in each state.

VIII. CONCLUSION

We presented an analytical approach which provides
a quantitative link between the characteristics of particle
dynamics in a two-state active process and macroscopi-
cally observable transport properties. The method can be
straightforwardly extended to three dimensions and multistate
stochastic processes. We disentangled the combined effects of
velocity, persistence, and switching statistics on the displace-
ment moments. Importantly, the extracted explicit expressions
for the MSD and related transport quantities such as the
crossover time to long-term diffusion, initial anomalous ex-
ponent, and asymptotic diffusion coefficient (even for the
simplified combination of a persistent walk and diffusion)
reveal that the transport quantities of the multistate process
cannot be simply obtained from the superposition of the
individual states; in the presence of the products of the ve-
locities or persistencies of the two states, or the product of
the switching probabilities between the states, the transport
quantities cannot be decomposed into pure contributions of
the individual states. The extracted exact expression for the
time evolution of the MSD and the detailed recipe to derive
higher displacement moments make it possible to access first-
passage and other transport quantities that can be expressed by
a cumulant expansion in terms of the displacement moments.
Alternatively, one may start with a master equation for the
evolution of the quantity of interest similar to Eq. (5) and
follow our analytical formalism to solve it. The presented
approach is applicable to diverse transport problems in active
matter systems as well as multistate passive processes such as
clogging dynamics in granular media, chromatography, and
transport in amorphous materials.

To be analytically tractable, we have considered noninter-
acting particles and only spontaneous transitions between the
states (corresponding to exponential residence times in the
states). Correlations and memory effects are not considered in
the model presented in this study. However, the formalism is
capable of handling correlations in general, e.g., by introduc-
ing aging for the switching probabilities (though one should
then resort to numerical results for the transport quantities).
While an analytical treatment of interacting persistent random
walkers at the level of individual particles is unfeasible in
general, the effects of the surrounding environment can be
considered by effective turning-angle distributions via mean-
field approaches.

When the exerted forces on the active particle are known,
the particle dynamics can be described by, e.g., Langevin
or Fokker-Planck equations. However, if the exerted forces
are unknown, our method proposes an alternative approach
to obtain the macroscopically observable transport quantities
of interest from the microscopic statistical properties of the
particle trajectory. Our analytical formalism to describe the
kinematics of active particles can describe stochastic pro-
cesses in which external forces are replaced by their impact on
the velocity and turning-angle distributions and the transition
probabilities between the possible states. One can generalize
this stochastic formalism and take other external fields, taxes,
etc., into account through their influence on the movement and
reorientation statistics of the particle.
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APPENDIX: CALCULATION OF THE DISPLACEMENT
MOMENTS

In this Appendix we present the details of a Fourier-z-
transform technique to extract analytical expressions for the
displacement moments for the stochastic process described by
the master equations (5). We adopted a matrix form in Eq. (5)
to hint how the formalism can be generalized to multistate
processes: One can consider n states of motion and write the
following set of master equations to link the states to each
other:

⎛
⎜⎜⎝

P 1
t

(x, y|γ )
...

P n
t

(x, y|γ )

⎞
⎟⎟⎠ =

∫
dv

∫ π

−π

dβ

⎡
⎢⎢⎣
(
1−∑

j �=1 f1→j

)
R

1
(γ−β )F

1
(v) f2→1 R

2→1
(γ−β )F

1
(v) · · · fn→1 R

n→1
(γ−β )F

1
(v)

...
. . .

...

f1→n R
1→n

(γ−β )F
n
(v) f2→n R

2→n
(γ−β )F

n
(v) · · · (

1−∑
j �=n fn→j

)
R

n
(γ−β )F

n
(v)

⎤
⎥⎥⎦

×

⎛
⎜⎜⎝

P 1
t−�t (x

′, y′|β )
...

P n
t−�t (x

′, y′|β )

⎞
⎟⎟⎠. (A1)
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Nevertheless, here we focus on the two-state process. The master equations (5) can be rewritten as

PI
t
(x, y|γ ) = (1 − fI→II )

∫
dv FI(v)

∫ π

−π

dβ RI(γ − β )PI
t−�t (x − v�t cos γ , y − v�t sin γ |β )

+ fII→I

∫
dv FI(v)

∫ π

−π

dβ RII→I(γ − β )PII
t−�t (x − v�t cos γ , y − v�t sin γ |β ), (A2)

PII
t

(x, y|γ ) = (1 − fII→I )
∫

dv FII(v)
∫ π

−π

dβ RII(γ − β )PII
t−�t (x − v�t cos γ , y − v�t sin γ |β )

+ fI→II

∫
dv FII(v)

∫ π

−π

dβ RI→II(γ − β )PI
t−�t (x − v�t cos γ , y − v�t sin γ |β ). (A3)

It is unfeasible to solve the above set of equations in the
general form to find the explicit form of the joint probability
density function Pt (x, y|γ ). However, we prove in the fol-
lowing that exact analytical expressions can be obtained for
arbitrary displacement moments. The Fourier transform of the
probability density function in state j is defined as

P̃ j
t (k|m) =

∫ π

−π

dγ eimγ

∫
dy

∫
dx eik·rP j

t (x, y|γ ). (A4)

To obtain the Fourier transform of the master equations, we
use the gth-order Bessel function (with integer g∈[−∞,∞])

Jg(z) = 1

2π ig

∫ π

−π

dγ eiz cos γ e−igγ (A5)

and the Fourier transforms of the turning-angle distributions

R̃I(m) =
∫ π

−π

eimφRI(φ)dφ,

R̃II(m) =
∫ π

−π

eimφRII(φ)dφ,

R̃I→II(m) =
∫ π

−π

eimφRI→II(φ)dφ,

R̃II→I(m) =
∫ π

−π

eimφRII→I(φ)dφ. (A6)

Thus, the persistencies introduced in Eqs. (1) and (4) are given
as

aI = R̃I(m = 1),

aII = R̃II(m = 1),

aI→II = R̃I→II(m = 1),

aII→I = R̃II→I(m = 1). (A7)

The master equations (A2) and (A3) after Fourier transforma-
tion, using the polar representation of k as (k, α), read

P̃ I
t (k, α|m) =

∞∑
g=−∞

ige−igα
∫

dv FI(v)Jg(kv�t )

× [
(1 − fI→II )R̃I(m + g)P̃ I

t−�t (k, α|m + g)

+ fII→IR̃II→I(m + g)P̃ II
t−�t (k, α|m + g)

]
,

(A8)

P̃ II
t (k, α|m) =

∞∑
g=−∞

ige−igα
∫

dv FII(v)Jg(kv�t )

× [
(1 − fII→I )R̃II(m + g)P̃ II

t−�t (k, α|m + g)

+ fI→IIR̃I→II(m + g)P̃ I
t−�t (k, α|m + g)

]
.

(A9)

The total probability density P̃t (k, α|m) is then given by
P̃t (k, α|m) = P̃ I

t (k, α|m) + P̃ II
t (k, α|m) and the displacement

moments can be extracted as

〈xayb〉(t ) = (−i)a+b ∂a+bP̃t (kx, ky|m = 0)

∂ka
x ∂kb

y

∣∣∣∣
(kx,ky )=(0,0)

.

(A10)

For example, the first four displacement moments along x and
y directions are given by

〈x〉(t ) = −i
∂P̃t (k, α = 0|m = 0)

∂k

∣∣∣∣
k=0

,

〈y〉(t ) = −i
∂P̃t

(
k, α = π

2

∣∣m = 0
)

∂k

∣∣∣∣
k=0

,

〈x2〉(t ) = (−i)2 ∂2P̃t (k, α = 0|m = 0)

∂k2

∣∣∣∣
k=0

,

〈y2〉(t ) = (−i)2 ∂2P̃t
(
k, α = π

2

∣∣m = 0
)

∂k2

∣∣∣∣
k=0

,

〈x3〉(t ) = (−i)3 ∂3P̃t (k, α = 0|m = 0)

∂k3

∣∣∣∣
k=0

,

〈y3〉(t ) = (−i)3 ∂3P̃t
(
k, α = π

2

∣∣m = 0
)

∂k3

∣∣∣∣
k=0

,

〈x4〉(t ) = (−i)4 ∂4P̃t (k, α = 0|m = 0)

∂k4

∣∣∣∣
k=0

,

〈y4〉(t ) = (−i)4 ∂4P̃t
(
k, α = π

2

∣∣m = 0
)

∂k4

∣∣∣∣
k=0

. (A11)
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The Fourier transform of the probability in state j can be
expanded as a Taylor series

P̃ j
t (k, α|m) = Q j

0,t (α|m) + ik
∫

dv Fj (v)v�tQ j
1,t (α|m)

− 1

2
k2
∫

dv Fj (v)v2(�t )2Q j
2,t (α|m)

− i

6
k3
∫

dv Fj (v)v3(�t )3Q j
3,t (α|m)

+ 1

24
k4
∫

dv Fj (v)v4(�t )4Q j
4,t (α|m) + · · ·

(A12)

and the hth displacement moment can be read in terms of
the hth Taylor expansion coefficient Q j

h,t (α|m). The x and y
components of the mean and the MSD in the state j can be
calculated as

〈x〉 j (t ) =
∫

dv Fj (v)v�tQ j
1,t (0|0),

〈y〉 j (t ) =
∫

dv Fj (v)v�tQ j
1,t

(π

2

∣∣∣0),
〈x2〉 j (t ) =

∫
dv Fj (v)v2(�t )2Q j

2,t (0|0),

〈y2〉 j (t ) =
∫

dv Fj (v)v2(�t )2Q j
2,t

(π

2

∣∣∣0). (A13)

One can similarly calculate higher displacement moments as
well. For instance, the third and fourth moments are related to

the Taylor expansion coefficients as

〈x3〉 j (t ) =
∫

dv Fj (v)v3(�t )3Q j
3,t (0|0),

〈y3〉 j (t ) =
∫

dv Fj (v)v3(�t )3Q j
3,t

(π

2

∣∣∣0),
〈x4〉 j (t ) =

∫
dv Fj (v)v4(�t )4Q j

4,t (0|0),

〈y4〉 j (t ) =
∫

dv Fj (v)v4(�t )4Q j
4,t

(π

2

∣∣∣0). (A14)

Thus, the problem reduces to the calculation of the Taylor
expansion coefficients Q j

h,t (α|m). We demonstrate in the fol-

lowing how Q j
1,t (α|m) and Q j

2,t (α|m) can be obtained, from
which the mean and the MSD can be deduced. A similar
procedure can be followed to extract higher expansion coef-
ficients and thus higher displacement moments.

We expand both sides of the master equations (A8) and
(A9) and collect all terms with the same power in k. As a re-
sult, the following recursion relations for the Taylor expansion
coefficients of terms with power 0 in k can be obtained

QI
0,t (α|m) = (1 − fI→II )R̃I(m)QI

0,t−�t (α|m)

+ fII→IR̃II→I(m)QII
0,t−�t (α|m), (A15)

QII
0,t (α|m) = (1 − fII→I )R̃II(m)QII

0,t−�t (α|m)

+ fI→IIR̃I→II(m)QI
0,t−�t (α|m). (A16)

Similarly, the expansion coefficients of terms with power 1 in
k read

QI
1,t (α|m) = (1 − fI→II )

{
R̃I(m)QI

1,t−�t (α|m) + 1

2

[
eiαR̃I(m − 1)QI

0,t−�t (α|m−1) + e−iαR̃I(m + 1)QI
0,t−�t (α|m+1)

]}

+ fII→I

{ 〈v〉II

〈v〉I
R̃II→I(m)QII

1,t−�t (α|m) + 1

2

[
eiαR̃II→I(m − 1)QII

0,t−�t (α|m−1)

+ e−iαR̃II→I(m + 1)QII
0,t−�t (α|m+1)

]}
, (A17)

QII
1,t (α|m) = (1 − fII→I )

{
R̃II(m)QII

1,t−�t (α|m) + 1

2

[
eiαR̃II(m − 1)QII

0,t−�t (α|m−1) + e−iαR̃II(m + 1)QII
0,t−�t (α|m+1)

]}

+ fI→II

{ 〈v〉I

〈v〉II
R̃I→II(m)QI

1,t−�t (α|m) + 1

2

[
eiαR̃I→II(m − 1)QI

0,t−�t (α|m−1)

+ e−iαR̃I→II(m + 1)QI
0,t−�t (α|m+1)

]}
(A18)

and the expansion coefficients of terms with power 2 in k are

QI
2,t (α|m) = (1 − fI→II )

{[
1

2
QI

0,t−�t (α|m) + QI
2,t−�t (α|m)

]
R̃I(m) + 〈v〉2

I

〈v2〉I

[
eiαQI

1,t−�t (α|m − 1)R̃I(m−1) + e−iαQI
1,t−�t (α|m+1)

× R̃I(m + 1)
] + 1

4
e2iαQI

0,t−�t (α|m − 2)R̃I(m − 2) + 1

4
e−2iαQI

0,t−�t (α|m + 2)R̃I(m + 2)

}

+ fII→I

{[
1

2
QII

0,t−�t (α|m)+〈v2〉II

〈v2〉I
QII

2,t−�t (α|m)

]
R̃II→I(m) + 〈v〉I〈v〉II

〈v2〉I

[
eiαQII

1,t−�t (α|m − 1)

× R̃II→I(m − 1) + e−iαQII
1,t−�t (α|m + 1)R̃II→I(m + 1)

] + 1

4
e2iαQII

0,t−�t (α|m − 2)R̃II→I(m − 2)

+ 1

4
e−2iαQII

0,t−�t (α|m + 2)R̃II→I(m + 2)

}
, (A19)
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QII
2,t (α|m) = (1 − fII→I )

{[
1

2
QII

0,t−�t (α|m) + QII
2,t−�t (α|m)

]
R̃II(m) + 〈v〉2

II

〈v2〉II

[
eiαQII

1,t−�t (α|m − 1)R̃II(m − 1)

+ e−iαQII
1,t−�t (α|m + 1)R̃II(m + 1)

] + 1

4
e2iαQII

0,t−�t (α|m − 2)R̃II(m − 2)

+ 1

4
e−2iαQII

0,t−�t (α|m + 2)R̃II(m + 2)

}
+ fI→II

{[
1

2
QI

0,t−�t (α|m) + 〈v2〉I

〈v2〉II
QI

2,t−�t (α|m)

]
R̃I→II(m)

+ 〈v〉II〈v〉I

〈v2〉II

[
eiαQI

1,t−�t (α|m − 1)R̃I→II(m − 1) + e−iαQI
1,t−�t (α|m + 1)R̃I→II(m + 1)

]

+ 1

4
e2iαQI

0,t−�t (α|m − 2)R̃I→II(m − 2) + 1

4
e−2iαQI

0,t−�t (α|m + 2)R̃I→II(m + 2)

}
. (A20)

Next the time indices on both sides of the above equations can be equalized by means of the z transform, defined for the hth
Taylor expansion coefficient Q j

h,t (α|m) as

Q̂ j
h(z, α|m) =

∞∑
t=0

Q j
h,t (α|m)z−t . (A21)

As a result, we obtain the expansion coefficients Q̂ j
h(z, α|m) of terms with power h in the z space. The z transform of Eqs. (A15)–

(A20) enables us to obtain the first two displacement moments in the z space as

〈x〉(z) =
∞∑

t=0

z−t 〈x〉(t ) = �t
[〈v〉IQ̂

I
1(z, 0|0) + 〈v〉IIQ̂

II
1 (z, 0|0)

]
(A22)

and the second moment can be calculated as

〈x2〉(z) =
∞∑

t=0

z−t 〈x2〉(t ) = (�t )2
[〈v2〉IQ̂

I
2(z, 0|0) + 〈v2〉IIQ̂

II
2 (z, 0|0)

]
. (A23)

For isotropic initial direction of motion the net displacement, i.e., the first moment, is zero. Thus, we carry the calculations
in detail to extract the second displacement moment, i.e., the MSD, which is of particular interest. Using the z transform of
Eqs. (A19) and (A20), 〈x2〉(z) can be written in terms of Q̂ j

0(z, 0|0) and Q̂ j
1(z, 0|0) coefficients. Then, using Eq. (A7) and the z

transform of Eqs. (A17) and (A18), Q̂ j
1(z, 0|0) is eliminated to obtain

〈x2〉(z) =(�t )2
[
(1 − fI→II )Q̂

I
0(z, 0|0) + fII→IQ̂

II
0 (z, 0|0)

]
×
[

z[z − (1 − fII→I )aII]

(z − 1)G(z)
〈v〉2

I + z

(z − 1)G(z)
fI→IIaI→II〈v〉I〈v〉II − 1

z − 1
〈v〉2

I + 1

2(z − 1)
〈v2〉I

]

+ (�t )2[ fI→IIQ̂
I
0(z, 0|0) + (1 − fII→I )Q̂

II
0 (z, 0|0)

]
×
[

z[z − (1 − fI→II )aI]

(z − 1)G(z)
〈v〉2

II + z

(z − 1)G(z)
fII→IaII→I〈v〉II〈v〉I − 1

z − 1
〈v〉2

II + 1

2(z − 1)
〈v2〉II

]
, (A24)

by defining G(z) = [z − (1 − fII→I )aII][z − (1 − fI→II )aI] − fI→II fII→IaI→II aII→I . Finally, we replace Q̂I
0(z, 0|0) and Q̂II

0 (z, 0|0)
from the z transform of Eqs. (A15) and (A16) to obtain 〈x2〉(z) as

〈x2〉(z) = (�t )2

z − 1

∑
j∈{I,II}, j �= j′

z2 f
j′→ j

+ (z2 − z)(1 − f
j→ j′

− f
j′→ j

)q j
0

G0(z)

×
[ z[z − (1 − f

j′→ j
)a

j′ ]〈v〉2
j

G1(z)
+

z f
j→ j′

a j→ j′ 〈v〉 j 〈v〉
j′

G1(z)
− 〈v〉2

j
+ 〈v2〉 j

2

]
, (A25)

where G1(z) = ∏
j∈{I,II}[z − (1 − f

j→ j′
)a j] − ∏

j∈{I,II} f
j→ j′

a j→ j′ , G0(z) = (z − 1)(z − 1 + fII→I + fI→II ), and q j
0 is the probability

of initially starting in state j. Note that �t can be absorbed into the velocity terms in the above equation to construct the mean
step length 〈�〉 j = 〈v�t〉 j or the second step-length moment 〈�2〉 j = 〈v2(�t )2〉 j in state j. By inverse z transforming Eq. (A25),
an exact expression for 〈x2〉(t ) can be straightforwardly obtained. Since this expression is too lengthy, we define a couple of
auxiliary quantities in the following to be able to present the explicit form of 〈x2〉(t ). For the isotropic initial direction of
motion, we have 〈x〉(t ) = 〈y〉(t ) = 0 and 〈x2〉(t ) = 〈y2〉(t ); thus, 〈r2〉(t ) can be obtained in two dimensions as 〈r2〉(t ) = 2〈x2〉(t ).
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By introducing

�vI = (〈v2〉I − 2〈v〉2
I

)
,

�vII = (〈v2〉II − 2〈v〉2
II

)
,

e1 = (1 − fI→II )aI ,

e2 = (1 − fII→I )aII ,

e3 = fI→II fII→I aI→II aII→I ,

e4 = fI→II fII→I (aI→II + aII→I ),

e5 =
√

(e1 − e2)2 + 4e3,

e6 = ( fI→II + fII→I )[e3 − (e1 − 1)(e2 − 1)],

e7 = e4[(e1 + e2)(1 + e1e2 − e3) + 4(e3 − e1e2) + e5(1 − e1e2 + e3)]〈v〉I〈v〉II (�t )2

+ fII→I

{
e1(1 − e2)2(−e1 + e2 + e5) + e3[3e1e2 + 2(e2 − e1)] − e3

[
e2

2 + e2e5 + 2(1 + e3 + e5)
]}〈v〉2

I
(�t )2

+ fI→II

{
e2(1 − e1)2(−e2 + e1 + e5) + e3[3e1e2 + 2(e1 − e2)] − e3

[
e2

1 + e1e5 + 2(1 + e3 + e5)
]}〈v〉2

II
(�t )2,

e8 = e4[−(e1 + e2)(1 + e1e2 − e3) − 4(e3 − e1e2) + e5(1 − e1e2 + e3)]〈v〉I〈v〉II (�t )2

+ fII→I

{
e2(1 − e1)2(−e1 + e2 + e5) − e3[3e1e2 + 2(e2 − e1)] − e3

[
e2

1 − e1e5 + 2(1 + e3 + e5)
]}〈v〉2

I
(�t )2

+ fI→II

{
e1(1 − e2)2(−e2 + e1 + e5) − e3[3e1e2 + 2(e1 − e2)] − e3

[
e2

2 − e2e5 + 2(1 + e3 + e5)
]}〈v〉2

II
(�t )2,

e9 = f 2
I→II

f 3
II→I

a2
I→II

a2
II→I

�vI + [
fII→I (e1 − 1)2(e2 − 1)2 − 2 fI→II f 2

II→I
aI→II aII→I (e1 − 1)(e2 − 1)

]〈v2〉I (�t )2

+ f 2
II→I

f 3
I→II

a2
I→II

a2
II→I

�vII + [
fI→II (e1 − 1)2(e2 − 1)2 − 2 fII→I f 2

I→II
aI→II aII→I (e1 − 1)(e2 − 1)

]〈v2〉II (�t )2

+ [
2 fI→II f 2

II→I
aI→II aII→I (3 − 2e1 − 2e2 + 2e1e2) − 2 fII→I e1(e1 − 2)(e2 − 1)2

]〈v〉2
I
(�t )2

+ [
2 fII→I f 2

I→II
aI→II aII→I (3 − 2e1 − 2e2 + 2e1e2) − 2 fI→II e2(e2 − 2)(e1 − 1)2

]〈v〉2
II
(�t )2

− 2 fI→II fII→I (aI→II + aII→I )(e1 + e2 − 2)〈v〉I〈v〉II (�t )2,

e10 = { fII→I (e2 − 1)〈v2〉I + fI→II (e1 − 1)〈v2〉II − 2e4〈v〉I〈v〉II − fII→I [(e2 − 1)e1 − e3]�vI − fI→II [(e1 − 1)e2 − e3]�vII}(�t )2,

we derive the exact expression for the MSD

〈r2〉(t ) = e9 + e10

e6
+ e10

e6
t + e7

e5e6
e−t/tc+ + e8

e5e6
e−t/tc− , (A26)

with tc± = −1/ ln( e1+e2±e5
2 ). For the combination of a persistent random walk and diffusion (aII = 0), constant velocities vI =

vII = 1, and using aI→II = aII and aII→I = aI at the switching events, the MSD reduces to

〈r2〉(t ) = 2aI fI→II(1 − fII→I − fI→II )t+2

( fII→I + fI→II )2( fII→I − fI→IIaI + fI→II + aI − 1)

− 2aI( fI→II − 1)[ fI→IIaI( fII→I + fI→II − 2) + fII→I + fI→II + aI − 1][aI(1 − fI→II )]t

[aI( fI→II − 1) + 1]2( fII→I − fI→IIaI + fI→II + aI − 1)

+ a2
I ( fI→II − 1){( fII→I + fI→II )[ fII→I( fI→II − 1) + ( fI→II − 3) fI→II] + 2 fI→II}

[aI( fI→II − 1)( fII→I + fI→II ) + fII→I + fI→II]2

− 2aI[( fII→I + fI→II )2 − fI→II] + ( fII→I + fI→II )2

[aI( fI→II − 1)( fII→I + fI→II ) + fII→I + fI→II]2

+ aI[( fII→I − 1) fI→II + fII→I + f 2
I→II] + fII→I + fI→II

aI( fI→II − 1)( fII→I + fI→II ) + fII→I + fI→II
+ aI[( fII→I − 1) fI→II + fII→I + f 2

I→II] + fII→I + fI→II

aI( fI→II − 1)( fII→I + fI→II ) + fII→I + fI→II
t .

(A27)
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