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Dynamic phase diagram of plastically deformed amorphous solids at finite temperature
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The yielding transition that occurs in amorphous solids under athermal quasistatic deformation has been the
subject of many theoretical and computational studies. Here, we extend this analysis to include thermal effects
at finite shear rate, focusing on how temperature alters avalanches. We derive a nonequilibrium phase diagram
capturing how temperature and strain rate effects compete, when avalanches overlap, and whether finite-size
effects dominate over temperature effects. The predictions are tested through simulations of an elastoplastic
model in two dimensions and in a mean-field approximation. We find a scaling for temperature-dependent
softening in the low-strain rate regime when avalanches do not overlap, and a temperature-dependent Herschel-
Bulkley exponent in the high-strain rate regime when avalanches do overlap.
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I. INTRODUCTION

Amorphous solids are materials that, like fluids, lack long-
range order on the constituent particle scale, yet are solid at
rest. When deformed slowly, these solids respond, first seem-
ingly elastically and then, once a critical stress is achieved,
plastically [1,2]. This response can be either brittle, with
system spanning shear bands, or ductile, with homogeneous
plasticity [2-5]. Ductile plastic flow is “jerky,” with periods
of elastic stress-loading punctuated by short bursts of stress-
releasing plastic rearrangement dubbed ‘““avalanches.” These
avalanches can be decomposed into individual shear trans-
formations (STs), regions of plastic deformation typically
involving a few tens of particles [6-8]. Each ST causes a
rearrangement that locally relieves stress, while inducing a
long-range a quadrupolar stress field [8—11] that can trigger
further STs in an avalanche. In the flowing state, in the ab-
sence of flow inhomogeneities, the hallmarks of a dynamical
phase transition emerge: avalanches are scale free, with non-
trivial critical exponents [12-20].

Much theoretical attention has been paid to the ductile
yielding transition in the athermal and quasistatic (AQS)
limit [12,16,19-22]. This limit is appropriate when the plastic
ST timescale t, over which rearrangements occur, is much
smaller than the periods of elastic loading (set by the driving
rate) and the timescale of thermally triggered STs. When the
driving rate competes with the timescale of plastic rearrange-
ments, rheological effects begin to alter the phase-transition
picture [23-26]. For systems where the constituent particles
are large and Brownian motion is small (e.g., foams, emul-
sions, dense suspensions, etc.), thermal effects can be safely
neglected [27]. However, for systems with smaller particles
or higher temperatures (e.g., metallic glasses close to the
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glass-transition temperature 75), thermal effects begin to play
arole [2].

Thermal history and preparation can affect whether yield-
ing is brittle or ductile [2,5,28-30]. Specifically in a ductile
steady-state flow, the competition of thermal and driving-rate
timescales changes the rheology as follows: If driving rates
y are increased, so that the loading time between avalanches
becomes so short as to be comparable to the duration of the av-
erage avalanche (t),y, avalanches begin to overlap temporally,
as shown for instance in the molecular dynamics study of Kar-
markar et al. [31]. These overlapping avalanches destroy the
anomalous stress fluctuations of the AQS yielding transition,
and the flow stress X rises above the athermal critical stress
Y. according to the Herschel-Bulkely (HB) law [12,32,33],

(T =0,y)=Xc+Ay", )

where n is the Herschel-Bulkley exponent and 7 = O indi-
cates the athermal limit. If Eq. (1) is formulated as a critical
scaling law (X — X.)f ~ y, then 8 = 1/n can be viewed
as an order parameter exponent, in analogy to static critical
phenomena.

In overdamped systems in general, the flow stress de-
creases with temperature and increases with driving rate.
Computational studies of thermal activation effects on the
yielding transition have been conducted with molecular dy-
namics simulations of glass formers [34] and, more recently,
with mesoscale elastoplastic models (EPMs) [35-37]. While
molecular dynamics simulations simulate each atom (or
molecule), EPMs coarse grain to the level of elastic blocks.
These blocks fluidize once the local stress exceeds a thresh-
old, whereupon they plastically dissipate the local stress. The
advantage of this coarse graining is that one can simulate
large systems for long times, while respecting the underlying
symmetries of the yielding transition. Recent EPM studies
have mostly focused on the scaling of the flow stress and have
proposed that it takes a scaling form [35,36] (in analogy with
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the depinning transition [38]),

, (T, y) — .
v 2LV T e
Y Tf( T1/a ) (2)

where ¢ = B/« is the Fisher thermal rounding exponent, and
o is an exponent that characterizes the shape of the energy
landscape (see below).

Relatively little work has focused on the interplay between
temperature effects and the scaling description for avalanches.
Karmakar et al. also showed that like with higher driving rates,
increased temperatures interfere with avalanches, destroying
their anomalous scaling with system size [31]. In that work,
the stress-fluctuation scales can be worked out by determin-
ing the timescales of the system and identifying when they
compete with each other.

Subsequent to that work, there have been significant theo-
retical developments in the AQS regime, with scaling theories
connecting different scale-free aspects of the yielding tran-
sition. One useful advance has been the notion of “residual
stress” x = oy, — 0, i.e., the stress necessary to trigger an ST
with a threshold oy, in a particular region of the amorphous
solid. The distribution of residual stresses p(x) ~ x? is scale
free in the thermodynamic limit [12] and plays a key role
in driving the anomalous stress fluctuations in these systems.
Mesoscale modeling has been particularly helpful in exploring
scaling aspects of the yielding transition, as it coarse grains at
the level of STs and directly exposes p(x) [21].

To that end, in this work we will use a mesoscale model
with Arrhenius activation rule (as in Refs. [35-37]),

1 ( x"‘)
Ax) = —exp| —— ), 3)
T T
to describe the temperature and rate effects on the critical
behavior of the yielding transition. This choice of activation
rule is motivated by an energy landscape picture: local regions
of the amorphous solid are stable because there is an energy
barrier (scaling as U ~ Cx?) preventing their rearrangement
(with catastrophe theory suggesting o = 1.5 [39]). Transi-
tion state theory suggests that temperature T causes repeated
attempts at crossing these barriers, which succeed at a rate
proportional to exp[—U (x)/kgT] [40]. In this work, we set
C/kg = 1 and the prefactor T ! is set so that when x = 0 (i.e.,
no barrier), sites activate on average after t, thus matching the
microscopic timescale for ST rearrangement. We match these
two timescales because the exponential prefactor in Eq. (3) is
the attempt frequency for barrier crossing. In particle scale
simulations of model glasses, this attempt frequency is of
the order of the atomic vibrational frequency, f.i, ~ O(1/7),
while the time taken for a plastic rearrangement is of the same
order [41].

With the thermal timescale established, we begin by enu-
merating the other natural timescales in sheared amorphous
solids:

(i) The plastic ST timescale t over which atomistic rear-
rangements occur, i.e., the length of time for which a given
ST is fluid and the timescale over which stress is dissipated.

(i1) For a site a distance x from instability, the thermal
Arrhenius activation timescale 1/1(x) = t exp(x®/T). In this
description, sites with residual stress x have a potential barrier
to thermal activation scaling as U ~ x*.

(iii) For a site a distance x from instability, the mechanical
yielding timescale x/uy, with p a shear modulus.

(iv) The average avalanche duration (t),y.

(v) The average loading time between triggering
avalanches (fipaq)-

We will use the competition of these timescales to sketch
out a phase diagram and predict the scaling in different
regimes. Then, using numerical simulations, we will confirm
the existence of the different phases and verify the scaling
laws present in each phase.

II. THERMALLY ACTIVATED ELASTOPLASTIC MODEL

We use a mesoscale elastoplastic model (EPM), which
coarse grains the amorphous solid to a grid of L? elasti-
cally coupled cells. Each cell i has a yield stress oy, ; drawn
independently from a Weibull distribution (shape parameter
k =2) [42,43] and an initial stress o; = 0. The system is
driven at a fixed strain rate y, which adds stress uniformly
to all sites at a global rate x = py. In the following, we
set u = 1. Sites fluidize immediately when their residual
stress x = ow; — |oi| < 0. Once fluid, sites remain fluid for
27, before again becoming elastic. Fluid sites dissipate stress
as 0; ~ —o;/t. We use a finite-element solver to propagate
stresses from fluidized sites, which automatically produces the
anisotropic Eshelby-like stress fields characteristic of STs. In
contrast to the other thermally activated EPMs [35-37], we
use a real-space stress propagator more similar to [17,44]. In
some of our simulations, we follow Refs. [16,45] and shuffle
the indices of the sites when applying the “kicks” from the flu-
idized sites and refer to these simulations as “shuffled-kernel”
or mean-field (MF) simulations. There are two features that
distinguish our model from the EPMs used in Refs. [35-37].
First, we study the system under constant strain rate, as is
more typical in MD simulations. This makes it challenging to
numerically sample the time to failure for sites with x ~ 1, but
can be accelerated for « = 1, 2, to which we restrict our focus
in this work. Second, our EPM implementation does not use
periodic boundary conditions. For details on the acceleration
algorithm and implementation details, see Appendix A.

III. COMPETITION OF TIMESCALES
Equation (3) implies a characteristic stress scale,
x. =TV, )

The Arrhenius activation rate is of the order of 1/t when x <
Xc(T). The first two natural timescales to equate are

Xe/x =T, (&)

which sets the mechanical yielding timescale for a site with
residual stress x. to the thermal yielding time for a site at or
below x.. This relation defines the solid diagonal orange (light
gray) line,

: 1 1/a
x(T)=-T"", (©)
T
dividing regions 1 and 5 from 2, 3, and 4 in Fig. 1. For
simulations above this orange line with x > x.(7"), thermal
effects are minimal since even sites with x < x. are driven
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FIG. 1. Dynamical phase diagram for the thermal two-
dimensional EPM at L = 128 for o« = 2. The dashed navy (dark
gray) line indicates the onset of temporally overlapping avalanches,
with the hatching indicating the region with nonoverlapping
avalanches. The diagonal solid orange (light gray) line indicates the
onset of thermal effects, with hatching indicating that thermal effects
are prevalent. The vertical dotted red (gray) line at 7, indicates the
onset of thermal truncation of avalanche size. Dashed and dotted
lines have finite-size scaling with L.

to mechanical failure at x = 0 before thermal activation can
occur.

The division between regions 2 and 3 comes from compe-
tition between finite-size scaling and the thermal activation
of sites. In both regimes, avalanches are scale free up to
a cutoff scale, set by the either temperature or the lin-
ear dimension L of the system. The size of an avalanche
is defined by the stress dissipated by the avalanche, with
S = L4§%,, (approximately the number of yielding sites). In
the steady state, the average stress dissipated by avalanches
must equal the stress loaded between avalanches: X (fjoaq) =
(8X)ay = L™4(S). Since (fj0aq) (L) scales with L, this produces
a nontrivial scaling for the mean avalanche size (S). In the
athermal case, an avalanche begins when the weakest site
(left at xni, by the preceding avalanche) reaches x = 0, so
in AQS, (fioad)X = (Xmin). If x is independent between sites
(which appears to be approximately true), (xmi,) iS entirely
determined by the probability density function for x, p(x),
with L= ~ f(;xm‘") p(x")dx'. However, thermal effects alter the
form of p(x) from the power-law form p(x) ~ x? expected in
the thermodynamic limit.

Arrhenius activations deplete sites with x < x. (as can be
seen in Appendix B, Fig. 10) in the thermal regime. If we
approximate the density of sites with x < x, and x > 1 as zero
and with p(x) = Ax? for x € (x., 1) elsewhere, and using the

relation L4 ~ f()("'““‘> p(x")dx’, we obtain

04+1 1/(0+1)
<mm~<jr¢d+ﬁ“) : (7)

which is valid whenever thermal activations occur quickly
compared to mechanical yielding (i.e., in regions 2, 3, and 4).
Clearly, there is a natural temperature scale when x/*! ~ =4,
i.e., when

T, ~ [4e/@0+D) ®)

This is the vertical red (gray) line dividing regions 2 and 3.
The transition across this line is detailed in Sec. IV A, but
in essence this phase line captures whether avalanches are
truncated by finite size or by nonzero temperature.

At high driving rates, the time needed for amorphous solids
to plastically dissipate loaded stress becomes longer than the
time needed to trigger a new plastic event, which results in
a characteristic shear-thinning stress response, typically cap-
tured by the Herschel-Bulkley relation [Eq. (1)]: y" ~ X —
Y., where n = 1/8 is the Herschel-Bulkley exponent. This
rise in stress above the critical flow stress X. occurs when-
ever the stress dissipation timescale (be it from avalanches,
individual STs, or a more generic dissipative mechanism)
competes with the loading timescale. In our case, this first
occurs when avalanches (the longest dissipative timescale in
our system) begin to temporally overlap, i.e., the loading time
is comparable to the duration of avalanches [31].

The next several relations determine the onset of avalanche
overlap. We can establish a maximum temperature 7y for
which avalanches in a finite-size system remain discrete by
setting the rate of activation for L¢ freshly injected sites equal
tol/t,

d
ot = B, ©)
T
implying Ty = 1/1In(L¢). This is the vertical dashed navy
(dark gray) line dividing regions 3 and 4 in Fig. 1. At lower
temperatures, avalanche overlap can be assisted by higher
driving rates. As before, avalanches can overlap because the
loading time between avalanches is comparable to the plastic
time, i.€.,

(tload> =T

We first handle the thermally assisted case [i.e., X < x.(T)].
Thermal activation occurs when the weakest site reaches x,., so
the loading time is (fjoad) = ((Xmin) — Xc)/X. For T > T (L),
we can expand Eq. (7) to first order in L™ for (x,), giving

I 5 _
%m=;m%d] (10)
Using (fipaa) = 7 and x, = TY* we find
. 1 —d—0/a
xoverlap[T > T.(L)] ~ ;L T . (11)

This gives the sloped dashed navy (dark gray) line dividing
regions 3 and 4 in Fig. 1. Now for the second case, where
x > x.(T), we know that thermal activation should be rare
(i.e., mechanical effects dominate). Then, the form of p(x)
is altered to have a size- and drift-velocity-dependent plateau
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TABLE I. A summary of the derived phases and scaling of avalanche size or stress with temperature or system size.

No. Name Scalings Notes

1 Athermal quasistatic (S)ags ~ L4¥/¢+D Dynamics are as if T = 0 and y = 0.

2 Finite-size truncated avalanches  (S) ~ L4%/@+D 1 O(T/*) Minimal temperature effects.

3 Temperature truncated avalanches (8) ~ Tb/ Avalanche size is truncated by temperature rather than system size.
Tags — (Z) ~ T 00 /le2=1)]

4 Thermal Herschel-Bulkley (2) =%2(T)+ y™ Avalanches overlap, temperature effects present.

5 Athermal Herschel-Bulkley (X) = X, + pracs Avalanches overlap, no temperature effects.

6 Simple fluid (2) ~y Sites yield immediately and independently.

with p(x) = po forx < x,(x, L) (see Appendix B, Fig. 10, and
associated discussion). If we instead use that (x,,) is in the
plateau (an appropriate assumption for large L), we have

(min) = L™ py ", (12)

where py = Axf,. Then, equating the loading time and the ST
plastic time, we have

L—d

_ 13
)'Coverlapxp(xs L)0 (13

T= (xmin)/xoverlap ~
which yields the horizontal dashed navy (dark gray) line,
dividing regions 1 and 5. For large L, the onset of the plateau
scales as x, ~ 7x, and we have

xoverlap(T < Toverlap) ~ L7400, (14)

We have found phase lines [Eqgs. (11) and (14)] for avalanche
overlap on both sides of the thermal activation phase line x..
These phase lines should be continuous across the thermal
activation phase line, meeting at a system-size-dependent tem-
perature Toyerlap,

L0 LT 0 Ty ~ LT, (15)

overlap

which we indicate with the navy (dark gray) star in the phase
diagram. Crucially, Tovertap(L) ~ To(L) ~ L=4/(1+9) 5o that
the expansion taken in Eq. (10) is always valid. Transitions
across these lines are explored in Sec. IV B.

Despite avalanches being ill defined in the thermal and
athermal Herschel-Bulkley (HB) phases, we will show numer-
ically in Sec. IV C that the dynamics are still collective since
the presence of correlations between sites affects the HB ex-
ponent n. At sufficiently high temperature or driving, however,
sites yield essentially immediately, destroying any collective
effects. When this occurs, the amorphous solid is said to have
“fluidized.” In the fluid phase, the stress on any given site i
evolves according to 6; = —o;/7 + x, which tends to o; —
7x. This implies (X) ~ y, meaning that this phase behaves
like a simple Newtonian fluid (hence the name). Fluidization
occurs when freshly rejuvenated sites (initially at x = 1) in the
absence of noise yield within a time of order the mechanical
yielding timescale . Since sites with x < x.(T) = T¢ yield
within about 17, and it takes time (1 — x,)/x for a site initially
at x = 1 to reach the thermal absorbing barrier, we say that
fluidization occurs whenever tx > 1 — T'V/%, This gives the
line separating athermal and thermal phases (regions 4 and 5)
from the fluid phase (region 6). A summarizing table of the
derived phases and their pertinent scalings can be found in
Table-1.

IV. NUMERICAL TESTS OF THE PHASE DIAGRAM

To test our phase diagram and scaling theory, we perform
simulations at different stress-loading rates x, temperatures 7,
system sizes L, and with « =1 and o = 2, as well as for
two-dimensional (2D) simulations and 2D simulations with
a shuffled kernel. These shuffled-kernel simulations keep the
broad-tailed kick statistics of the 2D simulations, but remove
spatial correlations between sites, thus providing a mean-field
(MF) realization of the EPM [16]. One consequence of this
is that the exponent 6 changes from 6 ~ 0.52 (in 2D) to
0 =~ 0.35, allowing us to vary 6 and test scaling relations
involving 6. For convenience of the reader, Fig. 2 presents
an overview of the regions of the phase diagram that were
simulated and indicates the corresponding figures.

A. Avalanche size cutoff

Discrete avalanches exist in regions 1, 2, and 3. In region
1, avalanches do not overlap and thermal activations do not
occur, making this the well-studied AQS limit.
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FIG. 2. The phase diagram, as in Fig. 1, but with the regions of
phase space explored in different figures marked by rectangles.
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FIG. 3. Rescaled mean avalanche sizes for various temperatures,
system sizes, and fixed driving rate xt = 107>. Lighter colors are
hotter temperatures T € (107!°, 0.037), as indicated in the color bar.
Symbols indicate system sizes ranging from L = 32 to L = 256.
(S)ags scales as (S)ags ~ LI/E+D and T, ~ L=9%/6+D where (S) =
(S)ags and T' = T, are indicated with the dotted lines.

We can study the average avalanche size in regions 1-3 by
equating the average stress dissipated in avalanches with the
average stress loaded between avalanches. Since avalanche
size is defined as S = LY (8 %,,), we need merely to compute
(624v) = X(tioad)- In zone 3, where thermal effects are large,
we expect (fioad) ™~ }(L’dT’G/”‘ [Eq. (10)], so that

(S) ~ L4 (tioaa) ~ T/ (16)

(i.e., no system-size dependence of the mean avalanche size).
Meanwhile, for T < 7, (i.e., x7 <« L™%), Eq. (7) reduces
to simply (Xmin) ~ L™V For %(tigad) = (Xmin) — X With
Xe K L™+ we simply have (8X)a = X(fioad) = (Xmin)-
Hence, in the low-temperature limit, (S)aqs ~ L4%/@+D.

In Fig. 3, we verify this scaling for (S) crossing the 1—
2 phase line, plotting (S)/(S)aqs against (T /T.)%/%, which
collapses the AQS plateau and gives a high-temperature tail
scaling as (S) ~ [(T/T.)?/*]~!'. These expressions have no
driving-rate dependence, and we have verified the crossover
and scaling at different driving rates than those shown in
Fig. 3. We indeed find almost no driving-rate dependence in
the avalanche size, except for those simulations close to Ty
(orange in Fig. 3), where lower velocities weakly decrease
avalanche size due to stress softening. For this reason, the
highest temperatures fall slightly below the 7~%/¢ scaling.

Now, assuming a power-law form for the distribution
of avalanche sizes p(S)~ S7g[S/S.(T, L)], truncated at
S.(T, L) by finite-system size or temperature, we have that

(S) :/OOSI_’g(S/SC)dszSCZ_r/OO u' T gwydu,  (17)
0 0

implying
(§) ~ 827 (18)

Coupled with (S) ~ T9% this implies S.(T) ~ T ~0/l«@=0)I,
Meanwhile, for T < T.(L), we have the usual AQS regime
scaling, S.(L) ~ L4/I6+DC=2)I and, consequently, the scaling
relation dy = d/[(60 + 1)(2 — ©)] [21]. Though this scaling
relation works well for the shuffled-kernel simulations, we
note that for 2D simulations, there are small additional cor-
rections in the AQS limit as described in [46] that we do not
account for here. These additional corrections only affect the
slow-driving AQS limit since they depend on the structure
of the plateau in Fig. 10, which is destroyed by temperature
fluctuations.

Our finding, that there are “anomalous” stress fluctuations
(ie., (X))o S L™ 4 = N=1) below a critical temperature re-
lated to the size of the system, and “normal” fluctuations (i.e.,
(AZ) ~ L% ~ N~1) above this temperature, is consistent
with the previous results obtained by Karmakar et al. with
particle scale simulations [31,47].

B. Avalanche overlap onset

The onset of Herschel-Bulkley power-law scaling oc-
curs when the timescale of avalanches is comparable to the
timescale between loading, and so stress is added to the
system faster than avalanches can release it. What happens
when avalanches begin to overlap in time? As the driving
rate is increased, spatially distinct and largely noninteracting
avalanches are nucleated faster than older avalanches con-
clude, as was shown by explicitly measuring the correlation
length in athermal molecular dynamics [48]. Although we
do not explicitly measure the correlation length or degree of
spatial overlap in our system, we anticipate that a similar phe-
nomenon takes hold as temperature is increased, with a regime
of spatially distinct but temporally overlapping avalanches.
This phase marks the beginning of HB scaling. At sufficiently
high strain rates, the avalanches begin to increasingly overlap
and interact, and it is no longer possible to individualize them
as independent collective events.

Because our system is finite, the HB phase still has brief
periods of quiescence with no plastic activity. Since we denote
an “avalanche” as any period of plasticity bounded by periods
of quiescence (of at least 37), we will be lumping together
spatially distinct, but temporally overlapping avalanches. We
can detect the onset of this behavior and consequently test
our derived scaling laws for the onset of temporal avalanche
overlap by considering the ratio of timescales (figaq)/(t)av- AS
avalanches temporally overlap more and more, the durations
between avalanches should become exponentially shorter and
rarer, as can be seen in Fig. 4. It is clear that there is a
temperature dependence in these curves, but also that for low
temperatures, the results are identical. This is consistent with
our phase diagram in Fig. 1, where avalanche overlap starts
at fixed XoverlaplT < Tovertap(L)] ~ L™/ for low temper-
atures [Eq. (11)] and at xoverlap[T > 7zwerlap(L)] ~ LT~
for high temperatures [Eq. (14)]. We can capture both scaling
behaviors, and their dependence on system size, with the

phenomenological scaling function,
T).Coverlap(Tz L)~ L_d/(g-H)[I + (T/Toverlap)se/a]_]/sv (19)

which is characterized by a phenomenological sharpness pa-
rameter s (which we here take to be 2), and for the overlap
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FIG. 4. Degree of avalanche overlap, as measured by the ratio
of the waiting time and the average avalanche duration, for L = 64.
Lighter colors are hotter temperatures.

temperature Toyerap = CL™%/UF9) where C is an arbitrary
constant prefactor [Eq. (15)]. We find that C &~ 2 for o = 1
and C = 20 for o = 2 produces an effective collapse for simu-
lations with varying temperature, driving rate, and system size
in Fig. 5. This confirms our scaling prediction for the onset of
avalanche overlap, in both thermal and athermal regimes, and
for the finite-size dependence of Toyertap(L).
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FIG. 5. Finite-size scaling collapse for the avalanche overlap pa-
rameter, for simulations with different temperatures (lighter colors
show higher temperatures) and system sizes indicated by marker
shape.
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FIG. 6. Rheology data with Herschel-Bulkley fits for L = 64
(circles) and L = 256 (diamonds), allowing both exponent n and
the temperature-dependent stress plateau X.(7") to vary. T varies
from 107'° to 3 x 10~!. Bottom: fitted X. and n values vary with
temperature.

C. Rheology transition across x.(7T")

For strain rates above the avalanche-overlap threshold, the
Herschel-Bulkley law y ~ [(X) — X.(T")]" is a reasonable fit
to our data (cf. Fig. 6). We observe that at high-strain rates,
stress tends towards the athermal value. However, simulations
above a certain temperature show a decrease in the fitted flow
stress and in the rheological exponent n (Fig. 6). At still higher
temperatures (7' > 1), the rheological exponent tendston = 1
as would be expected for a Newtonian fluid. In general, there
are minimal system-size effects in (X).

That the rheological exponent changes with n should not
surprise experimentalists, where temperature-dependent vis-
cosity effects have been seen to alter the rheological exponent
[33]. However, since the exponent 1 /n = B has been proposed
to scale as B = 1 + z/(d — dy) (relating the flow exponent
to the dynamical exponent z and fractal dimension dy) [49],
naively this would suggest that the avalanche critical expo-
nents would continuously vary with temperature. However, as
we show below, this effect can be simply understood as fitting
through two exponents operating in different regimes.

To expose this effect, in Fig. 7 we consider the stress
rise above the flow stress X.(7) and divide out the AQS
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FIG. 7. Rheology data, rescaled to exhibit a change in the
Herschel-Bulkley exponent n for x > x.(T) ~ %Tl/ @ The AQS limit
for nags is included in the rescaling to make the transition to the
thermal value ng, more evident. Simulations at 7 = 10 in the molten
phase (brightest orange) obey n = 1 scaling.

Herschel-Bulkley exponent naqs. Although the decrease in n
appears to be gradual in Fig. 6, our data in Fig. 7 show that the
transition is actually sharp: there is a thermal and an athermal
n exponent. Temperature effects seem to approximately halve
the observed Herschel-Bulkley exponent n. By studying the
stress rise above X.(T"), we find that the athermal value nags
dominates when x > x. (cf. Fig. 7). The apparent intermediate
values of n in Fig. 6 are a result of fitting through both
regimes. We find the typical 2D AQS value for the Herschel-
Bulkley exponent in EPMs (n =~ 2/3 [12]). We note that in
experiments, n € [0.4, 1] have been reported, and indeed n
can vary systematically in response to temperature [33] or pH
[50].

At very high T, the system melts into a Newtonian fluid
and the stress scales simply as (X) ~ tx,ie.,n= 1.

V. THERMALLY TRUNCATED AVALANCHES

We have provided numerical evidence for the existence
of different dynamic phases in our phase diagram. Now we
seek to clarify the effect of temperature on the well-defined
avalanches in region 3 of the phase diagram. There, tempera-
ture is high enough to overcome finite-size effects (in contrast
to region 2), while remaining low enough that (with suffi-
ciently slow driving) avalanches do not overlap (in contrast to
region 4). In this case, as we showed previously, the average
avalanche size scales as (S) ~ T~%/% and, owing to Eq. (18),
we have that S, ~ T~9/[*@=9)]  with minimal system-size de-
pendence.

However, if driving rates are lowered far below the
Herschel-Bulkley onset, a thermal softening of the mate-
rial occurs as even nominally stable sites above x. = T'!/¢
can be activated and the mean flow stress (X) is depressed
by temperature (see Fig. 6). At extremely low strain rates

0 100
1071
%) 1009 ~
10_1 T T T T
1072 1071 1072 107!
(A%) (A%)

FIG. 8. Power-law scaling for mean avalanche size with the
stress gap created at extremely slow driving. Power-law fit uses
t = 3/2 for mean-field (MF) data and 7 & 1.37 for 2D data. Scaling
of dashed lines is set by Eq. (20), with indicated fit values of . Lines
are L = 64, with diamonds indicating results for L = 256.

[in our data, with xt € (10722, 10?)], there is additional
softening below the apparent plateau present in Fig. 6. To
obtain a representative sample of avalanches for systems
strained this slowly requires simulating extremely long wait-
ing times between avalanches, which we are able to access
by analytically inverting the waiting time distribution, as
described in Appendix A 1. This softening introduces a
stress gap, AX(T,x) = Xags — (X)(T, x) [where Xaqs =
limy_o+(Z)(T =0, y) = Z(T = 0)], which means that on
average, there is less energy available for avalanches to prop-
agate.

The stress gap introduces a power-law scaling in avalanche
size cutoff, S, ~ |[AX|~1/7, with a new exponent 1/o. This
exponent has been measured in EPM by fixing the stress
of the system with ¥ < Xaqs and artificially triggering an
avalanche by kicking a random site [17] or by measuring
avalanches in the approach to steady-state flow [51]. However,
with the temperature-dependent stress gap entering, 1/o can
be probed naturally, by considering the mean-avalanche size
for simulations at slow driving, where Eq. (18) implies

(S) ~ |aAZ |27, (20)

Our data in Fig. 8 are consistent with 1 /0 &~ 0.91, although
the data are limited to less than a decade for o = 2. This
value of 1/0 is higher than that reported in previous reports.
Here, however, the exponent has been measured in a strain-
controlled simulation, while previous measurements were in
stress-controlled simulations. In Ref. [17], where stress was
fixed below the flow stress and random sites were kicked,
1/o = 0.51, while in Ref. [51], where avalanches were mea-
sured in the transient regime as the system was loaded to its
critical point, 1 /0 = 0.59 [which we infer from the scaling of
Eq. (20) and their mean avalanche size data]. Our explanation
for this discrepancy is the following: avalanche propagation
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FIG. 9. The stress-softening effect, collapsed according to our
proposed scaling AX ~ T 0% (solid lines) and according to the

previously proposed scaling A ~ T!/¢ (dashed lines) for both the
shuffled-kernel and 2D simulations. For clarity, the dashed lines have
been shifted vertically by a factor of 3. All simulations are L = 64,
and T € (1074, 3 x 1072); see Table II for the exponent used in
collapse.

depends on the number of sites with small residual stress
and on correlations between sites. We propose that the ex-
ponent 1/o therefore depends on how the stress gap AX is
established. In our case, sites with x < x.(T") (and for low
driving, sites x & x.) are suppressed. In the above-mentioned
works, the p(x) distribution evolved with the stress gap, with
substantially lower values of 6 reported.

In any case, if we combine Eq. (16) and Eq. (20), we obtain

Tags — (ZNT, ¥) = AX ~ Too/leC0l 1)

which collapses our low-strain rate stress-gap data (cf. Fig. 9).
This scaling argument does not account for strain-rate effects,
but we find that these are relatively modest over more than
10 decades of strain-rate data.

In prior work on thermally activated flow in amorphous
solids, the characteristic stress scale was identified as AX ~
T'/%, per Eq. (2), and the strain rate is scaled by the thermal
yielding exponent ¥ = B/a as y /T#/% [35,36]. We find that
this scaling does not effectively collapse our low strain-rate

TABLE II. Numerically observed exponents for the thermal
EPM model, with £ errors representing acceptable fit ranges.

Exponent Definition Value (2D) Value (MF)
T p(S) ~ s77G(S/S.) 1.37 £ 0.07 1.5+ 0.05

o S. ~ (AX)1/° 1.05 +0.08 1.1 +0.06

0 px) ~ x? 0.524+0.05 0.3540.03

n (athermal) Y=X.4+Cyp" 0.67 £0.02 0.8 +0.02
n (thermal Y2=3X(T)+Cy" 0.33 +£0.06 0.4+0.04
n (molten) T =tuy" 14+0.01 1£0.01

simulations (see the dashed lines in Fig. 9). We speculate that
the scaling AX ~ T9°/[C=D1 wag not previously noted be-
cause 0o /[a(2 — 7)] & 0.8/« is not so dissimilar from 1/w.
The difference in scaling is only obvious when excluding the
data from the fast-driving Herschel-Bulkley regime (where the
T'/* scaling applies)—if the data from the fast-driving regime
is included, this gap in scaling is visually compressed.

Why do different stress scales appear in slow- and fast-
driving regimes? We propose that in the case of slow driving,
with nonoverlapping avalanches, the appropriate stress scale
is set by the typical stress dissipated by a single avalanche.
This leads to the scaling in Eq. (21). When avalanches begin
to overlap, the pertinent stress scale becomes the stress dis-
sipated by individual STs, for which the relevant stress scale
is x. ~ T/ Of course, it is also possible that this alteration
in scaling is linked to our use of a strain-controlled driving
protocol, while previous simulations used stress-controlled
loading.

VI. CONCLUSIONS

We have derived a schematic dynamic phase diagram for
sheared amorphous solids at finite temperatures by comparing
the main timescales of the problem. Using EPM simulations,
we have provided numerical evidence for these phase lines,
by varying the exponent ¢, and by use of a shuffled kernel,
the exponent 6. The main phase lines dictate whether thermal
activation occurs and whether avalanches overlap. Avalanche
overlap has strong finite-size effects, while the threshold for
thermal effects is size independent. In the infinite system-size
limit, the strict AQS critical point occurs only for 7 = 0 and
x = 0. Avalanches can be truncated by either finite-size effects
or by temperature, and we have derived appropriate scaling
arguments for both cases.

Our simulations complement prior stress-controlled work,
and in agreement with that work find that x, ~ AX ~ () —
Tags| ~ T1/* is the appropriate stress scale when avalanches
overlap [35,36]. When avalanches do not overlap, i.e., be-
fore Herschel-Bulkley flow onset in the low-strain rate limit,
thermal effects soften the material and introduce a new
temperature-dependent stress gap. Using scaling arguments,
we have linked that stress gap to the stress dissipated by
avalanches, finding AY ~ Zpqs — (2)70V/1C2=0] Inrigu-
ingly, this brings the AQS 1/0 exponent, which is normally
only exposed by stress-controlled simulations, into the ther-
mal problem. Since we arrived at that scaling using generic
scaling arguments, it should also hold in stress-controlled
simulations.

One avenue that this work does not touch on is aging and
thermal history dependence. We use a fixed Weibull distribu-
tion for site yield thresholds oy, but the threshold distribution
has temperature and history dependence [52,53]. To what
extent this affects critical behavior beyond the ductile-brittle
transition has not been elucidated.

Another aspect that deserves further study is why the
thermal Herschel-Bulkley exponent takes the value it does.
Can this be linked by appropriate scaling arguments to the
other critical exponents, as is done in the athermal case
[12,49]? An accurate space-time exponent z would need to
be measured, along with the correlation length exponent v
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(or its thermal equivalent). We predict a decrease in the
correlation length throughout regime 3, where temperature
effects truncate avalanche propagation. Although we do not
attempt to separate temporally overlapping but spatially dis-
tinct avalanches, as might be possible for low driving rates,
temperatures, and for large systems in the HB regime, we
expect correlation lengths will continue to decrease with tem-
perature in the HB regime.

An interesting observation is that both the thermal and
athermal Herschel-Bulkley exponent differ when the kernel
is shuffled and correlations between sites are destroyed. This
highlights that although the correlation length in the thermal
regime is likely shorter ranged, collective events are still play-
ing a role. With shuffled-kernel simulations, we notice that
the flow stress is much lower than in full 2D simulations.
This indicates that systems with correlated noise evolve to
rather different steady states. Does this in turn produce dif-
ferent types of mechanical noise, beyond just that expected
by having linelike plastic events? If so, is it enough to simply
plug in the different noise distributions at the mean-field level
(in the spirit of [16,20]) to explain the observed Herschel-
Bulkley exponent for the shuffled kernel? Would this approach
extend into the thermal regime with ng? Additionally, our
observation that the shuffling of the kernel alters the 6 and
n exponents suggests that the correlations that can build up
between sites in low-dimension matter. By contrast, Ref. [17]
found that critical exponents did not change between d = 2
and d = 3.
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APPENDIX A: IMPLEMENTATION DETAILS

1. Loading times

Sites liquify by thermal activations at rate A(x) or immedi-
ately at x = 0. To simulate the dynamics of our systems, we
essentially need to work out which site i will fail next and
at what time §¢ (while correctly accounting for loaded stress
X). Once the next site to liquify is known, stresses propagated
from that site can be worked out using the finite-element
solver, and stress can be relaxed at the failing site. During
the time increment §¢, all sites have their stresses increased
by x 8t and any propagated stresses or relaxations are scaled
by a factor of ~ exp[—§¢/7] applied.

Working out the inter-event period &t and site i is rela-
tively trivial for fixed stress simulations between avalanches,
where activations happen at fixed rate A(x). Since activations
are independent Poisson processes, with an exponentially de-
caying waiting time probability distribution function p(¢) =
A(x;)e™ D for a system with N = L sites one could sample
N random numbers {R; € [0, 1)} and find the next activation
time for each site by inverting the cumulative distribution
function for the exponentially distributed waiting times, so

that each site is assigned a time: f; = %ln(l —R;). By

finding the i with the smallest #;, one has found the first
site to yield, and the appropriate interval 8¢ = ¢;. This naive
scheme could obviously be improved by using a global rate,
A=) ;A(x;), and choosing a site i at random with weight
A(x;), which reduces the problem to requiring only two ran-
dom numbers, instead of N.

In our system, because o; evolves in time between ST
events as

0i(t) = 00 + it + oMo (] — 71T, (A1)

where al-“"“l"cal are the stresses propagating from liquified sites

to site i, the Poisson rates A(x;) are not constant. We fol-
low the “naive” approach, but generalized to inhomogeneous
Poisson processes, for each site sampling a random number
R; € [0, 1), and solving for #; as

R, =P(t <t;) =exp {— / i k[xi(t)]dt}. (A2)
0

As before, once we have a #; for each site, we pick the lowest
t; for 8t and liquify site i. In practice, we solve Eq. (A2) in
two ways: (i) after all al.“"“l"cal have decayed by 25t and are
negligible, 0;(¢) are linear in time, and Eq. (A2) can be solved
and inverted analytically for « = 1 and o = 2; (ii) when o;(t)
are nonlinear, we solve Eq. (A2) numerically by constructing
and solving a related initial value problem (IVP).

For the analytical case, using A(x) = %exp(—x"‘ /T), we
restrict ourselves toaw = 1 and « = 2. Fora = 1, with x(z) =
owm — (09 — xt) (suppressing the subscripts for brevity), we
have

1 T '
/ )\[X(t)]dl = .—ef(alhfa'o)/T(el,’x/T _ 1)
0 XT

.
Since R; = 1 — /o' 30Nt |y can solve for 7; as

Oth — O T >
=202 S e L1 - R) S,
X X T
where we can recognize the first term as the mechanical
yielding timescale (o, — 0p)/x = x/uy, and the second as a
temperature-dependent stochastic correction that can reduce
the time to yield. The o = 2 case is similar and gives
Oth — 00
i=+———
X

«/T 1 Oth — 00 2xT
— TerF |:erf( i ) + mln(l — R,-)].

These analytical equations are used between avalanches for
potentially very long loading periods. This avoids a poten-
tially expensive numerical integration at each site, since a
small time step (comparable to T) is necessary to avoid
missing the thermal activation of a site (since a site ap-
proachingx ~ x. =T 1/ activates, on average, on a timescale
~ 1). In practice, since x = oy, — |o|, we also consider the
case x(t) = owm + oy — At to catch the (rare) events in which
negatively stressed sites yield thermally. Additionally, these
equations are prone to numerical under- and overflows, so care
must be taken when implementing these equations to deal with
potential numerical pitfalls.

The numerical description is conceptually simpler,
though more computationally expensive. To solve Eq. (A2)

034103-9



DANIEL KORCHINSKI AND JORG ROTTLER

PHYSICAL REVIEW E 106, 034103 (2022)

numerically, consider the obviously related function R(¢) =
exp{—fé Alx;(t)]dt’}, for which R(f;) = R; is our desired
solution. R(¢) obeys the following differential equation:

dR
_— = [1 — R(t)])\-[xl(t)]’

dt
for which the IVP R( = 0) = 0 and R(¢;) = R; (where R; is
still randomly drawn from [0, 1)) has a unique solution. We use
SCIPY’s solve-ivp routine [54] to integrate these equations for
all sites simultaneously—halting when either R(#;) = R; for
a site or x; =0 for a site. As in the analytical case, we
consider both cases of x; = oy, = 0;(¢), allowing for a site
to yield because it is stressed too far in either direction.
Since the Eshelby-like stress propagator has both positive and
negative kicks, sites frequently fail in either direction during
an avalanche (though they are biased to fail in the forward
loading direction).

(A3)

2. Stress propagator and shuffled kernel

When sites liquify, they reduce their stress and redistribute
stresses elsewhere in the system. We use the finite-element
method on a regular triangular mesh to determine the stress
propagation between sites. Each square site in the system con-
sists of four finite-element triangles terminating in a central
vertex. We use first-order Lagrange elements for the displace-
ment field u [with simple-shear fixed boundary conditions
ul(x,y) € 2] = (¥ y,0)7], and zeroth-order discontinuous
Galerkin elements to represent the stresses, strains, and plastic
strains on the plaquettes. We relate the total strain to the
displacement as

y=5IVw+Tw'l, (A4)
and decompose the strain tensor into plastic (stress-free) and
elastic parts as ¥ = yp1 + Ye1. The elastic strain contributes to

the tensorial stress as

g = 2/ya + Atr(ye), (AS5)

where, for our simulations, we use © =1 and A = % The
local stress o; at a site 7 is the average o, component of the

stress over the square cell. To work out the long-time stress
field from a liquified site, we increment the plastic strain at
that site (equally distributed over all triangles) by the stress at
the site. We then solve the elastic equations and find the stress
increments do;; at all sites in the system. For each site j in the
system, we then set 07" — oMol 4 §g;; 50 that this
stress increment is applied exponentially over the next several
time units t.

For the shuffled-kernel simulations, we first identify a cen-
tral site i in the system [e.g., for L = 32 at (x, y) = (15, 15)].
We then apply a nominal plastic strain of magnitude 1 and
work out the resulting do;; at all sites. The resulting set of
N — 1 stress increments {80;;} is then stored for later use, so
that the expensive finite-element calculation is not repeated
throughout the mean-field simulations. When a site k in the
shuffled-kernel simulation fails, all sites receive a stress incre-
ment oj‘?"“local — aj‘?onloca' + 0x80;;, where the j' are drawn

without replacement from {1,2,...i—1,i+ 1,...N}. The
failing site of course receives the stress increment o =
0160;; ~ —oy. In this way, the stress increments initially cal-
culated for a central site are shuffled for the nonfailing site and
scaled according to the stress at the failing site, and the failing
site relaxes in accordance with its stress.

APPENDIX B: P(X) FORM

For simulations with well-defined avalanches, p(x) can
be sampled immediately after each avalanche. The distribu-
tion of p(x) then can be used to predict the loading time
before the next avalanche. For simulations with x < x.(T),
we find that p(x) takes the form of a power law with an
exponential cutoff at x < x. = T'/%, as can be seen in Fig. 10.
For simulations with a higher-driving rate, however, there
is a system-size-dependent and velocity-dependent plateau
(Fig. 10). We expect the velocity-dependent plateau to occur
at x &~ t x, while the system-size-dependent terminal plateau
should scale as x ~ L™ [44,46]. We approximate the plateau

2
; 7=035 =
100 .
3
D
~
= 1072 -
Ko
o
10—4 .
1072 100 102 104 10°
X / Tl/a
D ¢
T,1024 9
g A
o
+ 1
& 10°
X
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102 10°
X/ (xT+ 0.02L72)

FIG. 10. The residual stress distributions of shuffled-kernel
simulations (8 = 0.35), rescaled by characteristic scales set by tem-
perature, velocity, or finite-size effects. Top: p(x) for simulations
with different values of 7' (lighter colors have higher 7) and L = 256,
rescaled by x. = T'/* for low velocities. Bottom: p(x) for simula-
tions with different values of v (lighter colors have higher strain rate)
and L (indicated by symbol), rescaled by x, = (tx + 0.02L72).
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as occurring at x, = (tx + 0.02L72), which effectively col-
lapses the plateau onset in Fig. 10.

APPENDIX C: EXPONENTS AND SCALING RELATIONS

When avalanches are well defined, the maximum
avalanche size S. is set by either temperature effects or

finite-size effects. In the case of finite-size effects, the fractal
dimension of avalanches enters, with S, ~ L%. Our scal-
ing description based on a simple truncated power law for
p(x) finds that dy = d /[(6 + 1)(2 — 7)] in the athermal limit.
When temperature effects are larger than finite-size effects,
the maximum avalanche size scales as S.(T) ~ T ~%/1«2=7)]
oras S, ~ (AX)" Ve,
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