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Work statistics and thermal phase transitions
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Many previous studies have demonstrated that work statistics can exhibit certain singular behaviors in the
quantum critical regimes of many-body systems at zero or very low temperatures. However, as the temperature
increases, it is commonly believed that such singularities will vanish. Contrary to this common recognition, we
report a nonanalytic behavior of the averaged work done, which occurs at finite temperature, in the Dicke model
as well as the Lipkin-Meshkov-Glick model subjected to the sudden quenches of their work parameters. It is
revealed that work statistics can be viewed as a signature of the thermal phase transition when the quenched
parameters are tuned across the critical line that separates two different thermal phases.
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I. INTRODUCTION

In recent years, much attention has been focused on the
investigation of the nonequilibrium statistical mechanics in
quantum systems [1–7]. Fluctuation theorems, for example,
the Crooks relation [8] and the Jarzynski equality [9], lie at
the heart of the nonequilibrium thermodynamics. They estab-
lish a bridge connecting the well-defined thermal equilibrium
properties, such as the free-energy difference, and certain
nonequilibrium probabilities [8] or physical quantities [9].
Moreover, these fluctuation theorems are closely related to the
time-reversal symmetry, which provides a new insight for us
to understand the Second Law of Thermodynamics [1,10–15].
Experimental tests of these fluctuation theorems have been
reported in Refs. [16–20].

In the context of fluctuation theorems, the notion of work
can be defined by calculating the energy difference of a quan-
tum system at the initial and the final times [21]. Such a
definition is completely different from these of many other
articles [22–27], in which the work is commonly defined as an
expectation value of an operator. Using this definition, Talkner
et al. [21] found the work is more like a statistical quantity
and all the available statistical information about work is con-
tained in its characteristic function. By far, the work based on
the two-point measurement scheme has been widely studied
in various systems by using different techniques [28–37].

In many previous articles [38–50], it is found that the
averaged work done in a zero temperature sudden quench
dynamics of a many-body quantum system displays certain
nonanalytic behaviors when the quenched parameters cross
over the quantum critical line. Such singularities have been
widely reported in several spin-chain systems [39–45], the
cavity QED system [46,47], the Luttinger liquid [48], the
conformal field theory model [49], and the Haldane model of
graphene [50]. These results have convincingly demonstrated
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that the work statistics can be used as a powerful tool to
characterize the quantum criticality of a many-body system.

Compared with traditional methods, the work statistics ap-
proach to the quantum phase transition has its own superiority,
because it requires no prior knowledge about the order param-
eter or symmetries. However, almost all the existing studies
restricted their attentions to the quantum phase transition
case, which happens only at zero or very low temperatures.
It is commonly believed that, as the temperature increases,
the thermal fluctuation generally erases these nonanalytic
behaviors of the work statistics [42–44]. This common recog-
nition suggests that the work statistics may lose its ability
to characterize the criticality of a many-body system at high
temperature.

In this work, we recheck the above common belief by
investigating the performance of the averaged work done in
a sudden quench nonequilibrium dynamics of a many-body
system, which experiences a thermal phase transition purely
induced by thermal fluctuations at finite temperature. The
Dicke model as well as the Lipkin-Meshkov-Glick model are
chosen as the illustrative examples. It is revealed that the av-
eraged work exhibits a singular behavior when the quenched
parameters are tuned across the critical boundary that sep-
arates two different thermal phases. This result is contrary
to the previous common recognition and expands our under-
standing of the work statistics approach to the criticality of a
many-body system. Moreover, the accuracy of our treatments
is discussed by evaluating the famous Jarzynski identity.

This paper is organized as follows: In Sec. II, we first recall
some basic concepts as well as the general formalisms of the
work statistics in quantum mechanics. In Sec. II (Sec. III),
we outline the thermodynamic characteristic of the Dicke
model (the Lipkin-Meshkov-Glick model) and analyze the
performances of the averaged work done in a sudden quench
nonequilibrium process of the Dicke model (the Lipkin-
Meshkov-Glick model). The effectiveness of our result is
analyzed in Sec. IV by checking the Jarzynski equality. Some
discussions and the main conclusions of this paper are drawn
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in Sec. V. In the two appendices, we provide some additional
details about the main text. Throughout the paper, we set
kB = h̄ = 1, and all the other units are dimensionless as well.

II. WORK STATISTICS

In this section, we shall first recall the notion of work
in quantum mechanics based on the two-point measurement
scheme. Let us consider a quantum system, whose Hamilto-
nian is described by Ĥ (λt ) with λt being a time-dependent
externally controllable parameter, evolves from an initially
thermal equilibrium state ρ(0) = e−βĤ (λ0 )/Tr[e−βĤ (λ0 )] at t =
0 to a final time t = τ . The parameter λt is also called the work
parameter in the nonequilibrium thermodynamics, it drives
the quantum system out of equilibrium and injects the energy
(work) into the quantum system. The work W performed on
the system during the above nonequilibrium process can be
quantified by measuring the energy difference of Ĥ (λt ) at
the initial and the final times. Via decomposing Ĥ (λt ) as
Ĥ (λt ) = ∑

i ε
i
t |εi

t 〉〈εi
t |, the work distribution function can be

expressed as [21]

p(W ) =
∑
i,i′

〈
εi

0

∣∣ρ(0)
∣∣εi

0

〉∣∣〈εi′
τ

∣∣Û (τ )
∣∣εi

0

〉∣∣2
δ(W − Wii′ ), (1)

where Wii′ ≡ εi′
τ − εi

0 are the energy differences in two
successive measurements, and Û (t ) ≡ T̂ exp[−i

∫ t
0 dτ Ĥ (λτ )]

denotes the unitary time evolution operator with T̂ being the
time ordering operator. Usually, one uses the characteristic
function G(u), which is defined as the Fourier transform of
p(W ) [21]

G(u) ≡
∫

dWeiuW p(W )

= Tr[eiuĤ (λτ )Û (τ )e−iuĤ (λ0 )ρ(0)Û †(τ )], (2)

to describe the statistical properties of the work. With the ex-
pression of G(u) at hand, the averaged work (the first moment)
can be calculated as

〈W 〉 = −i
∂

∂u
G(u)

∣∣∣∣
u=0

. (3)

In this paper, we assume the quantum system undergoes
a sudden quench dynamics, which is one of the simplest
nonequilibrium processes. In the sudden quench dynamics,
the work parameter λt instantaneously changes from the ini-
tial value λ0 = λi to the final value λτ = λf. Such a sudden
quench dynamics leads to Û (τ ) becomes an identity operator,
and the characteristic function can be simplified to

G(u) = Tr[eiuĤ (λf )e−iuĤ (λi )ρ(0)]. (4)

The above equation for a sudden quench nonequilibrium pro-
cess has been widely used in many previous studies [38–50].
Next, by using two well-known quantum many-body models
as the illustrative examples, we explore the relation between
the work statistics and the thermal phase transition at finite
temperature.

III. THE DICKE MODEL CASE

Our first illustrative example is the Dicke model [51],
which describes the interaction between an atomic ensemble
with N spins and a single-mode cavity field. The Hamiltonian
of the Dicke model is given by

ĤDM = εĴz + ωâ†â + 2γ√
N

Ĵx(â† + â), (5)

where Ĵz,x ≡ 1
2

∑N
n=1 σ̂ z,x

n are the collective spin operators of
the atomic ensemble. The parameter ε denotes the energy
splitting induced by an external field. Operators â† and â are
the creation and the annihilation operators of the single-mode
cavity field with the corresponding frequency ω, respectively.
And the parameter γ quantifies the coupling strength be-
tween the atomic ensemble and the cavity field. As shown in
Refs. [52,53], the interaction between the atomic ensemble
and the cavity field can be interpreted as an effective spin-
spin interaction of a long-range nature. Then, the competition
between the above long-range spin-spin interaction and the
external field term εĴz leads to a second-order thermal phase
transition [52–56].

A. Thermodynamic properties of the Dicke model

To discuss the thermodynamic properties of the Dicke
model, one needs to obtain the expression of the partition
function ZDM ≡ Tr(e−βĤDM ). By employing the same analyt-
ical method reported in Refs. [54–56], in the thermodynamic
limit N → ∞, one can find the partition function of the Dicke
model can be expressed as (see Appendix A for more details)

ZDM =
√

2

βω
∣∣∂2

z 
(z
∣∣eN
(z)

∣∣∣∣∣
z=z0

, (6)

where 
(z) is defined by


(z) ≡ −βωz2 + ln

[
2 cosh

(
β

2

√
ε2 + 16γ 2z2

)]
, (7)

and z0 is determined by φ(z0) = 0 with φ(z) ≡ ∂z
(z). Thus,
the thermodynamic properties of the Dicke model is deter-
mined by the roots of the equation φ(z0) = 0. As discussed in
Refs. [52–56], there are two possible roots, depending on the
critical temperature

T DM
c = ε

[
2arctanh

(
εω

4γ 2

)]−1

. (8)

When T > T DM
c , the equation φ(z0) = 0 has a trivial solu-

tion z0 = 0 corresponding especially to the case in which the
atomic ensemble and the cavity field are completely decou-
pled. On the other hand, if T � T DM

c , a nontrivial solution
z0 =

√
ε2η2 − ε2/(4γ ) with η determined by 1

4ηεωγ −2 =
tanh( 1

2βηε) can be found. From the above analysis, one can
conclude that the Dicke model experiences a thermodynamic
phase transition at the critical temperature T = T DM

c . Above
the critical temperature T DM

c , the Dicke model is in the normal
phase (NP). However, if T � T DM

c , the Dicke model is in the
superradiant phase (SP). Moreover, in the limit T DM

c → 0, one
can find Eq. (8) reduces to γc = 1

2

√
εω which is in agreement
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FIG. 1. (a) The thermodynamic phase diagram of the Dicke
model obtained by Eq. (8). (b) The specific heat capacity per atom
C/N versus the temperature T and the coupling strength γ . The
red dashed lines in (a) and (b) mark the boundary between the NP
regime and the SP regime. Here, three critical points (γ ∗

ν , T ∗
ν ) with

ν = 1, 2, 3 along the phase boundary are chosen as the examples to
show the relation between the averaged work and the thermal phase
transition of the Dicke model. (c) The averaged work 〈W 〉 is plotted
as a function of the coupling strength γ with fixed temperatures. One
can see the averaged work becomes discontinuous when it crosses
over the critical coupling γ ∗

ν with fixed temperature T ∗
ν . (d) The

averaged work 〈W 〉 is plotted as a function of T with fixed the
coupling strengths. One can see 〈W 〉 becomes discontinuous when
it crosses over the critical temperature T ∗

ν with respect to the given
γ ∗

ν . The parameters are chosen as ε = 1, ω = 1, δ = 0.01, γ ∗
1 = 1

(blue circle), γ ∗
2 = 1.4 (purple star), and γ ∗

3 = 1.8 (green rectangle).

with the critical coupling strength of emerging the quantum
phase transition in the Dicke model at zero temperature [57].

In Figs. 1(a) and 1(b), we plot the thermal phase diagram
obtained by Eq. (8) as well as the specific heat capacity per
atom C/N of the Dicke model, respectively. The explicit ex-
pression of C/N is given in Appendix A. From Fig. 1(b), one
can see C/N exhibits two completely different thermodynamic
behaviors in the normal and superradiant phases. This result
means the first derivative of C/N exhibits a singular behavior
when it crosses the thermal phase boundary and verifies our
previous analysis based on the partition function.

B. Work statistics and thermal phase transition of
the Dicke model

In the Dicke model case, the coupling strength γ is chosen
as the work parameter, which rapidly changes from λi = γ to
λf = γ + δ. In the limit δ/γ → 0, the characteristic function
given by Eq. (4) can be approximately derived as follows

G(u) = 1

ZDM
Tr[eiu(ĤDM+δv̂)e−(β+iu)ĤDM ]


 1

ZDM
Tr[eiuĤDM eiuδv̂e−(β+iu)ĤDM ]

= 1

ZDM
Tr(eiuδv̂e−βĤDM )

= eiuδv̂ 
 eiuδv̂− 1
2 u2δ2(v̂2−v̂

2
), (9)

where v̂ ≡ 2√
N

Ĵx(â† + â) and ô ≡ Z−1
DMTr(ôe−βĤDM ) denotes

the thermodynamic averaged value with respect to the thermal
Gibbs state of the Dicke model. The explicit expressions of v̂

and v̂2 are given in Appendix B. With Eq. (9) at hand, we find
the expression of averaged work done in the above sudden
quench process is given by

〈W 〉 = − 4Nγ δz2
0√

ε2 + 16γ 2z2
0

tanh

(
β

2

√
ε2 + 16γ 2z2

0

)
. (10)

From the above expression, one can immediately find 〈W 〉 =
0 in the NP with z0 = 0 and 〈W 〉 < 0 in the SP with z0 >

0. This result means the averaged work can be regarded as
an order parameter to reveal the thermal phase transition of
the Dicke model. In Figs. 1(c) and 1(d), the averaged work
〈W 〉 is plotted as a function of the coupling strength γ and
the temperature T , respectively. One can see 〈W 〉 exhibits a
discontinuous behavior when crossing over the thermal phase
boundary. Such a singularity is quite similar to previous stud-
ies at zero temperature [39–47] and can be used to reveal the
thermal phase transition without a prior knowledge about the
order parameter or symmetries.

IV. THE LIPKIN-MESHKOV-GLICK MODEL CASE

Our second example is the Lipkin-Meshkov-Glick model
[58], which describes a collective spin in an external magnetic
field. The Hamiltonian of the Lipkin-Meshkov-Glick model is
described by

ĤLMG = −χ Ĵz − 1

N
Ĵ2

x , (11)

where χ is the strength of the applied external field. Similar
to that of the Dicke model case, the competition between the
spin-spin interaction Ĵ2

x and the effect of the external field
−χ Ĵz gives rise to a second-order thermal phase transition
from the paramagnetic phase (PP) to the ferromagnetic phase
(FP) [58–60].

A. Thermodynamic properties of the
Lipkin-Meshkov-Glick model

The Lipkin-Meshkov-Glick Hamiltonian can be exactly
treated by making use of certain numerical techniques [61,62].
However, to obtain an analytical result with a clear physical
picture, in this paper, we apply the standard mean-field ap-
proximation [59,60] to the Lipkin-Meshkov-Glick model. To
this aim, we shall first introduce a quantity

� ≡ 2

N
Tr

(
Ĵx

e−βĤLMG

ZLMG

)
, (12)

which is the average magnetization along the x direction,
and reexpress each individual Pauli-x spin operator σ̂ x

n as
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σ̂ x
n = � + (σ̂ x

n − �). Then, by plugging this expression into
the original Hamiltonian of the Lipkin-Meshkov-Glick model,
we have

ĤLMG = −1

4

[
2�

∑
n

σ̂ x
n +

∑
n

(
σ̂ x

n − �
)2 − �2

]
− χ Ĵz.

(13)
Neglecting the fluctuations involving (σ̂ x

n − �)2 as well as
all the higher order terms O(N−2), an effective Hamiltonian
under the mean-field approximation can be derived [59,60]:

ĤMF
LMG = −�MFĴx − χ Ĵz, (14)

where �MF is the value of � within the mean-field treatment
and will be determined later. One can find that the above
mean-field Hamiltonian is a sum of decoupled single-spin
Hamiltonians, thus it can be diagonalized directly.

The partition function under the mean-field approximation
can be easily obtained as

ZMF
LMG =Tr

(
e−βĤMF

LMG
) = [2 cosh(β�0)]N , (15)

where �x ≡ 1
2

√
(χ + x)2 + �2

MF. Using Eq. (12) and
Eq. (15), one can find the following self-consistent equation of
�MF:

�MF = tanh(β�0)

2�0
�MF. (16)

By analyzing the roots of the above equation, the thermal
phase diagram of the Lipkin-Meshkov-Glick model can be
obtained. When T > T LMG

c , one possible solution of Eq. (16)
is �MF = 0, which implies the Lipkin-Meshkov-Glick model
is in the PP regime. On the contrary, if T � T LMG

c , a nonzero
averaged magnetization along the x direction can be found,
which satisfies 2�0 = tanh[�0/(2T )] and means the Lipkin-
Meshkov-Glick model is in the FP regime. The critical
temperature T LMG

c is given by [59,60]

T LMG
c = χ

2arctanh(χ )
. (17)

In the limit T LMG
c → 0, the quantum phase transition point

of the Lipkin-Meshkov-Glick model χc = 1 [62] can be nat-
urally recovered. The thermal phase diagram based on the
above analysis is displayed in Figs. 2(a) and 2(c).

B. Work statistics and thermal phase transition of the
Lipkin-Meshkov-Glick model

Similar to that of the Dicke model case, we chose the
external field strength as the work parameter which changes
from λi = χ to λf = χ + δ in the sudden quench process.
With the mean-field Hamiltonian ĤMF

LMG at hand, we find the
characteristic function is given by

G(u) 
 1

ZMF
LMG

Tr
[
eiu(ĤMF

LMG+δĴz )e−(β+iu)ĤMF
LMG

]

= 1

ZMF
LMG

{
2 cos(u�δ )cos[(u − iβ )�0]

+ 2sin(u�δ )sin[(u − iβ )�0]
4�2

0 + χδ

4�0�δ

}N

, (18)

FIG. 2. (a) The thermal phase diagram of the Lipkin-Meshkov-
Glick model. Along the phase boundary, three critical points with χ∗

ν

are chosen as the examples, which are marked by blue circles, purple
stars, and green rectangles, respectively. (b) The averaged work 〈W 〉
is plotted as a function of χ with fixed temperatures: T1 = 0.2 (blue
circles), T2 = 0.25 (purple stars) and T3 = 0.3 (green rectangles).
One can see the averaged work becomes discontinuous when it
crosses over χ∗

ν with the fixed temperature Tν . (c) The same with
(b), but the critical parameters are chosen as T ∗

ν . (d) The averaged
work 〈W 〉 is plotted as a function of T with fixed coupling strengths:
χ1 = 0.5 (blue circles), χ2 = 0.7 (purple stars), and χ3 = 0.9 (green
rectangles). A singular behavior is also found if T is tuned across T ∗

ν

with respect to the fixed χν . The parameter of δ is chosen as δ = 0.02.

which results in

〈W 〉 = −Nχδ

4�0
tanh

(
�0

T

)
, (19)

for the Lipkin-Meshkov-Glick model case. In Figs. 2(b) and
2(d), we plot the averaged work 〈W 〉/N as functions of χ

and T , respectively. A discontinuous behavior is clearly found
when the quenched parameter is tuned across the thermal
critical line. This result demonstrates the work statistics can be
also viewed as a good detector of the thermal phase transition
occurring in the Lipkin-Meshkov-Glick model as well.

V. EVALUATION OF THE JARZYNSKI EQUALITY

To obtain Eq. (9), we have used the assumptions of δ/γ →
0 and N → ∞. On the other hand, to derive Eq. (18), we have
employed the mean-field approximation which is acceptable
only in the case N → ∞. A natural question is whether or
not these approximate treatments are reliable. To address the
above question, in this section, we benchmark the accuracy of
our results by evaluating the famous Jarzynski identity, which
is independent of the protocol generating the nonequilibrium
dynamics.
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FIG. 3. The thermal phase diagram of the quantum Dicke model
with six representative data in the parameterspace (γ , T ): A (0.2,8),
B (0.8,6.8), C (1.4,5.6), D (2,4.4), E (2.6,3.2) and F (3.2,2). These
parameters are used to evaluate the Jarzynski identity in Table I.
Other parameters are ε = ω = 1.

The Jarzynski equality states that [9]

〈e−βW 〉 = e−β�F , (20)

where 〈e−βW 〉 ≡ ∫
dWe−βW p(W ) denotes an ensemble av-

erage of the nonequilibrium exponential work, and �F is
the free energy difference of the quantum system between
the initial and the final times. One can easily check that
〈e−βW 〉 = G(iβ ) and e−β�F = Zf/Zi for the sudden quench
nonequilibrium process considered in this paper.

Our analytical expressions for the characteristic function
and the partition function of the Dicke model have been al-
ready given by Eq. (9) and Eq. (6), respectively. Using these
equations, the correctness of our approach can be checked
by evaluating the Jarzynski equality. As shown in Fig. 3 and
Table I with six representative parameters, we find, in the
region where the approximations are valid (δ/γ → 0 and
N → ∞), the Jarzynski identity in the Dicke model case is
substantially satisfied with a reasonable error.

For the Lipkin-Meshkov-Glick model case, the verifica-
tion of the Jarzynski equality is more straightforward. From
Eq. (18), one can immediately find

G(iβ ) = [2 cos(iβ�δ )]N

ZMF
LMG

= [2 cosh(β�δ )]N

[2 cosh(β�0)]N
= Zf

Zi
. (21)

TABLE I. The Jarzynski identity is checked with 6 representative
parameters A–F marked by blue circles in Fig. 3. Parameters are δ =
10−4 and N = 102.

Parameters A B C D E F

〈e−βW +β�F 〉 1.000 1.000 1.000 0.992 0.984 0.969

The above equation means the Jarzynski equality can be
exactly satisfied in the Lipkin-Meshkov-Glick model case.
The results from Table I and Eq. (21) convince us that our
treatment is physically acceptable in spite of certain approxi-
mations being employed.

VI. DISCUSSION AND CONCLUSION

It is necessary to emphasize that our present results are
utterly different from some previous studies of the work statis-
tics in the sudden quench dynamics of spin-chains at finite
temperature [42–44]. Although the effect of temperature has
been taken into account, these studies essentially concentrated
on the relation between the work statistics and the quantum
criticality in very low temperature regions. The singular be-
haviors of the work statistics at the quantum phase point are
intrinsically induced by the quantum fluctuation. With the in-
crease of temperature, the quantum fluctuation becomes weak
and is ultimately washed out at high temperature [42–44].
In sharp contrast to these previous references, in our paper,
the singular behaviors of the work statistics purely root from
the thermal fluctuations near the phase transition point, which
shall not vanish at high temperature. In this sense, our results
greatly enrich the scope of the work statistics approach to the
criticality of a quantum many-body system.

In summary, we investigate the statistics of the work done
in a sudden quench nonequilibrium dynamics of the Dicke
model and the Lipkin-Meshkov-Glick model, which display
thermal phase transitions at finite temperature. It is revealed
that the averaged work exhibits a singular behavior when the
quenched parameters are tuned across the critical boundary
that separates two different thermal phases. This result is ver-
ified by evaluating the Jarzynski identity and means the work
statistics can be employed to characterize thermal phase tran-
sitions of quantum many-body systems. We expect our results
to be of interest for the nonequilibrium statistical mechanics
in quantum many-body systems.
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APPENDIX A: THE PARTITION FUNCTION OF THE DICKE MODEL

The Hamiltonian of Eq. (5) can be rewritten as

ĤDM =
N∑

n=1

Ĥn
DM =

N∑
n=1

[
ω

â†

√
N

â√
N

+ ε

2
σ̂ n

z + γ√
N

(â + â†)σ̂ n
x

]
. (A1)
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Then, the partition function can be calculated as

ZDM = Tr(e−βĤDM ) =
∑

σ1=↑↓

∑
σ2=↑↓

...
∑

σN =↑↓
〈σ1σ2...σN |

∫ +∞

−∞

d2α

π
〈α|e−βĤDM |α〉|σ1σ2...σN 〉, (A2)

where |α〉 is the coherent state, | ↑〉 and | ↓〉 are spin-up and spin-down states, respectively. In the limit N → ∞, we have√
N 
 max{ω, γ } which leads to

〈α|e−βĤDM |α〉 

∏

n

〈α|e−βĤn
DM |α〉 


∏
n

e−β〈α|Ĥn
DM|α〉 = e−β|α|2 ∏

n

e−βĤn
DM , (A3)

where

Ĥn
DM = ε

2
σ̂ n

z + 2γ Reα√
N

σ̂ n
x . (A4)

Thus, we have

ZDM 

∫ +∞

−∞

d2α

π
e−β|α|2

( ∑
σ=↑↓

〈σ |e−βĤn
DM |σ 〉

)N

=
∫ +∞

−∞

d2α

π
e−β|α|2

{
2 cosh

[
β

√
ε2

4
+ 4γ 2(Reα)2

N

]}N

. (A5)

To handle the d2αintegral, we introduce x ≡ Reα and y ≡ Imα, which means d2α = dxdy and |α|2 = x2 + y2. By doing so, the
y-part of the integral can be immediately carried out, and then one can find

ZDM = 1√
πβω

∫ ∞

−∞
dxe−βωx2

[
2 cosh

(
β

√
ε2

4
+ 4γ 2x2

N

)]N

. (A6)

The above expression is still intricate. We use the steepest descent method or the so-called Laplace’s integral method [52–56]
to further simplify the above expression. To this aim, we replace x/

√
N by a new variable z, then the expression of ZDM can be

rewritten as

ZDM =
√

N

πβω

∫ ∞

−∞
dzeN
(z), (A7)

where 
(z) is given by Eq. (7) in the main text. The form of the partition function in Eq. (A7) is especially suitable for the
Laplace’s integral method, which consists in approximating the exponential integrand by a Gaussian function around the global
maximum of the function 
(z). By employing the Laplace approximation, one can finally obtain [52–56]

ZDM 

√

2

βω
∣∣∂2

z 
(z)
∣∣eN
(z)

∣∣∣∣
z=z0

, (A8)

where z0 is determined by φ(z0) = 0. With the expression of ZDM at hand, one can easily find specific heat per atom is given by

C

N
= β2

N

∂2

∂β2
ln ZDM =

(
βε

2

)2

sech

[
βξ (z0)

2

]{
1 + 16γ 4

ε2ω2

tanh
[

1
2βξ (z0)

]2

1 − 2βγ 2

ω
sech

[
1
2βξ (z0)

]δz0,0

}
, (A9)

where ξ (x) ≡
√

ε2 + 16γ 2x2.

APPENDIX B: THE EXPRESSIONS OF v̂ AND v̂2

To find the characteristic function with respect to the Dicke model, one needs the expressions of v̂ and v̂2. Using the same
method displayed in Appendix A, one can find

v̂ = 1

ZDM

2√
N

Tr[Ĵx(â† + â)e−βĤDM ]


 2
√

N

ZDM

∫ +∞

−∞

d2α

π
e−|α|2 Reα

∑
σ=↑↓

〈σ |σ̂xe−βĤDM |σ 〉
[

2 cosh

(
βξα

2

)]N−1

= − 8γ

ZDM

∫ +∞

−∞

d2α

π

(Reα)2e−|α|2

ξα

sinh

(
βξα

2

)[
2 cosh

(
βξα

2

)]N−1

= − 4γ

ZDM

∫ +∞

−∞

d2α

π
exp

{
− |α|2 + N ln

[
2 cosh

(
βξα

2

)]}
(Reα)2

ξα

tanh

(
βξα

2

)
, (B1)
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where ξα ≡ ξ (Reα/
√

N ). The above expression has the same structure with that of Eq. (A5), which means it can be simplified
by applying the Laplace approximation. Using the same process of deriving the partition function displayed in Appendix A, we
find

v̂ 
 −4Nγ z2
0

ξ (z0)
tanh

[
1

2
βξ (z0)

]
(B2)

and

v̂2 = 16N (N − 1)

{
γ z2

0

ξ (z0)
tanh

[
1

2
βξ (z0)

]}2

+ Nz2
0. (B3)
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